Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-22T23:18:41.736Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 August 2009

Michael Denis Higgins
Affiliation:
Université du Québec à Chicoutimi, Québec
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, Y., McCave, I. N. & Riley, J. (1991). Laser diffraction size analysis. In Syvitski, J. P. M., ed., Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
Akesson, U., Lindqvist, J. E., Goransson, M. & Stigh, J. (2001). Relationship between texture and mechanical properties of granites, Central Sweden, by the use of image-analysing technique. Bulletin of Engineering Geology and the Environment, 60, 277–84.Google Scholar
Akesson, U., Stigh, J., Lindqvist, J. E. & Goransson, M. (2003). The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy. Engineering Geology, 68, 275–88.CrossRefGoogle Scholar
Allen, S. R. & McPhie, J. (2003). Phenocryst fragments in rhyolitic lavas and lava domes. Journal of Volcanology and Geothermal Research, 126, 263–83.CrossRefGoogle Scholar
Anderson, A. T. (1983). Oscillatory zoning of plagioclase: Nomarski interference contrast microscopy of etched polished sections. American Mineralogist, 68, 125–9.Google Scholar
Arbaret, L., Fernandez, A., Jezek, J., Ildefonse, B., Launeau, P. & Diot, H. (2000). Analogue and numerical modelling of shape fabrics: application to strain and flow determination in magmas. Transactions of the Royal Society of Edinburgh-Earth Sciences, 91, 97–109.Google Scholar
Armienti, P. & Tarquini, S. (2002). Power law olivine crystal size distributions in lithospheric mantle xenoliths. Lithos, 65, 273–85.CrossRefGoogle Scholar
Armienti, P., Pareschi, M. T., Innocenti, F. & Pompilio, M. (1994). Effects of magma storage and ascent on the kinetics of crystal growth. The case of the 1991–93 Mt. Etna eruption. Contributions to Mineralogy and Petrology, 115, 402–14.CrossRefGoogle Scholar
ASTM (1992). ASTM E930–92e1 Standard test methods for estimating the largest grain observed in a metallographic section. Philadelphia, PA: American Society for Testing Materials.
ASTM (1996). ASTM E112–96 Standard test methods for determining average grain size. Philadelphia, PA: American Society for Testing Materials.
ASTM (1997). ASTM E1382–97 Standard test method for determining average grain size using semiautomatic and automatic image analysis. Philadelphia, PA: American Society for Testing Materials.
Baronnet, A. (1984). Growth kinetics of the silicates. A review of basic concepts. Fortschritte der mineralogie, 62, 187–232.Google Scholar
Barrett, P. J. (1980). The shape of rock particles, a critical review. Sedimentology, 27, 291–303.CrossRefGoogle Scholar
Bateman, P. C. & Chappell, B. W. (1979). Crystallisation, fractionation, and solidification of the Tuolumne Intrusive series, Yosemite National Park, California. Geological Society of America Bulletin, 90, 465–82.2.0.CO;2>CrossRefGoogle Scholar
Beere, W. (1975). Unifying theory of stability of penetrating liquid-phases and sintering pores. Acta Metallurgica, 23, 131–8.CrossRefGoogle Scholar
Ismail, Ben W. & Mainprice, D. (1998). An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 296, 145–57.CrossRefGoogle Scholar
Benn, K. & Mainprice, D. (1989). An interactive program for determination of plagioclase crystal axes orientations from U-stage measurements – an aid for petrofabric studies. Computers & Geosciences, 15, 1127–42.CrossRefGoogle Scholar
Bennema, P., Meekes, H. & Enckevort, V. (1999). Crystal growth and morphology: A multi-faceted approach. In Jamtveit, B. & Meakin, P., eds., Growth, Dissolution, and Pattern Formation in Geosystems. Dordrecht: Boston, pp. 21–64.CrossRefGoogle Scholar
Berger, A. (2004). An improved equation for crystal size distribution in second-phase influenced aggregates. American Mineralogist, 89, 126–31.CrossRefGoogle Scholar
Berger, A. & Herwegh, M. (2004). Grain coarsening in contact metamorphic carbonates: effects of second-phase particles, fluid flow and thermal perturbations. Journal of Metamorphic Geology, 22, 459–74.CrossRefGoogle Scholar
Berger, A. & Roselle, G. (2001). Crystallization processes in migmatites. American Mineralogist, 86, 215–24.CrossRefGoogle Scholar
Bevington, P. R. & Robinson, D. K. (2003). Data Reduction and Error Analysis for the Physical Sciences. Boston, MA: McGraw-Hill.Google Scholar
Bindeman, I. & Valley, J. W. (2001). Low-δ18O rhyolites from Yellowstone: Magmatic evolution based on analyses of zircons and individual phenocrysts. Journal of Petrology, 42, 1491–517.CrossRefGoogle Scholar
Bindeman, I. N. (2003). Crystal sizes in evolving silicic magma chambers. Geology, 31, 367–70.2.0.CO;2>CrossRefGoogle Scholar
Blanchard, J.-P., Boyer, P. & Gagny, C. (1979). Un nouveau critère de sens de mise en place dans une caisse filonienne: Le ‘pincement’ des minéraux aux epontes (Orientation des minéraux dans un magma en écoulement). Tectonophysics, 53, 1–25.CrossRefGoogle Scholar
Blower, J. D., Keating, J. P., Mader, H. M. & Phillips, J. C. (2001). Inferring volcanic degassing processes from vesicle size distributions. Geophysical Research Letters, 28, 347–50.CrossRefGoogle Scholar
Blower, J. D., Keating, J. P., Mader, H. M. & Phillips, J. C. (2002). The evolution of bubble size distributions in volcanic eruptions. Journal of Volcanology and Geothermal Research, 120, 1–23.CrossRefGoogle Scholar
Blumenfeld, P. & Bouchez, J. L. (1988). Shear criteria in granite and migmatite deformed in the magmatic and solid states. Journal of Structural Geology, 10, 361–72.CrossRefGoogle Scholar
Boorman, S., Boudreau, A. & Kruger, F. J. (2004). The lower zone-critical zone transition of the Bushveld complex: A quantitative textural study. Journal of Petrology, 45, 1209–35.CrossRefGoogle Scholar
Borradaile, G. J. (1988). Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 156, 1–20.CrossRefGoogle Scholar
Borradaile, G. J. & Gauthier, D. (2003). Interpreting anomalous magnetic fabrics in ophiolite dikes. Journal of Structural Geology, 25, 171–82.CrossRefGoogle Scholar
Borradaile, G. J. & Henry, B. (1997). Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 42, 49–93.CrossRefGoogle Scholar
Bouchez, J. L. (1997). Granite is never isotropic: an introduction to AMS studies of granitic rocks. In Bouchez, J. L., Hutton, D. H. W. & Stephens, W. E., eds., Granite: From Segregation of Melt to Emplacement Fabrics. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Bouchez, J. L. (2000). Magnetic susceptibility anisotropy and fabrics in granites. Comptes rendus de l'Academie des Sciences, 330, 1–14.Google Scholar
Boudreau, A. E. (1987). Pattern forming during crystallisation and the formation of fine-scale layering. In Parsons, I., ed., Origins of Igneous Layering. Dordrecht: D. Reidel, pp. 453–71.CrossRefGoogle Scholar
Boudreau, A. E. (1995). Crystal aging and the formation of fine-scale igneous layering. Mineralogy and Petrology, 54, 55–69.CrossRefGoogle Scholar
Bowman, E. T., Soga, K. & Drummond, W. (2001). Particle shape characterisation using Fourier descriptor analysis. Geotechnique, 51, 545–54.CrossRefGoogle Scholar
Bozhilov, K. N., Green, H. W. & Dobrzhinetskaya, L. F. (2003). Quantitative 3D measurement of ilmenite abundance in Alpe Arami olivine by confocal microscopy: Confirmation of high-pressure origin. American Mineralogist, 88, 596–603.CrossRefGoogle Scholar
Brandeis, G. & Jaupart, C. (1987). The kinetics of nucleation and crystal growth and scaling laws for magmatic crystallisation. Contributions to Mineralogy and Petrology, 96, 24–34.CrossRefGoogle Scholar
Brandon, D. G. & Kaplan, W. D. (1999). Microstructural Characterization of Materials. Chichester, NY: J. Wiley and Sons.Google Scholar
Brantley, S. L. & Mellott, N. P. (2000). Surface area and porosity of primary silicate minerals. American Mineralogist, 85, 1767–83.CrossRefGoogle Scholar
Brantley, S. L., White, A. F. & Hodson, M. E. (1999). Surface area of primary silicate minerals. In Jamtveit, B. & Meakin, P., eds., Growth, Dissolution, and Pattern Formation in Geosystems. Dordrecht: Boston, pp. 291–326.CrossRefGoogle Scholar
Bryon, D. N., Atherton, M. P. & Hunter, R. H. (1995). The interpretation of granitic textures from serial thin sectioning, image-analysis and 3-dimensional reconstruction. Mineralogical Magazine, 59, 203–11.CrossRefGoogle Scholar
Bulau, J. R., Waff, H. S. & Tyburczy, J. A. (1979). Mechanical and thermodynamic constraints on fluid distribution in partial melts. Journal of Geophysical Research, 84, 6102–8.CrossRefGoogle Scholar
Bunge, H. J. (1982). Texture Analysis in Materials Science. London, UK: Butterworths.Google Scholar
Burnard, P. (1999). Eruption dynamics of ‘popping rock’ from vesicle morphologies. Journal of Volcanology and Geothermal Research, 92, 247–58.CrossRefGoogle Scholar
Cabane, H., Laporte, D. & Provost, A. (2001). Experimental investigation of the kinetics of Ostwald ripening of quartz in silicic melts. Contributions to Mineralogy and Petrology, 142, 361–73.CrossRefGoogle Scholar
Cabri, L. & Vaughan, D., eds., (1998). Modern Approaches to Ore and Environmental Mineralogy. Short Course Series, 27. Ottawa: Mineralogical Association of Canada.Google Scholar
Canon-Tapia, E. & Castro, J. (2004). AMS measurements on obsidian from the Inyo Domes, CA: a comparison of magnetic and mineral preferred orientation fabrics. Journal of Volcanology and Geothermal Research, 134, 169–82.CrossRefGoogle Scholar
Canon-Tapia, E., Walker, G. P. L. & Herrero-Bervera, E. (1997). The internal structure of lava flows – Insights from AMS measurements II: Hawaiian pahoehoe, toothpaste lava and a'a. Journal of Volcanology and Geothermal Research, 76, 19–46.CrossRefGoogle Scholar
Capaccioni, B. & Sarocchi, D. (1996). Computer-assisted image analysis on clast shape fabric from the Orvieto-Bagnoregio ignimbrite (Vulsini District, central Italy): Implications on the emplacement mechanisms. Journal of Volcanology and Geothermal Research, 70, 75–90.CrossRefGoogle Scholar
Capaccioni, B., Valentini, L., Rocchi, M. B. L., Nappi, G. & Sarocchi, D. (1997). Image analysis and circular statistics for shape-fabric analysis: Applications to lithified ignimbrites. Bulletin of Volcanology, 58, 501–14.CrossRefGoogle Scholar
Carey, S., Maria, A. & Sigurdsson, H. (2000). Use of fractal analysis for discrimination of particles from primary and reworked jokulhlaup deposits in SE Iceland. Journal of Volcanology and Geothermal Research, 104, 65–80.CrossRefGoogle Scholar
Carlson, W. D. (1999). The case against Ostwald ripening of porphyroblasts. Canadian Mineralogist, 37, 403–13.Google Scholar
Carlson, W. D., Denison, C. & Ketcham, R. A. (1995). Controls on the nucleation and growth of porphyroblasts: Kinetics from natural textures and numerical models. Geological Journal, 30, 207–25.CrossRefGoogle Scholar
Cashman, K. (1986). Crystal size distributions in igneous and metamorphic rocks. Baltimore, MA: Johns Hopkins University.
Cashman, K. & Blundy, J. (2000). Degassing and crystallization of ascending andesite and dacite. Philosophical Transactions of the Royal Society of London Series A (Mathematical Physical and Engineering Sciences), 358, 1487–513.CrossRefGoogle Scholar
Cashman, K. V. (1988). Crystallisation of Mount St. Helens dacite; a quantitative textural approach. Bulletin of Volcanology, 50, 194–209.CrossRefGoogle Scholar
Cashman, K. V. (1990). Textural constraints on the kinetics of crystallization of igneous rocks. In Nicholls, J. & Russell, J. K., eds., Modern Methods of Igneous Petrology: Understanding Magmatic Processes. Washington DC: Mineralogical Society of America, pp. 259–314.Google Scholar
Cashman, K. V. (1992). Groundmass crystallisation of Mount St Helens dacite 1980–1986: a tool for interpreting shallow magmatic processes. Contributions to Mineralogy and Petrology, 109, 431–49.CrossRefGoogle Scholar
Cashman, K. V. (1993). Relationship between plagioclase crystallisation and cooling rate in basaltic melts. Contributions to Mineralogy and Petrology, 113, 126–42.CrossRefGoogle Scholar
Cashman, K. V. & Ferry, J. M. (1988). Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization III. Metamorphic crystallization. Contributions to Mineralogy and Petrology, 99, 410–15.Google Scholar
Cashman, K. V. & Marsh, B. D. (1988). Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation II. Makaopuhi lava lake. Contributions to Mineralogy and Petrology, 99, 292–305.CrossRefGoogle Scholar
Cashman, K. V., Thornber, C. & Kauahikaua, J. P. (1999). Cooling and crystallization of lava in open channels, and the transition of pahoehoe lava to a'a. Bulletin of Volcanology, 61, 306–23.CrossRefGoogle Scholar
Castro, J. M., Cashman, K. V. & Manga, M. (2003). A technique for measuring 3D crystal-size distributions of prismatic microlites in obsidian. American Mineralogist, 88, 1230–40.CrossRefGoogle Scholar
Chacron, M. & L'Heureux, I. (1999). A new model of periodic precipitation incorporating nucleation, growth and ripening. Physics Letters A, 263, 70–7.CrossRefGoogle Scholar
Chayes, F. (1950). On the bias of grain-size measurements made in thin section. Journal of Geology, 58, 156–60.CrossRefGoogle Scholar
Cheadle, M. J., Elliott, M. T. & McKenzie, D. (2004). Percolation threshold and permeability of crystallizing igneous rocks: The importance of textural equilibrium. Geology, 32, 757–60.CrossRefGoogle Scholar
Christiansen, C. & Hartman, D. (1991). Principles, methods, and application of particle size analysis. In Syvitski, J. P. M., ed., Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press, pp. 237–48.CrossRefGoogle Scholar
Clark, A. H., Pearce, T. H., Roeder, P. L. & Wolfson, I. (1986). Oscillatory zoning and other microstructures in magmatic olivine and augite; Nomarski interference contrast observations on etched polished surfaces. American Mineralogist, 71 734–41.Google Scholar
Cloetens, P., Ludwig, W., Boller, E., Peyrin, F., Schlenker, M. & Baruchel, J. (2002). 3D imaging using coherent synchrotron radiation. Image Analysis and Stereology, 21 (suppl. 1), S75–S86.CrossRefGoogle Scholar
Cmiral, M., FitzGerald, J. D., Faul, U. H. & Green, D. H. (1998). A close look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM study. Contributions to Mineralogy and Petrology, 130, 336–45.Google Scholar
Coakley, J. & Syvitski, J. P. M. (1991). Sedigraph technique. In Syvitski, J. P. M., ed., Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press, pp. 129–42.CrossRefGoogle Scholar
Coogan, L. A., Thompson, G. & MacLeod, C. J. (2002). A textural and geochemical investigation of high level gabbros from the Oman ophiolite: implications for the role of the axial magma chamber at fast-spreading ridges. Lithos, 63, 67–82.CrossRefGoogle Scholar
Costa, L. F. & Cesar, R. M. (2001). Shape Analysis and Classification: Theory and Practice. Boca Raton, FL: CRC Press.Google Scholar
Craig, D. B. (1961). The Benford Plate. American Mineralogist, 46, 757–8.Google Scholar
Cressie, N. (1991). Statistics for Spatial Data. New York: Wiley-Interscience.Google Scholar
Cruden, A. R. & Launeau, P. (1994). Structure, magnetic fabric and emplacement of the Archean Lebel stock, SW Abitibi greenstone belt. Journal of Structural Geology, 16, 677–91.CrossRefGoogle Scholar
Dana, J. D., Dana, E. S., Palache, C., Berman, H. M. & Frondel, C. (1944). The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University, 1837–1892. New York: J. Wiley and Sons, London: Chapman and Hall.Google Scholar
Daniel, C. G. & Spear, F. S. (1999). The clustered nucleation and growth processes of garnet in regional metamorphic rocks from north-west Connecticut, USA. Journal of Metamorphic Geology, 17, 503–20.Google Scholar
Darrozes, J., Gaillot, P., Saint-Blanquat, M. & Bouchez, J. L. (1997). Software for multi-scale image analysis: The normalized optimized anisotropic wavelet coefficient method. Computers & Geosciences, 23, 889–95.CrossRefGoogle Scholar
Deakin, A. S. & Boxer, G. L. (1989). Argyle AK1 diamond size distribution; the use of fine diamonds to predict the occurrence of commercial size diamonds. In Ross, J., Jaques, A. L., Ferguson, J., Green, D. H., O'Reilly, S. Y., Danchin, R. V. & Janse, A. J. A., eds., Fourth International Kimberlite Conference. Sydney: Geological Society of Australia, pp. 1117–22.Google Scholar
DeHoff, R. T. (1984). Generalized microstructural evolution by interface controlled coarsening. Acta Metallurgica, 32, 43–7.CrossRefGoogle Scholar
DeHoff, R. T. (1991). A geometrically general theory of diffusion controlled coarsening. Acta Metallurgica et Materialia, 39, 2349–60.CrossRefGoogle Scholar
Delesse, M. A. (1847). Procedé mécanique pour déterminer la composition des roches. Comptes rendus de l'Académie des Sciences (Paris), 25, 544–5.Google Scholar
Dellino, P. & Liotino, G. (2002). The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance. Journal of Volcanology and Geothermal Research, 113, 1–18.CrossRefGoogle Scholar
Dillon, C. G., Carey, P. F. & Worden, R. H. (2001). Fractscript: A macro for calculating the fractal dimension of object perimeters in images of multiple objects. Computers & Geosciences, 27, 787–94.CrossRefGoogle Scholar
Diot, H., Bolle, O., Lambert, J. M., Launeau, P. & Duchesne, J. C. (2003). The Tellnes ilmenite deposit (Rogaland, South Norway): magnetic and petrofabric evidence for emplacement of a Ti-enriched noritic crystal mush in a fracture zone. Journal of Structural Geology, 25, 481–501.CrossRefGoogle Scholar
Donaldson, C. H. (1976). An experimental investigation of olivine morphology. Contributions to Mineralogy and Petrology, 57, 187–213.CrossRefGoogle Scholar
Dowty, E. (1980). Crystal growth and nucleation theory and the numerical simulation of igneous crystallization. In Hargraves, R. B., ed., Physics of Magmatic Processes. Princeton: Princeton University Press.CrossRefGoogle Scholar
Drolon, H., Hoyez, B., Druaux, F. & Faure, A. (2003). Multiscale roughness analysis of particles: Application to the classification of detrital sediments. Mathematical Geology, 35, 805–17.CrossRefGoogle Scholar
Druitt, T. H., Edwards, L., Mellors, R. M., et al. (1999). Santorini Volcano. London, UK: Geological Society. Memoir 19Google Scholar
Dunbar, N. W., Cashman, K. V. & Dupre, R. (1994). Crystallization processes of anorthoclase phenocrysts in the Mount Erebus magmatic system; evidence from crystal composition, crystal size distributions, and volatile contents of melt inclusions. In Kyle, P. R., ed., Volcanological and Environmental Studies of Mount Erebus, Antarctica. Washington DC: American Geophysical Union, pp. 129–46.CrossRefGoogle Scholar
Duyster, J. & Stockhert, B. (2001). Grain boundary energies in olivine derived from natural microstructures. Contributions to Mineralogy and Petrology, 140, 567–76.CrossRefGoogle Scholar
Eberl, D. D., Drits, V. A. & Srodon, J. (1998). Deducing growth mechanisms for minerals from the shapes of crystal size distributions. American Journal of Science, 298, 499–533.CrossRefGoogle Scholar
Eberl, D. D., Kile, D. E. & Drits, V. A. (2002). On geological interpretations of crystal size distributions: Constant vs. proportionate growth. American Mineralogist, 87, 1235–41.CrossRefGoogle Scholar
Ehrlich, R. & Weinberg, B. (1970). An exact method for characterization of grain shape. Journal of Sedimentary Petrology, 40, 205–12.Google Scholar
Eisenhour, D. D. (1996). Determining chondrule size distributions from thin-section measurements. Meteoritics & Planetary Science, 31, 243–8.CrossRefGoogle Scholar
Elliott, M. T. & Cheadle, M. J. (1997). On the identification of textural disequilibrium in rocks using dihedral angle measurements: Reply. Geology, 25, 1055.2.3.CO;2>CrossRefGoogle Scholar
Elliott, M. T., Cheadle, M. J. & Jerram, D. A. (1997). On the identification of textural equilibrium in rocks using dihedral angle measurements. Geology, 25, 355–8.2.3.CO;2>CrossRefGoogle Scholar
Emmons, R. C. (1964). The Universal Stage (With Five Axes of Rotation). New York: Geological Society of America.Google Scholar
Epstein, B. (1947). The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution. Journal of the Franklin Institute, 244, 471–7.CrossRefGoogle Scholar
Ernst, R. E. & Baragar, W. R. A. (1992). Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature, 356, 511–13.CrossRefGoogle Scholar
Ersoy, A. & Waller, M. D. (1995). Textural characterization of rocks. Engineering Geology, 39, 123–36.CrossRefGoogle Scholar
Exner, H. (2004). Stereology and 3D microscopy: Useful alternatives or competitors in the quantitative analysis of microstructures?Image Analysis and Stereology, 23, 73–82.CrossRefGoogle Scholar
Faul, U. (1997). The permeability of partially molten upper mantle rocks from experiments and percolation theory. Journal of Geophysical Research, 102, 10299–311.CrossRefGoogle Scholar
Faure, F., Trolliard, G., Nicollet, C. & Montel, J. M. (2003). A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contributions to Mineralogy and Petrology, 145, 251–63.CrossRefGoogle Scholar
Flinn, D. (1962). On folding during three-dimensional progressive deformation. Geological Society of London Quarterly Journal, 118, 385–433.CrossRefGoogle Scholar
Friedman, G. M. (1958). Determination of sieve-size distributions from thin-section data for sedimentary petrological studies. Journal of Geology, 66, 394–416.CrossRefGoogle Scholar
Fueten, F. (1997). A computer-controlled rotating polarizer stage for the petrographic microscope. Computers & Geosciences, 23, 203–8.CrossRefGoogle Scholar
Fueten, F. & Goodchild, J. S. (2001). Quartz c-axes orientation determination using the rotating polarizer microscope. Journal of Structural Geology, 23, 895–902.CrossRefGoogle Scholar
Gaillot, P., Darrozes, J., Saint Blanquat, M. & Ouillon, G. (1997). The normalized optimized anisotropic wavelet coefficient (NOAWC) method; an image processing tool for multiscale analysis of rock fabric. Geophysical Research Letters, 24, 1819–22.CrossRefGoogle Scholar
Gaillot, P., Darrozes, J. & Bouchez, J. L. (1999). Wavelet transform: a future of rock fabric analysis?Journal of Structural Geology, 21, 1615–21.CrossRefGoogle Scholar
Galwey, A. K. & Jones, K. A. (1963). An attempt to determine the mechanism of a natural mineral-forming reaction from examination of the products. Journal of the Chemical Society (London), 5681–6.Google Scholar
Galwey, A. K. & Jones, K. A. (1966). Crystal size frequency distribution of garnets in some analysed metamorphic rocks from Mallaig, Inverness, Scotland. Geological Magazine, 103, 143–52.CrossRefGoogle Scholar
Gaonac'h, H., Lovejoy, S., Stix, J. & Scherzter, D. (1996a). A scaling growth model for bubbles in basaltic lava flows. Earth and Planetary Science Letters, 139, 395–409.CrossRefGoogle Scholar
Gaonac'h, H., Stix, J. & Lovejoy, S. (1996b). Scaling effects on vesicle shape, size and heterogeneity of lavas from Mount Etna. Journal of Volcanology and Geothermal Research, 74, 131–52.CrossRefGoogle Scholar
Gaonac'h, H., Lovejoy, S. & Schertzer, D. (2003). Percolating magmas and explosive volcanism. Geophysical Research Letters, 30, 1559.CrossRefGoogle Scholar
Gardner, J. E. & Denis, M.-H. (2004). Heterogeneous bubble nucleation on Fe-Ti oxide crystals in high-silica rhyolitic melts. Geochimica et Cosmochimica Acta, 68, 3587–97.CrossRefGoogle Scholar
Gardner, J. E., Hilton, M. & Carroll, M. R. (1999). Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure. Earth and Planetary Science Letters, 168, 201–18.CrossRefGoogle Scholar
Garrido, C. J., Kelemen, P. B. & Hirth, G. (2001). Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge; plagioclase crystal size distributions in gabbros from the Oman Ophiolite. Geochemistry Geophysics Geosystems, doi: 10.1029/2000GC000136.CrossRefGoogle Scholar
Gee, J. S., Meurer, W. P., Selkin, P. A. & Cheadle, M. J. (2004). Quantifying three-dimensional silicate fabrics in cumulates using cumulative distribution functions. Journal of Petrology, 45, 1983–2009.CrossRefGoogle Scholar
Geoffroy, L., Callot, J. P., Aubourg, C. & Moreira, M. (2002). Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation. Terra Nova, 14, 183–90.CrossRefGoogle Scholar
Ghiorso, M. S. & Sack, R. O. (1995). Chemical mass-transfer in magmatic processes. 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197–212.CrossRefGoogle Scholar
Gingras, M. K., MacMillan, B. & Balcom, B. J. (2002). Visualizing the internal physical characteristics of carbonate sediments with magnetic resonance imaging and petrography. Bulletin of Canadian Petroleum Geology, 50, 363–9.CrossRefGoogle Scholar
Goodchild, J. S. & Fueten, F. (1998). Edge detection in petrographic images using the rotating polarizer stage. Computers & Geosciences, 24, 745–51.CrossRefGoogle Scholar
Goodrich, C. A. (2003). Petrogenesis of olivine-phyric shergottites Sayh Al Uhaymir 005 and elephant moraine A79001 lithology A. Geochimica et Cosmochimica Acta, 67, 3735–72.CrossRefGoogle Scholar
Gray, N. H. (1970). Crystal growth and nucleation in two large diabase dykes. Canadian Journal of Earth Sciences, 7, 366–75.CrossRefGoogle Scholar
Gray, N. H., Philpotts, A. R. & Dickson, L. D. (2003). Quantitative measures of textural anisotropy resulting from magmatic compaction illustrated by a sample from the Palisades sill, New Jersey. Journal of Volcanology and Geothermal Research, 121, 293–312.CrossRefGoogle Scholar
Gregg, S. J. & Sing, K. S. W. (1982). Adsorption, Surface Area, and Porosity. London: Academic Press.Google Scholar
Gregoire, V., Darrozes, J., Gaillot, P., Nedelec, A. & Launeau, P. (1998). Magnetite grain shape fabric and distribution anisotropy vs rock magnetic fabric: a three-dimensional case study. Journal of Structural Geology, 20, 937–44.CrossRefGoogle Scholar
Greshake, A., Fritz, J. & Stoffler, D. (2004). Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single-stage ejection history. Geochimica et Cosmochimica Acta, 68, 2359–77.CrossRefGoogle Scholar
Gualda, G., Cook, D., Chopra, R.et al. (2004). Fragmentation, nucleation and migration of crystals and bubbles in the Bishop Tuff rhyolitic magma. Transactions of the Royal Society of Edinburgh-Earth Sciences, 95, 375–90.CrossRefGoogle Scholar
Habesch, S. M. (2000). Electron backscattered diffraction analyses combined with environmental scanning electron microscopy: potential applications for non-conducting, uncoated mineralogical samples. Materials Science and Technology, 16, 1393–8.CrossRefGoogle Scholar
Hammer, J. E., Cashman, K. V., Hoblitt, R. P. & Newman, S. (1999). Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bulletin of Volcanology, 60, 355–80.CrossRefGoogle Scholar
Hanchar, J. M. & Hoskin, P. W. O., eds., (2003). Zircon. Reviews in Mineralogy and Geochemistry, 53. Washington, DC: Mineralogical Society of America.Google Scholar
Harvey, P. K. & Laxton, R. R. (1980). The estimate of finite strain from the orientation distribution of passively deformed linear markers: eigenvalue relationships. Tectonophysics, 70, 285–307.CrossRefGoogle Scholar
Heilbronner, P. R. & Bruhn, D. (1998). The influence of three-dimensional grain size distributions on the rheology of polyphase rocks. Journal of Structural Geology, 20, 695–705.CrossRefGoogle Scholar
Heilbronner, R. (2002). Analysis of bulk fabrics and microstructure variations using tesselations of autocorrelation functions. Computers & Geosciences, 28, 447–55.CrossRefGoogle Scholar
Heilbronner, R. P. (1992). The autocorrelation function – an image-processing tool for fabric analysis. Tectonophysics, 212, 351–70.CrossRefGoogle Scholar
Heilbronner, R. P. & Pauli, C. (1993). Integrated spatial and orientation analysis of quartz c-axes by computer-aided microscopy. Journal of Structural Geology, 15, 369–82.CrossRefGoogle Scholar
Herring, C. (1951a). Some theorems on the free energies of crystal surfaces. Physics Reviews, 82, 87–93.CrossRefGoogle Scholar
Herring, C. (1951b). Surface tension as a motivation for sintering. In Kingston, W., ed., Physics of Powder Metallurgy. New York: McGraw-Hill.Google Scholar
Herwegh, M. (2000). A new technique to automatically quantify microstructures of fine grained carbonate mylonites: two-step etching combined with SEM imaging and image analysis. Journal of Structural Geology, 22, 391–400.CrossRefGoogle Scholar
Herwegh, M., Bresser, J. & Heege, J. (2005). Combining natural microstructures with composite flow laws: an improved approach for the extrapolation of lab data to nature. Journal of Structural Geology, 27, 503–21.CrossRefGoogle Scholar
Hext, G. (1963). The estimation of second-order tensors, with related tests and designs. Biometrika, 50, 353–73.CrossRefGoogle Scholar
Heyraud, J. C. & Metois, J. J. (1987). Equilibrium shape of an ionic-crystal in equilibrium with its vapor (NaCl). Journal of Crystal Growth, 84, 503–8.CrossRefGoogle Scholar
Higgins, M. D. (1991). The origin of laminated and massive anorthosite, Sept Iles intrusion, Quebec, Canada. Contributions to Mineralogy and Petrology, 106, 340–54.CrossRefGoogle Scholar
Higgins, M. D. (1994). Determination of crystal morphology and size from bulk measurements on thin sections: numerical modelling. American Mineralogist, 79, 113–19.Google Scholar
Higgins, M. D. (1996a). Crystal size distributions and other quantitative textural measurements in lavas and tuff from Mt Taranaki (Egmont volcano), New Zealand. Bulletin of Volcanology, 58, 194–204.CrossRefGoogle Scholar
Higgins, M. D. (1996b). Magma dynamics beneath Kameni volcano, Greece, as revealed by crystal size and shape measurements. Journal of Volcanology and Geothermal Research, 70, 37–48.CrossRefGoogle Scholar
Higgins, M. D. (1998). Origin of anorthosite by textural coarsening: Quantitative measurements of a natural sequence of textural development. Journal of Petrology, 39, 1307–25.CrossRefGoogle Scholar
Higgins, M. D. (1999). Origin of megacrysts in granitoids by textural coarsening: a crystal size distribution (CSD) study of microcline in the Cathedral Peak granodiorite, Sierra Nevada, California. In Fernandez, C. & Castro, A., eds., Understanding Granites: Integrating Modern and Classical Techniques. Special Publication 158. London: Geological Society of London, pp. 207–19.Google Scholar
Higgins, M. D. (2000). Measurement of crystal size distributions. American Mineralogist, 85, 1105–16.CrossRefGoogle Scholar
Higgins, M. D. (2002a). Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. American Mineralogist, 87, 171–5.CrossRefGoogle Scholar
Higgins, M. D. (2002b). A crystal size-distribution study of the Kiglapait layered mafic intrusion, Labrador, Canada: evidence for textural coarsening. Contributions to Mineralogy and Petrology, 144, 314–30.CrossRefGoogle Scholar
Higgins, M. D. (2005). A new model for the structure of the Sept Iles intrusive suite, Canada. Lithos, 83, 199–213.CrossRefGoogle Scholar
Higgins, M. D. (2006). Use of appropriate diagrams to determine if crystal size distributions (CSD) are dominantly semi-logarithmic, lognormal or fractal (scale invariant). Journal of Volcanology and Geothermal Research.Google Scholar
Higgins, M. D. & Roberge, J. (2003). Crystal size distribution (CSD) of plagioclase and amphibole from Soufriere Hills volcano, Montserrat: Evidence for dynamic crystallisation / textural coarsening cycles. Journal of Petrology, 44, 1401–11.CrossRefGoogle Scholar
Hiraga, T., Nishikawa, O., Nagase, T. & Akizuki, M. (2001). Morphology of intergranular pores and wetting angles in pelitic schists studied by transmission electron microscopy. Contributions to Mineralogy and Petrology, 141, 613–22.CrossRefGoogle Scholar
Hiraga, T., Nishikawa, O., Nagase, T., Akizuki, M. & Kohlstedt, D. L. (2002). Interfacial energies for quartz and albite in pelitic schist. Contributions to Mineralogy and Petrology, 143, 664–72.CrossRefGoogle Scholar
Holness, M. B. (1993). Temperature and pressure-dependence of quartz aqueous fluid dihedral angles – the control of adsorbed H2O on the permeability of quartzites. Earth and Planetary Science Letters, 117, 363–77.CrossRefGoogle Scholar
Holness, M. B. (2005). Spatial constraints on magma chamber replenishment events from textural observations of cumulates: the Rum layered intrusion, Scotland. Journal of Petrology, 46, 1585–601.CrossRefGoogle Scholar
Holness, M. B. & Siklos, S. T. C. (2000). The rates and extent of textural equilibration in high-temperature fluid-bearing systems. Chemical Geology, 162, 137–53.CrossRefGoogle Scholar
Holness, M. B., Cheadle, M. C. & McKenzie, D. (2005). On the use of changes in dihedral angle to decode late-stage textural evolution in cumulates. Journal of Petrology, 46, 1565–83.CrossRefGoogle Scholar
Houghton, B. F. & Wilson, C. J. N. (1989). A vesicularity index for pyroclastic deposits. Bulletin of Volcanology, 51, 451–62.CrossRefGoogle Scholar
Howard, V. & Reed, M. G. (1998). Unbiased Stereology: Three-Dimensional Measurement in Microscopy. Oxford, UK: Bios Scientific Publishers, New York: Springer.Google Scholar
Howarth, D. & Rowlands, J. (1986). Development of an index to quantify rock textures for quantitative assessment of intact rock properties. Geotechnical Testing Journal, 9, 169–79.Google Scholar
Hunter, R. H. (1987). Textural Equilibrium in Layered Igneous Rocks. In Parsons, I., ed., Origins of Igneous Layering. Dordrecht: D. Reidel, pp. 473–503.CrossRefGoogle Scholar
Hunter, R. H. (1996). Textural Development in Cumulate Rocks. In Cawthorn, R. G., ed., Layered Intrusions. Amsterdam: Elsevier, pp. 77–101.Google Scholar
Hurwitz, S. & Navon, O. (1994). Bubble nucleation in rhyolitic melts – experiments at high-pressure, temperature, and water-content. Earth and Planetary Science Letters, 122, 267–80.CrossRefGoogle Scholar
Hutchison, C. S. (1974). Laboratory Handbook of Petrographic Techniques. Hoboken NY: John Wiley & Sons.Google Scholar
Iezzi, G. & Ventura, G. (2002). Crystal fabric evolution in lava flows: results from numerical simulations. Earth and Planetary Science Letters, 200, 33–46.CrossRefGoogle Scholar
Ihinger, P. D. & Zink, S. I. (2000). Determination of relative growth rates of natural quartz crystals. Nature, 404, 865–9.CrossRefGoogle ScholarPubMed
Ikeda, S., Toriumi, M., Yoshida, H. & Shimizu, I. (2002). Experimental study of the textural development of igneous rocks in the late stage of crystallization: the importance of interfacial energies under non-equilibrium conditions. Contributions to Mineralogy and Petrology, 142, 397–415.CrossRefGoogle Scholar
Ikeda, S., Nakano, T., Tsuchiyama, A., Uesugi, K., Suzuki, Y., Nakamura, K., Nakashima, Y. & Yoshida, H. (2004). Nondestructive three-dimensional element-concentration mapping of a Cs-doped partially molten granite by X-ray computed tomography using synchrotron radiation. American Mineralogist, 89, 1304–13.CrossRefGoogle Scholar
Ildefonse, B., Launeau, P. & Bouchez, J.-L. (1992). Effect of mechanical interactions on the development of shape preferred orientations: a two-dimensional experimental approach. Journal of Structural Geology, 14, 73–83.CrossRefGoogle Scholar
Jackson, E. D. (1961). Primary textures and mineral associations in the ultramafic zone of the Stillwater complex, Montana. United States Geological Survey Professional Paper, 358.Google Scholar
Jackson, M. (1991). Anisotropy of magnetic remanence – a brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. Pure and Applied Geophysics, 136, 1–28.CrossRefGoogle Scholar
Jackson, M., Gruber, W., Marvin, J. & Banerjee, S. K. (1988). Partial anhysteretic remanence and its anisotropy – applications and grainsize-dependence. Geophysical Research Letters, 15, 440–3.CrossRefGoogle Scholar
Jamtveit, B. & Meakin, P., eds., (1999). Growth, Dissolution, and Pattern Formation in Geosystems. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Jelinek, V. (1978). Statistical processing of anisotropy of magnetic-susceptibility measured on groups of specimens. Studia Geophysica et Geodaetica, 22, 50–62.CrossRefGoogle Scholar
Jerram, D. A. (2001). Visual comparators for degree of grain-size sorting in two and three-dimensions. Computers & Geoscience, 27, 485–92.CrossRefGoogle Scholar
Jerram, D. A. & Cheadle, M. J. (2000). On the cluster analysis of grains and crystals in rocks. American Mineralogist, 85, 47–67.CrossRefGoogle Scholar
Jerram, D. A., Cheadle, M. J., Hunter, R. H. & Elliott, M. T. (1996). The spatial distribution of grains and crystals in rocks. Contributions to Mineralogy and Petrology, 125, 60–74.CrossRefGoogle Scholar
Jerram, D. A., Cheadle, M. J. & Philpotts, A. R. (2003). Quantifying the building blocks of igneous rocks: Are clustered crystal frameworks the foundation? Journal of Petrology, 44, 2033–51.CrossRefGoogle Scholar
Ji, S. C., Zhao, X. O. & Zhao, P. L. (1994). On the measurement of plagioclase lattice preferred orientations. Journal of Structural Geology, 16, 1711–18.CrossRefGoogle Scholar
Jillavenkateas, A., Dapkunas, S. J. & Lum, L.-S. H. (2001). Particle Size Characterisation: NIST Recommended Practice Guide. Washington DC, USA: National Institute of Standards and Technology.Google Scholar
Johnson, M. R. (1994). Thin-section grain-size analysis revisited. Sedimentology, 41, 985–99.CrossRefGoogle Scholar
Jung, H. & Karato, S. (2001). Effects of water on dynamically recrystallized grain-size of olivine. Journal of Structural Geology, 23, 1337–44.CrossRefGoogle Scholar
Jurewicz, S. R. & Jurewicz, A. J. G. (1986). Distribution of apparent angles on random sections with emphasis on dihedral angle measurements. Journal of Geophysical Research-Solid Earth and Planets, 91, 9277–82.CrossRefGoogle Scholar
Jurewicz, S. R. & Watson, E. B. (1985). The distribution of partial melt in a granitic system – the application of liquid-phase sintering theory. Geochimica et Cosmochimica Acta, 49, 1109–21.CrossRefGoogle Scholar
Karato, S. & Wenk, H.-R. (2002). Plastic Deformation of Minerals and Rocks. Washington, DC: Mineralogical Society of America.Google Scholar
Ketcham, R. A. (2005). Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere, 1, 32–41.CrossRefGoogle Scholar
Ketcham, R. A. & Carlson, W. D. (2001). Acquisition, optimization and interpretation of X-ray computed tomographic imagery; applications to the geosciences. Computers & Geoscience, 27, 381–400.CrossRefGoogle Scholar
Ketcham, R. A. & Ryan, T. M. (2004). Quantification and visualization of anisotropy in trabecular bone. Journal of Microscopy-Oxford, 213, 158–71.CrossRefGoogle ScholarPubMed
Kile, D. E., Eberl, D. D., Hoch, A. R. & Reddy, M. M. (2000). An assessment of calcite crystal growth mechanisms based on crystal size distributions. Geochimica et Cosmochimica Acta, 64, 2937–50.CrossRefGoogle Scholar
Klug, C. & Cashman, K. (1994). Vesiculation of May 18, 1980 Mount St. Helens magma. Geology, 22, 468–72.2.3.CO;2>CrossRefGoogle Scholar
Klug, C., Cashman, K. V. & Bacon, C. R. (2002). Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon. Bulletin of Volcanology, 64, 486–501.Google Scholar
Knight, M. D., Walker, G. P. L., Ellwood, B. B. & Diehl, J. F. (1986). Stratigraphy, paleomagnetism, and magnetic fabric of the Toba Tuffs – constraints on the sources and eruptive styles. Journal of Geophysical Research-Solid Earth and Planets, 91, 355–82.CrossRefGoogle Scholar
Kocks, U. F., Wenk, H.-R. & Tomé, C. N. (2000). Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Material Properties. Cambridge, UK: Cambridge University Press.Google Scholar
Kolmogorov, A. (1941). The lognormal law of distribution of particle sizes during crushing. Doklady Akademii Nauk SSSR, 31, 99–101.Google Scholar
Kong, M. Y., Bhattacharya, R. N., James, C. & Basu, A. (2005). A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions. Geological Society of America Bulletin, 117, 244–9.CrossRefGoogle Scholar
Kostov, I. & Kostov, R. I. (1999). Crystal Habits of Minerals. Sofia: Prof. Marin Drinov Academic Publishing House; Pensoft Publishers.Google Scholar
Kotov, S. & Berendsen, P. (2002). Statistical characteristics of xenoliths in the Antioch kimberlite pipe, Marshall county, northeastern Kansas. Natural Resources Research, 11, 289–97.CrossRefGoogle Scholar
Kouchi, A., Tsuchiyama, A. & Sunagawa, I. (1986). Effects of stirring on crystallization of basalt: Texture and element partitioning. Contributions to Mineralogy and Petrology, 93, 429–38.CrossRefGoogle Scholar
Kretz, R. (1966a). Grain-size distribution for certain metamorphic minerals in relation to nucleation and growth. Journal of Geology, 74, 147–73.CrossRefGoogle Scholar
Kretz, R. (1966b). Interpretation of shape of mineral grains in metamorphic rocks. Journal of Petrology, 7, 68–94.CrossRefGoogle Scholar
Kretz, R. (1969). On the spatial distribution of crystals in rocks. Lithos, 2, 39–65.CrossRefGoogle Scholar
Kretz, R. (1993). A garnet population in Yellowknife schist, Canada. Journal of Metamorphic Geology, 11, 101–20.CrossRefGoogle Scholar
Krug, H. J., Brandtstadter, H. & Jacob, K. H. (1996). Morphological instabilities in pattern formation by precipitation and crystallization processes. Geologische Rundschau, 85, 19–28.CrossRefGoogle Scholar
Kruhl, J. H. & Nega, M. (1996). The fractal shape of sutured quartz grain boundaries: Application as a geothermometer. Geologische Rundschau, 85, 38–43.CrossRefGoogle Scholar
Kruhl, J. H. & Peternell, M. (2002). The equilibration of high-angle grain boundaries in dynamically recrystallized quartz: the effect of crystallography and temperature. Journal of Structural Geology, 24, 1125–37.CrossRefGoogle Scholar
Lane, A. C. (1898). Geological Report on Isle Royale, Michigan. Lansing, MI: Michigan Geological Survey.Google Scholar
Laporte, D. & Provost, A. (2000). Equilibrium geometry of a fluid phase in a polycrystalline aggregate with anisotropic surface energies: Dry grain boundaries. Journal of Geophysical Research-Solid Earth, 105, 25937–53.CrossRefGoogle Scholar
Laporte, D. & Watson, E. B. (1995). Experimental and theoretical constraints on melt distribution in crustal sources – the effect of crystalline anisotropy on melt interconnectivity. Chemical Geology, 124, 161–84.CrossRefGoogle Scholar
Larsen, J. F. & Gardner, J. E. (2000). Experimental constraints on bubble interactions in rhyolite melts; implications for vesicle size distributions. Earth and Planetary Science Letters, 180, 201–14.CrossRefGoogle Scholar
Larsen, J. F., Denis, M. H. & Gardner, J. E. (2004). Experimental study of bubble coalescence in rhyolitic and phonolitic melts. Geochimica et Cosmochimica Acta, 68, 333–44.CrossRefGoogle Scholar
Larsen, L. & Poldervaart, A. (1957). Measurements and distribution of zircons in some granitic rocks of magmatic origin. Mineralogical Magazine, 31, 544–64.Google Scholar
Lasaga, A. C. (1998). Kinetic Theory in the Earth Sciences. Princeton NJ: Princeton University Press.CrossRefGoogle Scholar
Launeau, P. (2004). Mise en evidence des écoulments magmatiques par analyse d'images 2D des distibutions 3D d'orientations préférentielles de formes. Bulletin de la Société Géologique de France, 175, 331–50.CrossRefGoogle Scholar
Launeau, P. & Cruden, A. R. (1998). Magmatic fabric acquisition mechanisms in a syenite: results of a combined AMS and image analysis study. Journal of Geophysical Research, 103, 5067–89.CrossRefGoogle Scholar
Launeau, P. & Robin, P. Y. F. (1996). Fabric analysis using the intercept method. Tectonophysics, 267, 91–119.CrossRefGoogle Scholar
Launeau, P., Bouchez, J. L. & Benn, K. (1990). Shape preferred orientation of object populations; automatic analysis of digitized images. Tectonophysics, 180, 201–11.CrossRefGoogle Scholar
Launeau, P., Cruden, A. R. & Bouchez, J. L. (1994). Mineral recognition in digital images of rocks – a new approach using multichannel classification. Canadian Mineralogist, 32, 919–33.Google Scholar
Lemelle, L., Simionovici, A., Truche, R.et al. (2004). A new nondestructive X-ray method for the determination of the 3D mineralogy at the micrometer scale. American Mineralogist, 89, 547–53.CrossRefGoogle Scholar
Lentz, R. C. F. & McSween, H. Y. Jr. (2000). Crystallization of the basaltic shergottites; insights from crystal size distribution (CSD) analysis of pyroxenes. Meteoritics & Planetary Science, 35, 919–27.CrossRefGoogle Scholar
Lewis, D. W. & McConchie, D. (1994a). Analytical Sedimentology. New York: Chapman & Hall.CrossRefGoogle Scholar
Lewis, D. W. & McConchie, D. (1994b). Practical Sedimentology. New York: Chapman & Hall.CrossRefGoogle Scholar
Lifshitz, I. M. & Slyozov, V. V. (1961). The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids, 19, 35–50.CrossRefGoogle Scholar
Lofgren, G. E. (1974). An experimental study of plagioclase crystal morphology: isothermal crystallization. American Journal of Science, 274, 243–73.CrossRefGoogle Scholar
Lofgren, G. E. & Donaldson, C. H. (1975). Curved branching crystals and differentiation in comb-layered rocks. Contributions to Mineralogy and Petrology, 49, 309–19.CrossRefGoogle Scholar
Maaloe, S., Tumyr, O. & James, D. (1989). Population density and zoning of olivine phenocrysts in tholeiites from Kauai, Hawaii. Contributions to Mineralogy and Petrology, 101, 176–86.CrossRefGoogle Scholar
Mainprice, D. & Nicolas, A. (1989). Development of shape and lattice preferred orientations – application to the seismic anisotropy of the lower crust. Journal of Structural Geology, 11, 175–89.CrossRefGoogle Scholar
Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. San Francisco: W. H. Freeman.Google Scholar
Manga, M. (1998). Orientation distribution of microlites in obsidian. Journal of Volcanology and Geothermal Research, 86, 107–15.CrossRefGoogle Scholar
Mangan, M. T. (1990). Crystal size distribution and the determination of magma storage times: The 1959 eruption of Kilauea volcano, Hawaii. Journal of Volcanology and Geothermal Research, 44, 295–302.CrossRefGoogle Scholar
Mangan, M. T. & Cashman, K. V. (1996). The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. Journal of Volcanology and Geothermal Research, 73, 1–18.CrossRefGoogle Scholar
Mangan, M. T., Cashman, K. V. & Newman, S. (1993). Vesiculation of basaltic magma during eruption. Geology, 21, 157–60.2.3.CO;2>CrossRefGoogle Scholar
Mardia, K. V. & Jupp, P. E. (2000). Directional Statistics. Chichester; New York: John Wiley & Sons.Google Scholar
Markov, I. V. (1995). Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy. Singapore: River Edge N.J.CrossRefGoogle Scholar
Marqusee, J. A. & Ross, J. (1983). Kinetics of phase-transitions – theory of Ostwald ripening. Journal of Chemical Physics, 79, 373–8.CrossRefGoogle Scholar
Marschallinger, R. (1997). Automatic mineral classification in the macroscopic scale. Computers & Geosciences, 23, 119–26.CrossRefGoogle Scholar
Marschallinger, R. (1998a). Correction of geometric errors associated with the 3D reconstruction of geological materials by precision serial lapping. Mineralogical Magazine, 62, 783–92.CrossRefGoogle Scholar
Marschallinger, R. (1998b). A method for three-dimensional reconstruction of macroscopic features in geological materials. Computers & Geosciences, 24, 875–83.CrossRefGoogle Scholar
Marschallinger, R. (2001). Three-dimensional reconstruction and visualization of geological materials with IDL – examples and source code. Computers & Geosciences, 27, 419–26.CrossRefGoogle Scholar
Marsh, B. D. (1988a). Crystal capture, sorting, and retention in convecting magma. Geological Society of America Bulletin, 100, 1720–37.2.3.CO;2>CrossRefGoogle Scholar
Marsh, B. D. (1988b). Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contributions to Mineralogy and Petrology, 99, 277–91.CrossRefGoogle Scholar
Marsh, B. D. (1998). On the interpretation of crystal size distributions in magmatic systems. Journal of Petrology, 39, 553–600.CrossRefGoogle Scholar
Martin-Hernandez, F., Luneburg, C., Aubourg, C. & Jackson, M., eds., (2005). Magnetic Fabric: Methods and Applications. Geological Society Special Publication, 238. London: The Geological Society.Google Scholar
McBirney, A. R. & Hunter, R. H. (1995). The cumulate paradigm reconsidered. Journal of Geology, 103, 114–22.CrossRefGoogle Scholar
McBirney, A. R. & Nicolas, A. (1997). The Skaergaard layered series: Part II. Dynamic layering. Journal of Petrology, 38, 569–80.CrossRefGoogle Scholar
McConnell, J. (1975). Microstructures of minerals as petrogenetic indictors. Annual Review of Earth and Planetary Sciences, 3, 129–55.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L.et al. (1996). Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–30.CrossRefGoogle ScholarPubMed
McKenzie, D. (1984). The generation and compaction of partially molten rock. Journal of Petrology, 25, 713–65.CrossRefGoogle Scholar
Medley, E. W. (2002). Estimating block size distributions of melanges and similar block-in-matrix rocks (bimrocks). In Hammah, R., Bawden, W., Curran, J. & Telesnicki, M., eds., North American Rock Mechanics Symposium. Toronto, Canada: University of Toronto Press, pp. 509–606.Google Scholar
Mees, F., Swennen, R., Geet, M. & Jacobs, P., eds., (2003). Applications of X-ray Computed Tomography in the Geosciences. Geological Society Special Publication, 215. London: The Geological Society.Google Scholar
Meng, B. (1996). Determination and interpretation of fractal properties of the sandstone pore system. Materials and Structures, 29, 195–205.CrossRefGoogle Scholar
Merriam, D. F. (2004). The quantification of geology: from abacus to Pentium: A chronicle of people, places, and phenomena. Earth-Science Reviews, 67, 55–89.CrossRefGoogle Scholar
Meurer, W. P. & Boudreau, A. E. (1998). Compaction of igneous cumulates; Part II, Compaction and the development of igneous foliations. Journal of Geology, 106, 293–304.CrossRefGoogle Scholar
Middleton, G. V. (2000). Data Analysis in the Earth Sciences Using MATLAB®. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Milligan, T. & Kranck, K. (1991). Electroresistance particle size analysers. In Syvitski, J. P. M., ed., Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
Miyazaki, K. (1996). A numerical simulation of textural evolution due to Ostwald ripening in metamorphic rocks: A case for small amount of volume of dispersed crystals. Geochimica et Cosmochimica Acta, 60, 277–90.CrossRefGoogle Scholar
Miyazaki, K. (2000). The case against Ostwald ripening of porphyroblasts: Discussion. Canadian Mineralogist, 38, 1027–8.CrossRefGoogle Scholar
Mock, A., Jerram, D. A. & Breitkreuz, C. (2003). Using quantitative textural analysis to understand the emplacement of shallow-level rhyolitic laccoliths – A case study from the Halle Volcanic Complex, Germany. Journal of Petrology, 44, 833–49.CrossRefGoogle Scholar
Mora, C. F. & Kwan, A. K. H. (2000). Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cement and Concrete Research, 30, 351–8.CrossRefGoogle Scholar
Morishita, R. (1998). Statistical properties of ideal rock textures: Relationship between crystal size distribution and spatial correlation in minerals. Mathematical Geology, 30, 409–34.CrossRefGoogle Scholar
Morishita, R. & Obata, M. (1995). A new statistical description of the spatial distribution of minerals in rocks. Journal of Geology, 103, 232–40.CrossRefGoogle Scholar
Morse, S. A. (1969). The Kiglapait layered intrusion, Labrador. Geological Society of America, Memoir, 112, 204.Google Scholar
Morse, S. A. (1979). Kiglapait geochemistry, II. Petrography. Journal of Petrology, 20, 591–624.CrossRefGoogle Scholar
Muir, I. D. (1981). The 4-Axis Universal Stage. Chicago: Microscope Publications.Google Scholar
Mungall, J. & Su, S. (2005). Interfacial tension between sulfide and silicate liquids: Constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks. Earth and Planetary Science Letters, 234, 135–49.CrossRefGoogle Scholar
Murthy, D. N. P., Xie, M. & Jiang, R. (2004). Weibull Models. Wiley Series in Probability and Statistics. Hoboken NJ: John Wiley and Sons.Google Scholar
Naslund, H. R. & McBirney, A. R. (1996). Mechanisms of formation of igneous layering. In Cawthorn, R. G., ed., Layered Intrusions. Amsterdam: Elsevier, pp. 1–44.Google Scholar
Nemchin, A. A., Giannini, L. M., Bodorkos, S. & Olivier, N. H. S. (2001). Ostwald ripening as a possible mechanism for zircon overgrowth formation during anatexis: theoretical constraints, a numerical model, and its application to pelitic migmatites of the Tickalra Metamorphics, northwestern Australia. Geochimica et Cosmochimica Acta, 65, 2771–88.CrossRefGoogle Scholar
Nesse, W. D. (1986). Introduction to Optical Mineralogy. New York: Oxford University Press.Google Scholar
Nicolas, A. (1992). Kinematics in magmatic rocks with special reference to gabbros. Journal of Petrology, 33, 891–915.CrossRefGoogle Scholar
Nicolas, A. & Ildefonse, B. (1996). Flow mechanism and viscosity in basaltic magma chambers. Geophysical Research Letters, 23, 2013–16.CrossRefGoogle Scholar
Orford, J. D. & Whalley, W. B. (1983). The use of the fractal dimension to quantify the morphology of irregular-shaped particles. Sedimentology, 30, 655–68.CrossRefGoogle Scholar
Ortoleva, P. J. (1994). Geochemical Self-Organisation. New York: Oxford University Press.Google Scholar
Pagel, M. (2000). Cathodoluminescence in Geosciences. Berlin: Springer.CrossRefGoogle Scholar
Palmer, H. C. & MacDonald, W. D. (1999). Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations. Tectonophysics, 307, 207–18.CrossRefGoogle Scholar
Palmer, H. C. & MacDonald, W. D. (2002). The Northeast Nevada Volcanic Field: Magnetic properties and source implications. Journal of Geophysical Research-Solid Earth, 107, (B11), article number 2298.CrossRefGoogle Scholar
Pan, Y. (2001). Inherited correlation in crystal size distribution. Geology, 29, 227–30.2.0.CO;2>CrossRefGoogle Scholar
Pareschi, M., Pompilio, M. & Innocenti, F. (1990). Automated evaluation of spatial grain size distribution density from thin section images. Computers & Geosciences, 16, 1067–84.CrossRefGoogle Scholar
Park, H. H. & Yoon, D. N. (1985). Effect of dihedral angle on the morphology of grains in a matrix phase. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 16, 923–8.CrossRefGoogle Scholar
Parsons, I., ed., (1987). Origins of Igneous Layering. NATO ASI series. Series C, Mathematical and Physical Sciences. Vol. 196. Dordrecht: D. Reidel Pub. Co., Boston/Norwell, MA, USA: Kluwer Academic Publishers.CrossRefGoogle Scholar
Pearce, T. H. & Clark, A. H. (1989). Nomarski interference contrast observations of textural details in volcanic rocks. Geology, 17, 757–9.2.3.CO;2>CrossRefGoogle Scholar
Pearce, T. H., Russell, J. K. & Wolfson, I. (1987). Laser-interference and Nomarski interference imaging of zoning profiles in plagioclase phenocrysts from the May 18, 1980, eruption of Mount St. Helens, Washington. American Mineralogist, 72, 1131–43.Google Scholar
Perring, C. S., Barnes, S. J., Verrall, M. & Hill, R. E. T. (2004). Using automated digital image analysis to provide quantitative petrographic data on olivine-phyric basalts. Computers & Geosciences, 30, 183–95.CrossRefGoogle Scholar
Peterson, T. D. (1990). Petrology and genesis of natrocarbonatite. Contributions to Mineralogy and Petrology, 105, 143–55.CrossRefGoogle Scholar
Peterson, T. D. (1996). A refined technique for measuring crystal size distributions in thin section. Contributions to Mineralogy and Petrology, 124, 395–405.CrossRefGoogle Scholar
Petford, N., Davidson, G. & Miller, J. A. (2001). Investigation of the petrophysical properties of a porous sandstone sample using confocal scanning laser microscopy. Petroleum Geoscience, 7, 99–105.CrossRefGoogle Scholar
Petrik, I., Nabelek, P. I., Janak, M. & Plasienka, D. (2003). Conditions of formation and crystallization kinetics of highly oxidized pseudo tachylytes from the high Tatras (Slovakia). Journal of Petrology, 44, 901–27.CrossRefGoogle Scholar
Petruk, W. (1989). Image Analysis in Earth Sciences. Ottawa: Mineralogical Association of Canada.Google Scholar
Philpotts, A. R. & Dickson, L. D. (2000). The formation of plagioclase chains during convective transfer in basaltic magma. Nature, 406, 59–61.CrossRefGoogle ScholarPubMed
Philpotts, A. R. & Dickson, L. D. (2002). Millimeter-scale modal layering and the nature of the upper solidification zone in thick flood-basalt flows and other sheets of magma. Journal of Structural Geology, 24, 1171–7.CrossRefGoogle Scholar
Philpotts, A. R., Shi, J. Y. & Brustman, C. (1998). Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature, 395, 343–6.CrossRefGoogle Scholar
Philpotts, A. R., Brustman, C. M., Shi, J. Y., Carlson, W. D. & Denison, C. (1999). Plagioclase-chain networks in slowly cooled basaltic magma. American Mineralogist, 84, 1819–29.CrossRefGoogle Scholar
Pickering, G., Bull, J. M. & Sanderson, D. J. (1995). Sampling power-law distributions. Tectonophysics, 248, 1–20.CrossRefGoogle Scholar
Pirard, E. (2004). Multispectral imaging of ore minerals in optical microscopy. Mineralogical Magazine, 68, 323–33.CrossRefGoogle Scholar
Polacci, M., Cashman, K. V. & Kauahikaua, J. P. (1999). Textural characterization of the pahoehoe-a'a transition in Hawaiian basalt. Bulletin of Volcanology, 60, 595–609.CrossRefGoogle Scholar
Poland, M. P., Fink, J. H. & Tauxe, L. (2004). Patterns of magma flow in segmented silicic dikes at Summer Coon volcano, Colorado: AMS and thin section analysis. Earth and Planetary Science Letters, 219, 155–69.CrossRefGoogle Scholar
Prince, C. M., Ehrlich, R. & Anguy, Y. (1995). Analysis of spatial order in sandstones. 2. Grain clusters, packing flaws, and the small-scale structure of sandstones. Journal of Sedimentary Research Section A-Sedimentary Petrology and Processes, 65, 13–28.Google Scholar
Prior, D. J., Boyle, A. P., Brenker, F.et al. (1999). The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84, 1741–59.CrossRefGoogle Scholar
Prior, D. J., Wheeler, J., Peruzzo, L., Spiess, R. & Storey, C. (2002). Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies. Journal of Structural Geology, 24, 999–1011.CrossRefGoogle Scholar
Proussevitch, A. A. & Sahagian, D. L. (2001). Recognition and separation of discrete objects within complex 3D voxelized structures. Three-Dimensional Reconstruction, Modelling and Visualization of Geological Materials, 27, 441–54.Google Scholar
Pupin, J. P. (1980). Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207–20.CrossRefGoogle Scholar
Randle, V. & Caul, M. (1996). Representation of electron backscatter diffraction data. Materials Science and Technology, 12, 844–50.CrossRefGoogle Scholar
Randle, V. & Engler, O. (2000). Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. Reading, UK: Gordon and Breach Science Publishers.Google Scholar
Randolph, A. D. & Larson, M. A. (1971). Theory of Particulate Processes. New York: Academic Press.Google Scholar
Reed, S. J. B. (1996). Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge, New York: Cambridge University Press.Google Scholar
Reimann, C. & Filzmoser, P. (2000). Normal and lognormal data distribution in geochemistry; death of a myth; consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39, 1001–14.CrossRefGoogle Scholar
Resmini, R. G. & Marsh, B. D. (1995). Steady-state volcanism, paleoeffusion rates, and magma system volume inferred from plagioclase crystal size distributions in mafic lavas; Dome Mountain, Nevada. Journal of Volcanology and Geothermal Research, 68, 273–96.CrossRefGoogle Scholar
Riegger, O. & Vlack, L. (1960). Dihedral angle measurement. Metallurgical Society of the American Institute of Metallurgical Engineers Transactions, 218, 933–5.Google Scholar
Robin, P. Y. F. (2002). Determination of fabric and strain ellipsoids from measured sectional ellipses – theory. Journal of Structural Geology, 24, 531–44.CrossRefGoogle Scholar
Rochette, P., Aubourg, C. & Perrin, M. (1999). Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics, 307, 219–34.CrossRefGoogle Scholar
Rochette, P., Jackson, M. & Aubourg, C. (1992). Rock magnetism and the interpretation of anisotropy of magnetic-susceptibility. Reviews of Geophysics, 30, 209–26.CrossRefGoogle Scholar
Rodriguez-Navarro, A. B. & Romanek, C. S. (2002). Mineral fabrics analysis using a low-cost universal stage for X-ray diffractometry. European Journal of Mineralogy, 14, 987–92.CrossRefGoogle Scholar
Rogers, C. D. F., Dijkstra, T. A. & Smalley, I. J. (1994). Particle packing from an earth-science viewpoint. Earth-Science Reviews, 36, 59–82.CrossRefGoogle Scholar
Rombouts, L. (1995). Sampling and statistical evaluation of diamond deposits. Journal of Geochemical Exploration, 53, 351–67.CrossRefGoogle Scholar
Rosenberg, C. L. & Handy, M. R. (2005). Experimental deformation of partially melted granite revisited: implications for the continental crust. Journal of Metamorphic Geology, 23, 19–28.CrossRefGoogle Scholar
Ross, B. J., Fueten, F. & Yashkir, D. Y. (2001). Automatic mineral identification using genetic programming. Machine Vision and Applications, 13, 61–9.CrossRefGoogle Scholar
Royet, J.-P. (1991). Stereology: A method for analysing images. Progress in Neurobiology, 37, 433–74.CrossRefGoogle Scholar
Rubin, A. E. (2000). Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth-Science Reviews, 50, 3–27.CrossRefGoogle Scholar
Rubin, A. E. & Grossman, J. N. (1987). Size-frequency-distributions of EH3 chondrules. Meteoritics, 22, 237–51.CrossRefGoogle Scholar
Rudashevsky, N. S., Burakov, B. E., Lupal, S. D., Thalhammer, O. A. R. & Sainieidukat, B. (1995). Liberation of accessory minerals from various rock types by electric-pulse disintegration-method and application. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy, 104, C25–C29.Google Scholar
Russ, J. C. (1986). Practical Stereology. New York: Plenum Press.CrossRefGoogle Scholar
Russ, J. C. (1999). The Image Processing Handbook. Boca Raton, Florida, USA: CRC Press.Google Scholar
Rust, A. C. & Cashman, K. V. (2004). Permeability of vesicular silicic magma: inertial and hysteresis effects. Earth and Planetary Science Letters, 228, 93–107.CrossRefGoogle Scholar
Rust, A. C., Manga, M. & Cashman, K. V. (2003). Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations. Journal of Volcanology and Geothermal Research, 122, 111–32.CrossRefGoogle Scholar
Sahagian, D. L. & Maus, J. E. (1994). Basalt vesicularity as a measure of atmospheric-pressure and palaeoelevation. Nature, 372, 449–51.CrossRefGoogle Scholar
Sahagian, D. L. & Proussevitch, A. A. (1998). 3D particle size distributions from 2D observations; stereology for natural applications. Journal of Volcanology and Geothermal Research, 84, 173–96.CrossRefGoogle Scholar
Sahagian, D. L., Proussevitch, A. A. & Carlson, W. D. (2002a). Analysis of vesicular basalts and lava emplacement processes for application as a paleobarometer/paleoaltimeter. Journal of Geology, 110, 671–85.CrossRefGoogle Scholar
Sahagian, D. L., Proussevitch, A. A. & Carlson, W. L. (2002b). Timing of Colorado Plateau uplift: Initial constraints from vesicular basalt-derived paleoelevations. Geology, 30, 807–10.2.0.CO;2>CrossRefGoogle Scholar
Saiki, K. (1997). Morphology and simulation of solid state rounding process. Geophysical Research Letters, 24, 1519–22.CrossRefGoogle Scholar
Saiki, K., Laporte, D., Vielzeuf, D., Nakashima, S. & Boivin, P. (2003). Morphological analysis of olivine grains annealed in an iron-nickel matrix: Experimental constraints on the origin of pallasites and on the thermal history of their parent bodies. Meteoritics & Planetary Science, 38, 427–44.CrossRefGoogle Scholar
Saint-Blanquat, M. & Tikoff, B. (1997). Development of magmatic to solid-state fabrics during syntectonic emplacement of the Mono Creek granite, Sierra Nevada Batholith. In Bouchez, J. L., Hutton, D. H. W., & Stephens, W. E., eds., Granite: From Segregation of Melt to Emplacement Fabrics. Dordrecht: Kluwer Academic Publishers, pp. 231–52.CrossRefGoogle Scholar
Saltikov, S. A. (1967). The determination of the size distribution of particles in an opaque material from a measurement of the size distributions of their sections. In Elias, H., ed., Proceedings of the Second International Congress for Stereology. Berlin: Springer-Verlag, pp. 163–73.Google Scholar
Saltzer, R. L., Chatterjee, N. & Grove, T. L. (2001). The spatial distribution of garnets and pyroxenes in mantle peridotites: Pressure-temperature history of peridotites from the Kaapvaal craton. Journal of Petrology, 42, 2215–29.CrossRefGoogle Scholar
Sato, H. (1995). Textural difference between pahoehoe and a'a lavas of Izu-Oshima volcano, Japan; an experimental study on population density of plagioclase. Models of Magmatic Processes and Volcanic Eruptions, 66, 101–13.Google Scholar
Schafer, F. & Foley, S. F. (2002). The effect of crystal orientation on the wetting behaviour of silicate melts on the surfaces of spinel peridotite minerals. Contributions to Mineralogy and Petrology, 143, 254–61.Google Scholar
Schafer, W. (2002). Neutron diffraction applied to geological texture and stress analysis. European Journal of Mineralogy, 14, 263–89.CrossRefGoogle Scholar
Schmid, S. M., Casey, M. & Starkey, J. (1981). An illustration of the advantages of a complete texture analysis described by the orientation distribution function (ODF) using quartz pole figure data. Tectonophysics, 78, 101–17.CrossRefGoogle Scholar
Schwindinger, K. R. (1999). Particle dynamics and aggregation of crystals in a magma chamber with application to Kilauea Iki olivines. Journal of Volcanology and Geothermal Research, 88, 209–38.CrossRefGoogle Scholar
Schwindinger, K. R. & Anderson, A. T. (1989). Synneusis of Kilauea Iki olivines. Contributions to Mineralogy and Petrology, 103, 187–98.CrossRefGoogle Scholar
Scott, R. G. & Benn, K. (2001). Peak-ring rim collapse accommodated by impact melt-filled transfer faults, Sudbury impact structure, Canada. Geology, 29, 747–50.2.0.CO;2>CrossRefGoogle Scholar
Sempels, J.-M. (1978). Evidence for constant habit development of plagioclase crystals from igneous rocks. Canadian Mineralogist, 16, 257–63.Google Scholar
Shelley, D. (1985). Determining paleo-flow directions from groundmass fabrics in the Lyttelton radial dykes, New Zealand. Journal of Volcanology and Geothermal Research, 25, 69–79.CrossRefGoogle Scholar
Shin, H., Lindquist, W. B., Sahagian, D. L. & Song, S. R. (2005). Analysis of the vesicular structure of basalts. Computers & Geosciences, 31, 473–87.CrossRefGoogle Scholar
Shore, M. & Fowler, A. D. (1999). The origin of spinifex texture in komatiites. Nature, 397, 691–4.CrossRefGoogle Scholar
Smit, T. H., Schneider, E. & Odgaard, A. (1998). Star length distribution: a volume-based concept for the characterization of structural anisotropy. Journal of Microscopy-Oxford, 191, 249–57.CrossRefGoogle ScholarPubMed
Smith, C. S. (1948). Grains, phases and interfaces: an interpretation of microstructure. Transactions of the Metallurgical Society of the AIME, 175, 15–51.Google Scholar
Smith, C. S. (1964). Some elementary principles of polycrystalline microstructure. Metallurgical Review, 9, 1–48.Google Scholar
Smith, J. V. (2002). Structural analysis of flow-related textures in lavas. Earth-Science Reviews, 57, 279–97.CrossRefGoogle Scholar
Song, S. R., Jones, K. W., Lindquist, W. B., Dowd, B. A. & Sahagian, D. L. (2001). Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rocks. Bulletin of Volcanology, 63, 252–63.CrossRefGoogle Scholar
Sparks, R. S. J. (1978). Dynamics of bubble formation and growth in magmas – review and analysis. Journal of Volcanology and Geothermal Research, 3, 1–37.CrossRefGoogle Scholar
Sparks, R. S. J. (1997). Causes and consequences of pressurisation in lava dome eruptions. Earth and Planetary Science Letters, 150, 177–89.CrossRefGoogle Scholar
Spiess, R., Peruzzo, L., Prior, D. J. & Wheeler, J. (2001). Development of garnet porphyroblasts by multiple nucleation, coalescence and boundary misorientation-driven rotations. Journal of Metamorphic Geology, 19, 269–90.CrossRefGoogle Scholar
Stamatelopoulou-Seymour, K., Vlassopoulos, D., Pearce, T. H. & Rice, C. (1990). The record of magma chamber processes in plagioclase phenocrysts at Thera volcano, Aegean Volcanic Arc, Greece. Contributions to Mineralogy and Petrology, 104, 73–84.CrossRefGoogle Scholar
Stipp, M. & Tullis, J. (2003). The recrystallized grain size piezometer for quartz. Geophysical Research Letters, 30, article number 2088.CrossRefGoogle Scholar
Sturm, R. (2004). Imaging of growth banding of minerals using 2-stage sectioning: application to accessory zircon. Micron, 35, 681–4.CrossRefGoogle ScholarPubMed
Sunagawa, I. (1987a). Morphology of Crystals. Dordrecht: D. Reidel.Google Scholar
Sunagawa, I. (1987b). Morphology of minerals. In Sunagawa, I., ed., Morphology of Crystals. Dordrecht: D. Reidel, pp. 509–88.Google Scholar
Suteanu, C. & Kruhl, J. H. (2002). Investigation of heterogeneous scaling intervals exemplified by sutured quartz grain boundaries. Fractals-Complex Geometry Patterns and Scaling in Nature and Society, 10, 435–49.Google Scholar
Suteanu, C., Zugravescu, D. & Munteanu, F. (2000). Fractal approach of structuring by fragmentation. Pure and Applied Geophysics, 157, 539–57.CrossRefGoogle Scholar
Sutton, A. P. & Balluffi, R. W. (1996). Interfaces in Crystalline Materials. Oxford, UK: Oxford Science Publications.Google Scholar
Swan, A. R. H. & Sandilands, M. (1995). Introduction to Geological Data Analysis. Cambridge, MA, USA: Blackwell Science.Google Scholar
Syvitski, J. P. M. (1991). Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
Syvitski, J. P. M., Asprey, K. & Clattenberg, D. (1991). Principles, design, and calibration of settling tubes. In Syvitski, J. P. M., ed., Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press, pp. 45–63.CrossRefGoogle Scholar
Takahashi, M. & Nagahama, H. (2000). Fractal grain boundary migration. Fractals, 8, 189–94.CrossRefGoogle Scholar
Tarling, D. H. & Hrouda, F. (1993). The Magnetic Anisotropy of Rocks. London: Chapman & Hall.Google Scholar
Tarquini, S. & Armienti, P. (2001). Film color scanner as a new and cheap tool for image analysis in petrology. Image Analysis and Stereology, 20 (Suppl. 1), 567–72.Google Scholar
Taylor, L. (2000). Diamonds and their mineral inclusions, and what they tell us: A detailed pull-part of a diamondiferous eclogite. International Geology Review, 42, 959–83.CrossRefGoogle Scholar
Taylor, L. A., Nazarov, M. A., Shearer, C. K.et al. (2002). Martian meteorite Dhofar 019: A new shergottite. Meteoritics & Planetary Science, 37, 1107–28.CrossRefGoogle Scholar
Thomas, M. C., Wiltshire, R. J. & Williams, A. T. (1995). The use of Fourier descriptors in the classification of particle-shape. Sedimentology, 42, 635–45.CrossRefGoogle Scholar
Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L.et al. (2000). Elongated prismatic magnetite crystals in ALH84001 carbonate globules: Potential Martian magnetofossils. Geochimica et Cosmochimica Acta, 64, 4049–81.CrossRefGoogle ScholarPubMed
Thompson, S., Fueten, F. & Bockus, D. (2001). Mineral identification using artificial neural networks and the rotating polarizer stage. Computers & Geosciences, 27, 1081–9.CrossRefGoogle Scholar
Titkov, S. V., Saparin, G. V. & Obyden, S. K. (2002). Evolution of growth sectors in natural diamond crystals as revealed by cathodoluminescence topography. Geology of Ore Deposits, 44, 350–60.Google Scholar
Toramaru, A. (1989). Vesiculation process and bubble size distributions in ascending magmas with constant velocities. Journal of Geophysical Research, B, Solid Earth and Planets, 94, 17523–42.CrossRefGoogle Scholar
Toramaru, A. (1990). Measurement of bubble-size distributions in vesiculated rocks with implications for quantitative estimation of eruption processes. Journal of Volcanology and Geothermal Research, 43, 71–90.CrossRefGoogle Scholar
Treiman, A. H. (2003). Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: Inorganic, abiotic formation by shock and thermal metamorphism. Astrobiology, 3, 369–92.CrossRefGoogle ScholarPubMed
Trindade, R. I. F., Bouchez, J. L., Bolle, O.et al. (2001). Secondary fabrics revealed by remanence anisotropy: methodological study and examples from plutonic rocks. Geophysical Journal International, 147, 310–18.CrossRefGoogle Scholar
Tuffen, H. (1998). L'origine des cristaux dans le chambre magmatique de Santorin (Grèce). Clermont-Ferrand, France: Université Blaise-Pascal.
Turcotte, D. L. (1992). Fractals and Chaos in Geology and Geophysics. Cambridge, New York: Cambridge University Press.Google Scholar
Turner, S., George, R., Jerram, D. A., Carpenter, N. & Hawkesworth, C. (2003). Case studies of plagioclase growth and residence times in island arc lavas from Tonga and the Lesser Antilles, and a model to reconcile discordant age information. Earth and Planetary Science Letters, 214, 279–94.CrossRefGoogle Scholar
Underwood, E. E. (1970). Quantitative Stereology. Reading, MA: Addison-Wesley.Google Scholar
Berg, E. H., Meesters, A. G. C. A., Kenter, J. A. M. & Schlager, W. (2002). Automated separation of touching grains in digital images of thin sections∗1. Computers & Geosciences, 28, 179–90.CrossRefGoogle Scholar
Vance, J. A. (1969). On synneusis. Contributions to Mineralogy and Petrology, 24, 7–29.CrossRefGoogle Scholar
Vavra, G. (1993). A guide to quantitative morphology of accessory zircon. Chemical Geology, 110, 15–28.CrossRefGoogle Scholar
Ventura, G. (2001). The strain path and emplacement mechanism of lava flows: an example from Salina (southern Tyrrhenian Sea, Italy). Earth and Planetary Science Letters, 188, 229–40.CrossRefGoogle Scholar
Ventura, G., DeRosa, R., Colletta, E. & Mazzuoli, R. (1996). Deformation patterns in a high-viscosity lava flow inferred from the crystal preferred orientation and imbrication structures: An example from Salina (Aeolian Islands, southern Tyrrhenian Sea, Italy). Bulletin of Volcanology, 57, 555–62.CrossRefGoogle Scholar
Vernon, R. (1970). Comparative grain boundary studies of some basic and ultrabasic granulites, nodules and cumulates. Scottish Journal of Geology, 6, 337–51.CrossRefGoogle Scholar
Vernon, R. H. (1968). Microstructures of high-grade metamorphic rocks at Broken Hill, Australia. Journal of Petrology, 9, 1–22.CrossRefGoogle Scholar
Vernon, R. H. (1986). K-feldspar megacrysts in granites – phenocrysts not porphyroblasts. Earth-Science Reviews, 23, 1–63.CrossRefGoogle Scholar
Vernon, R. H. (2004). A Practical Guide to Rock Microstructure. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Verrecchia, E. P. (2003). Foreword: image analysis and morphometry of geological objects. Mathematical Geology, 35, 759–62.CrossRefGoogle Scholar
Vigneresse, J. L., Barbey, P. & Cuney, M. (1996). Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology, 37, 1579–1600.CrossRefGoogle Scholar
Voorhees, P. W. (1992). Ostwald ripening of two-phase mixtures. Annual Review of Materials Science, 22, 197–215.CrossRefGoogle Scholar
Wada, Y. (1992). Magma flow directions inferred from preferred orientations of phenocryst in a composite feeder dyke, Miyake-Jima, Japan. Journal of Volcanology and Geothermal Research, 49, 119–26.CrossRefGoogle Scholar
Waff, H. S. & Bulau, J. R. (1979). Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. Journal of Geophysical Research, 84, 6109–14.CrossRefGoogle Scholar
Wager, L. R. (1961). A note on the origin of ophitic texture in the chilled olivine gabbro of the Skaergaard intrusion. Geological Magazine, 98, 353–66.CrossRefGoogle Scholar
Wager, L. R. & Brown, G. M. (1968). Layered Igneous Rocks. Edinburgh; London: Oliver & Boyd.Google Scholar
Waters, C. & Boudreau, A. E. (1996). A re-evaluation of crystal size distribution in chromite cumulates. American Mineralogist, 81, 1452–9.CrossRefGoogle Scholar
Watson, E. B. & Brenan, J. M. (1987). Fluids in the lithosphere.1. experimentally-determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical-properties, and fluid inclusion formation. Earth and Planetary Science Letters, 85, 497–515.CrossRefGoogle Scholar
Wegner, M. & Christie, J. (1985). General chemical etchants for microstructures and defects in silicates. Physics and Chemistry of Minerals, 12, 90–2.CrossRefGoogle Scholar
Wenk, H. R. (2002). Texture and anisotropy. In Plastic Deformation of Minerals and Rocks. Reviews in Mineralogy & Geochemistry, 51. Washington DC: Mineralogical Society of America, pp. 291–329.Google Scholar
Wenk, H. R. (1985). Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis. Orlando FL: Academic Press.Google Scholar
Wenk, H. R. & Grigull, S. (2003). Synchrotron texture analysis with area detectors. Journal of Applied Crystallography, 36, 1040–9.CrossRefGoogle Scholar
Wenk, H. R. & Houtte, P. (2004). Texture and anisotropy. Reports on Progress in Physics, 67, 1367–428.CrossRefGoogle Scholar
Whitham, A. & Sparks, R. (1986). Pumice. Bulletin of Volcanology, 48, 209–23.CrossRefGoogle Scholar
Wilson, B., Dewers, T., Ze'ev, R. & Brune, J. (2005). Particle size and energetics of gouge from earthquake rupture zones. Nature, 434, 749–52.CrossRefGoogle ScholarPubMed
Wright, I. C., Gamble, J. A. & Shane, P. A. R. (2003). Submarine silicic volcanism of the Healy caldera, southern Kermadec arc (SW Pacific): I – volcanology and eruption mechanisms. Bulletin of Volcanology, 65, 15–29.Google Scholar
Wulff, G. (1901). Zur frage der Geschwindigkeit des Wachstums und der Auflosumg der Krystallflachen. Zeitschift für Kristallographie und Mineralogie, 34, 449–530.Google Scholar
Xie, Y. X., Wenk, H. R. & Matthies, S. (2003). Plagioclase preferred orientation by TOF neutron diffraction and SEM-EBSD. Tectonophysics, 370, 269–86.CrossRefGoogle Scholar
Yaouancq, G. & MacLeod, C. J. (2000). Petrofabric investigation of gabbros from the Oman ophiolite: comparison between AMS and rock fabric. Marine Geophysical Researches, 21, 289–305.CrossRefGoogle Scholar
Zeh, A. (2004). Crystal size distribution (CSD) and textural evolution of accessory apatite, titanite and allanite during four stages of metamorphism: an example from the Moine supergroup, Scotland. Journal of Petrology, 45, 2101–32.CrossRefGoogle Scholar
Zellmer, G., Turner, S. & Hawkesworth, C. (2000). Timescales of destructive plate margin magmatism; new insights from Santorini, Aegean volcanic arc. Earth and Planetary Science Letters, 174, 265–81.CrossRefGoogle Scholar
Zhou, Y., Starkey, J. & Mansinha, L. (2004a). Identification of mineral grains in a petrographic thin section using phi- and max-images. Mathematical Geology, 36, 781–801.CrossRefGoogle Scholar
Zhou, Y., Starkey, J. & Mansinha, L. (2004b). Segmentation of petrographic images by integrating edge detection and region growing. Computers & Geosciences, 30, 817–31.CrossRefGoogle Scholar
Zieg, M. J. & Marsh, B. D. (2002). Crystal size distributions and scaling laws in the quantification of igneous textures. Journal of Petrology, 43, 85–101.CrossRefGoogle Scholar
Agrawal, Y., McCave, I. N. & Riley, J. (1991). Laser diffraction size analysis. In Syvitski, J. P. M., ed., Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
Akesson, U., Lindqvist, J. E., Goransson, M. & Stigh, J. (2001). Relationship between texture and mechanical properties of granites, Central Sweden, by the use of image-analysing technique. Bulletin of Engineering Geology and the Environment, 60, 277–84.Google Scholar
Akesson, U., Stigh, J., Lindqvist, J. E. & Goransson, M. (2003). The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy. Engineering Geology, 68, 275–88.CrossRefGoogle Scholar
Allen, S. R. & McPhie, J. (2003). Phenocryst fragments in rhyolitic lavas and lava domes. Journal of Volcanology and Geothermal Research, 126, 263–83.CrossRefGoogle Scholar
Anderson, A. T. (1983). Oscillatory zoning of plagioclase: Nomarski interference contrast microscopy of etched polished sections. American Mineralogist, 68, 125–9.Google Scholar
Arbaret, L., Fernandez, A., Jezek, J., Ildefonse, B., Launeau, P. & Diot, H. (2000). Analogue and numerical modelling of shape fabrics: application to strain and flow determination in magmas. Transactions of the Royal Society of Edinburgh-Earth Sciences, 91, 97–109.Google Scholar
Armienti, P. & Tarquini, S. (2002). Power law olivine crystal size distributions in lithospheric mantle xenoliths. Lithos, 65, 273–85.CrossRefGoogle Scholar
Armienti, P., Pareschi, M. T., Innocenti, F. & Pompilio, M. (1994). Effects of magma storage and ascent on the kinetics of crystal growth. The case of the 1991–93 Mt. Etna eruption. Contributions to Mineralogy and Petrology, 115, 402–14.CrossRefGoogle Scholar
ASTM (1992). ASTM E930–92e1 Standard test methods for estimating the largest grain observed in a metallographic section. Philadelphia, PA: American Society for Testing Materials.
ASTM (1996). ASTM E112–96 Standard test methods for determining average grain size. Philadelphia, PA: American Society for Testing Materials.
ASTM (1997). ASTM E1382–97 Standard test method for determining average grain size using semiautomatic and automatic image analysis. Philadelphia, PA: American Society for Testing Materials.
Baronnet, A. (1984). Growth kinetics of the silicates. A review of basic concepts. Fortschritte der mineralogie, 62, 187–232.Google Scholar
Barrett, P. J. (1980). The shape of rock particles, a critical review. Sedimentology, 27, 291–303.CrossRefGoogle Scholar
Bateman, P. C. & Chappell, B. W. (1979). Crystallisation, fractionation, and solidification of the Tuolumne Intrusive series, Yosemite National Park, California. Geological Society of America Bulletin, 90, 465–82.2.0.CO;2>CrossRefGoogle Scholar
Beere, W. (1975). Unifying theory of stability of penetrating liquid-phases and sintering pores. Acta Metallurgica, 23, 131–8.CrossRefGoogle Scholar
Ismail, Ben W. & Mainprice, D. (1998). An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 296, 145–57.CrossRefGoogle Scholar
Benn, K. & Mainprice, D. (1989). An interactive program for determination of plagioclase crystal axes orientations from U-stage measurements – an aid for petrofabric studies. Computers & Geosciences, 15, 1127–42.CrossRefGoogle Scholar
Bennema, P., Meekes, H. & Enckevort, V. (1999). Crystal growth and morphology: A multi-faceted approach. In Jamtveit, B. & Meakin, P., eds., Growth, Dissolution, and Pattern Formation in Geosystems. Dordrecht: Boston, pp. 21–64.CrossRefGoogle Scholar
Berger, A. (2004). An improved equation for crystal size distribution in second-phase influenced aggregates. American Mineralogist, 89, 126–31.CrossRefGoogle Scholar
Berger, A. & Herwegh, M. (2004). Grain coarsening in contact metamorphic carbonates: effects of second-phase particles, fluid flow and thermal perturbations. Journal of Metamorphic Geology, 22, 459–74.CrossRefGoogle Scholar
Berger, A. & Roselle, G. (2001). Crystallization processes in migmatites. American Mineralogist, 86, 215–24.CrossRefGoogle Scholar
Bevington, P. R. & Robinson, D. K. (2003). Data Reduction and Error Analysis for the Physical Sciences. Boston, MA: McGraw-Hill.Google Scholar
Bindeman, I. & Valley, J. W. (2001). Low-δ18O rhyolites from Yellowstone: Magmatic evolution based on analyses of zircons and individual phenocrysts. Journal of Petrology, 42, 1491–517.CrossRefGoogle Scholar
Bindeman, I. N. (2003). Crystal sizes in evolving silicic magma chambers. Geology, 31, 367–70.2.0.CO;2>CrossRefGoogle Scholar
Blanchard, J.-P., Boyer, P. & Gagny, C. (1979). Un nouveau critère de sens de mise en place dans une caisse filonienne: Le ‘pincement’ des minéraux aux epontes (Orientation des minéraux dans un magma en écoulement). Tectonophysics, 53, 1–25.CrossRefGoogle Scholar
Blower, J. D., Keating, J. P., Mader, H. M. & Phillips, J. C. (2001). Inferring volcanic degassing processes from vesicle size distributions. Geophysical Research Letters, 28, 347–50.CrossRefGoogle Scholar
Blower, J. D., Keating, J. P., Mader, H. M. & Phillips, J. C. (2002). The evolution of bubble size distributions in volcanic eruptions. Journal of Volcanology and Geothermal Research, 120, 1–23.CrossRefGoogle Scholar
Blumenfeld, P. & Bouchez, J. L. (1988). Shear criteria in granite and migmatite deformed in the magmatic and solid states. Journal of Structural Geology, 10, 361–72.CrossRefGoogle Scholar
Boorman, S., Boudreau, A. & Kruger, F. J. (2004). The lower zone-critical zone transition of the Bushveld complex: A quantitative textural study. Journal of Petrology, 45, 1209–35.CrossRefGoogle Scholar
Borradaile, G. J. (1988). Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 156, 1–20.CrossRefGoogle Scholar
Borradaile, G. J. & Gauthier, D. (2003). Interpreting anomalous magnetic fabrics in ophiolite dikes. Journal of Structural Geology, 25, 171–82.CrossRefGoogle Scholar
Borradaile, G. J. & Henry, B. (1997). Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 42, 49–93.CrossRefGoogle Scholar
Bouchez, J. L. (1997). Granite is never isotropic: an introduction to AMS studies of granitic rocks. In Bouchez, J. L., Hutton, D. H. W. & Stephens, W. E., eds., Granite: From Segregation of Melt to Emplacement Fabrics. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Bouchez, J. L. (2000). Magnetic susceptibility anisotropy and fabrics in granites. Comptes rendus de l'Academie des Sciences, 330, 1–14.Google Scholar
Boudreau, A. E. (1987). Pattern forming during crystallisation and the formation of fine-scale layering. In Parsons, I., ed., Origins of Igneous Layering. Dordrecht: D. Reidel, pp. 453–71.CrossRefGoogle Scholar
Boudreau, A. E. (1995). Crystal aging and the formation of fine-scale igneous layering. Mineralogy and Petrology, 54, 55–69.CrossRefGoogle Scholar
Bowman, E. T., Soga, K. & Drummond, W. (2001). Particle shape characterisation using Fourier descriptor analysis. Geotechnique, 51, 545–54.CrossRefGoogle Scholar
Bozhilov, K. N., Green, H. W. & Dobrzhinetskaya, L. F. (2003). Quantitative 3D measurement of ilmenite abundance in Alpe Arami olivine by confocal microscopy: Confirmation of high-pressure origin. American Mineralogist, 88, 596–603.CrossRefGoogle Scholar
Brandeis, G. & Jaupart, C. (1987). The kinetics of nucleation and crystal growth and scaling laws for magmatic crystallisation. Contributions to Mineralogy and Petrology, 96, 24–34.CrossRefGoogle Scholar
Brandon, D. G. & Kaplan, W. D. (1999). Microstructural Characterization of Materials. Chichester, NY: J. Wiley and Sons.Google Scholar
Brantley, S. L. & Mellott, N. P. (2000). Surface area and porosity of primary silicate minerals. American Mineralogist, 85, 1767–83.CrossRefGoogle Scholar
Brantley, S. L., White, A. F. & Hodson, M. E. (1999). Surface area of primary silicate minerals. In Jamtveit, B. & Meakin, P., eds., Growth, Dissolution, and Pattern Formation in Geosystems. Dordrecht: Boston, pp. 291–326.CrossRefGoogle Scholar
Bryon, D. N., Atherton, M. P. & Hunter, R. H. (1995). The interpretation of granitic textures from serial thin sectioning, image-analysis and 3-dimensional reconstruction. Mineralogical Magazine, 59, 203–11.CrossRefGoogle Scholar
Bulau, J. R., Waff, H. S. & Tyburczy, J. A. (1979). Mechanical and thermodynamic constraints on fluid distribution in partial melts. Journal of Geophysical Research, 84, 6102–8.CrossRefGoogle Scholar
Bunge, H. J. (1982). Texture Analysis in Materials Science. London, UK: Butterworths.Google Scholar
Burnard, P. (1999). Eruption dynamics of ‘popping rock’ from vesicle morphologies. Journal of Volcanology and Geothermal Research, 92, 247–58.CrossRefGoogle Scholar
Cabane, H., Laporte, D. & Provost, A. (2001). Experimental investigation of the kinetics of Ostwald ripening of quartz in silicic melts. Contributions to Mineralogy and Petrology, 142, 361–73.CrossRefGoogle Scholar
Cabri, L. & Vaughan, D., eds., (1998). Modern Approaches to Ore and Environmental Mineralogy. Short Course Series, 27. Ottawa: Mineralogical Association of Canada.Google Scholar
Canon-Tapia, E. & Castro, J. (2004). AMS measurements on obsidian from the Inyo Domes, CA: a comparison of magnetic and mineral preferred orientation fabrics. Journal of Volcanology and Geothermal Research, 134, 169–82.CrossRefGoogle Scholar
Canon-Tapia, E., Walker, G. P. L. & Herrero-Bervera, E. (1997). The internal structure of lava flows – Insights from AMS measurements II: Hawaiian pahoehoe, toothpaste lava and a'a. Journal of Volcanology and Geothermal Research, 76, 19–46.CrossRefGoogle Scholar
Capaccioni, B. & Sarocchi, D. (1996). Computer-assisted image analysis on clast shape fabric from the Orvieto-Bagnoregio ignimbrite (Vulsini District, central Italy): Implications on the emplacement mechanisms. Journal of Volcanology and Geothermal Research, 70, 75–90.CrossRefGoogle Scholar
Capaccioni, B., Valentini, L., Rocchi, M. B. L., Nappi, G. & Sarocchi, D. (1997). Image analysis and circular statistics for shape-fabric analysis: Applications to lithified ignimbrites. Bulletin of Volcanology, 58, 501–14.CrossRefGoogle Scholar
Carey, S., Maria, A. & Sigurdsson, H. (2000). Use of fractal analysis for discrimination of particles from primary and reworked jokulhlaup deposits in SE Iceland. Journal of Volcanology and Geothermal Research, 104, 65–80.CrossRefGoogle Scholar
Carlson, W. D. (1999). The case against Ostwald ripening of porphyroblasts. Canadian Mineralogist, 37, 403–13.Google Scholar
Carlson, W. D., Denison, C. & Ketcham, R. A. (1995). Controls on the nucleation and growth of porphyroblasts: Kinetics from natural textures and numerical models. Geological Journal, 30, 207–25.CrossRefGoogle Scholar
Cashman, K. (1986). Crystal size distributions in igneous and metamorphic rocks. Baltimore, MA: Johns Hopkins University.
Cashman, K. & Blundy, J. (2000). Degassing and crystallization of ascending andesite and dacite. Philosophical Transactions of the Royal Society of London Series A (Mathematical Physical and Engineering Sciences), 358, 1487–513.CrossRefGoogle Scholar
Cashman, K. V. (1988). Crystallisation of Mount St. Helens dacite; a quantitative textural approach. Bulletin of Volcanology, 50, 194–209.CrossRefGoogle Scholar
Cashman, K. V. (1990). Textural constraints on the kinetics of crystallization of igneous rocks. In Nicholls, J. & Russell, J. K., eds., Modern Methods of Igneous Petrology: Understanding Magmatic Processes. Washington DC: Mineralogical Society of America, pp. 259–314.Google Scholar
Cashman, K. V. (1992). Groundmass crystallisation of Mount St Helens dacite 1980–1986: a tool for interpreting shallow magmatic processes. Contributions to Mineralogy and Petrology, 109, 431–49.CrossRefGoogle Scholar
Cashman, K. V. (1993). Relationship between plagioclase crystallisation and cooling rate in basaltic melts. Contributions to Mineralogy and Petrology, 113, 126–42.CrossRefGoogle Scholar
Cashman, K. V. & Ferry, J. M. (1988). Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization III. Metamorphic crystallization. Contributions to Mineralogy and Petrology, 99, 410–15.Google Scholar
Cashman, K. V. & Marsh, B. D. (1988). Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation II. Makaopuhi lava lake. Contributions to Mineralogy and Petrology, 99, 292–305.CrossRefGoogle Scholar
Cashman, K. V., Thornber, C. & Kauahikaua, J. P. (1999). Cooling and crystallization of lava in open channels, and the transition of pahoehoe lava to a'a. Bulletin of Volcanology, 61, 306–23.CrossRefGoogle Scholar
Castro, J. M., Cashman, K. V. & Manga, M. (2003). A technique for measuring 3D crystal-size distributions of prismatic microlites in obsidian. American Mineralogist, 88, 1230–40.CrossRefGoogle Scholar
Chacron, M. & L'Heureux, I. (1999). A new model of periodic precipitation incorporating nucleation, growth and ripening. Physics Letters A, 263, 70–7.CrossRefGoogle Scholar
Chayes, F. (1950). On the bias of grain-size measurements made in thin section. Journal of Geology, 58, 156–60.CrossRefGoogle Scholar
Cheadle, M. J., Elliott, M. T. & McKenzie, D. (2004). Percolation threshold and permeability of crystallizing igneous rocks: The importance of textural equilibrium. Geology, 32, 757–60.CrossRefGoogle Scholar
Christiansen, C. & Hartman, D. (1991). Principles, methods, and application of particle size analysis. In Syvitski, J. P. M., ed., Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press, pp. 237–48.CrossRefGoogle Scholar
Clark, A. H., Pearce, T. H., Roeder, P. L. & Wolfson, I. (1986). Oscillatory zoning and other microstructures in magmatic olivine and augite; Nomarski interference contrast observations on etched polished surfaces. American Mineralogist, 71 734–41.Google Scholar
Cloetens, P., Ludwig, W., Boller, E., Peyrin, F., Schlenker, M. & Baruchel, J. (2002). 3D imaging using coherent synchrotron radiation. Image Analysis and Stereology, 21 (suppl. 1), S75–S86.CrossRefGoogle Scholar
Cmiral, M., FitzGerald, J. D., Faul, U. H. & Green, D. H. (1998). A close look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM study. Contributions to Mineralogy and Petrology, 130, 336–45.Google Scholar
Coakley, J. & Syvitski, J. P. M. (1991). Sedigraph technique. In Syvitski, J. P. M., ed., Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press, pp. 129–42.CrossRefGoogle Scholar
Coogan, L. A., Thompson, G. & MacLeod, C. J. (2002). A textural and geochemical investigation of high level gabbros from the Oman ophiolite: implications for the role of the axial magma chamber at fast-spreading ridges. Lithos, 63, 67–82.CrossRefGoogle Scholar
Costa, L. F. & Cesar, R. M. (2001). Shape Analysis and Classification: Theory and Practice. Boca Raton, FL: CRC Press.Google Scholar
Craig, D. B. (1961). The Benford Plate. American Mineralogist, 46, 757–8.Google Scholar
Cressie, N. (1991). Statistics for Spatial Data. New York: Wiley-Interscience.Google Scholar
Cruden, A. R. & Launeau, P. (1994). Structure, magnetic fabric and emplacement of the Archean Lebel stock, SW Abitibi greenstone belt. Journal of Structural Geology, 16, 677–91.CrossRefGoogle Scholar
Dana, J. D., Dana, E. S., Palache, C., Berman, H. M. & Frondel, C. (1944). The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University, 1837–1892. New York: J. Wiley and Sons, London: Chapman and Hall.Google Scholar
Daniel, C. G. & Spear, F. S. (1999). The clustered nucleation and growth processes of garnet in regional metamorphic rocks from north-west Connecticut, USA. Journal of Metamorphic Geology, 17, 503–20.Google Scholar
Darrozes, J., Gaillot, P., Saint-Blanquat, M. & Bouchez, J. L. (1997). Software for multi-scale image analysis: The normalized optimized anisotropic wavelet coefficient method. Computers & Geosciences, 23, 889–95.CrossRefGoogle Scholar
Deakin, A. S. & Boxer, G. L. (1989). Argyle AK1 diamond size distribution; the use of fine diamonds to predict the occurrence of commercial size diamonds. In Ross, J., Jaques, A. L., Ferguson, J., Green, D. H., O'Reilly, S. Y., Danchin, R. V. & Janse, A. J. A., eds., Fourth International Kimberlite Conference. Sydney: Geological Society of Australia, pp. 1117–22.Google Scholar
DeHoff, R. T. (1984). Generalized microstructural evolution by interface controlled coarsening. Acta Metallurgica, 32, 43–7.CrossRefGoogle Scholar
DeHoff, R. T. (1991). A geometrically general theory of diffusion controlled coarsening. Acta Metallurgica et Materialia, 39, 2349–60.CrossRefGoogle Scholar
Delesse, M. A. (1847). Procedé mécanique pour déterminer la composition des roches. Comptes rendus de l'Académie des Sciences (Paris), 25, 544–5.Google Scholar
Dellino, P. & Liotino, G. (2002). The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance. Journal of Volcanology and Geothermal Research, 113, 1–18.CrossRefGoogle Scholar
Dillon, C. G., Carey, P. F. & Worden, R. H. (2001). Fractscript: A macro for calculating the fractal dimension of object perimeters in images of multiple objects. Computers & Geosciences, 27, 787–94.CrossRefGoogle Scholar
Diot, H., Bolle, O., Lambert, J. M., Launeau, P. & Duchesne, J. C. (2003). The Tellnes ilmenite deposit (Rogaland, South Norway): magnetic and petrofabric evidence for emplacement of a Ti-enriched noritic crystal mush in a fracture zone. Journal of Structural Geology, 25, 481–501.CrossRefGoogle Scholar
Donaldson, C. H. (1976). An experimental investigation of olivine morphology. Contributions to Mineralogy and Petrology, 57, 187–213.CrossRefGoogle Scholar
Dowty, E. (1980). Crystal growth and nucleation theory and the numerical simulation of igneous crystallization. In Hargraves, R. B., ed., Physics of Magmatic Processes. Princeton: Princeton University Press.CrossRefGoogle Scholar
Drolon, H., Hoyez, B., Druaux, F. & Faure, A. (2003). Multiscale roughness analysis of particles: Application to the classification of detrital sediments. Mathematical Geology, 35, 805–17.CrossRefGoogle Scholar
Druitt, T. H., Edwards, L., Mellors, R. M., et al. (1999). Santorini Volcano. London, UK: Geological Society. Memoir 19Google Scholar
Dunbar, N. W., Cashman, K. V. & Dupre, R. (1994). Crystallization processes of anorthoclase phenocrysts in the Mount Erebus magmatic system; evidence from crystal composition, crystal size distributions, and volatile contents of melt inclusions. In Kyle, P. R., ed., Volcanological and Environmental Studies of Mount Erebus, Antarctica. Washington DC: American Geophysical Union, pp. 129–46.CrossRefGoogle Scholar
Duyster, J. & Stockhert, B. (2001). Grain boundary energies in olivine derived from natural microstructures. Contributions to Mineralogy and Petrology, 140, 567–76.CrossRefGoogle Scholar
Eberl, D. D., Drits, V. A. & Srodon, J. (1998). Deducing growth mechanisms for minerals from the shapes of crystal size distributions. American Journal of Science, 298, 499–533.CrossRefGoogle Scholar
Eberl, D. D., Kile, D. E. & Drits, V. A. (2002). On geological interpretations of crystal size distributions: Constant vs. proportionate growth. American Mineralogist, 87, 1235–41.CrossRefGoogle Scholar
Ehrlich, R. & Weinberg, B. (1970). An exact method for characterization of grain shape. Journal of Sedimentary Petrology, 40, 205–12.Google Scholar
Eisenhour, D. D. (1996). Determining chondrule size distributions from thin-section measurements. Meteoritics & Planetary Science, 31, 243–8.CrossRefGoogle Scholar
Elliott, M. T. & Cheadle, M. J. (1997). On the identification of textural disequilibrium in rocks using dihedral angle measurements: Reply. Geology, 25, 1055.2.3.CO;2>CrossRefGoogle Scholar
Elliott, M. T., Cheadle, M. J. & Jerram, D. A. (1997). On the identification of textural equilibrium in rocks using dihedral angle measurements. Geology, 25, 355–8.2.3.CO;2>CrossRefGoogle Scholar
Emmons, R. C. (1964). The Universal Stage (With Five Axes of Rotation). New York: Geological Society of America.Google Scholar
Epstein, B. (1947). The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution. Journal of the Franklin Institute, 244, 471–7.CrossRefGoogle Scholar
Ernst, R. E. & Baragar, W. R. A. (1992). Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature, 356, 511–13.CrossRefGoogle Scholar
Ersoy, A. & Waller, M. D. (1995). Textural characterization of rocks. Engineering Geology, 39, 123–36.CrossRefGoogle Scholar
Exner, H. (2004). Stereology and 3D microscopy: Useful alternatives or competitors in the quantitative analysis of microstructures?Image Analysis and Stereology, 23, 73–82.CrossRefGoogle Scholar
Faul, U. (1997). The permeability of partially molten upper mantle rocks from experiments and percolation theory. Journal of Geophysical Research, 102, 10299–311.CrossRefGoogle Scholar
Faure, F., Trolliard, G., Nicollet, C. & Montel, J. M. (2003). A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contributions to Mineralogy and Petrology, 145, 251–63.CrossRefGoogle Scholar
Flinn, D. (1962). On folding during three-dimensional progressive deformation. Geological Society of London Quarterly Journal, 118, 385–433.CrossRefGoogle Scholar
Friedman, G. M. (1958). Determination of sieve-size distributions from thin-section data for sedimentary petrological studies. Journal of Geology, 66, 394–416.CrossRefGoogle Scholar
Fueten, F. (1997). A computer-controlled rotating polarizer stage for the petrographic microscope. Computers & Geosciences, 23, 203–8.CrossRefGoogle Scholar
Fueten, F. & Goodchild, J. S. (2001). Quartz c-axes orientation determination using the rotating polarizer microscope. Journal of Structural Geology, 23, 895–902.CrossRefGoogle Scholar
Gaillot, P., Darrozes, J., Saint Blanquat, M. & Ouillon, G. (1997). The normalized optimized anisotropic wavelet coefficient (NOAWC) method; an image processing tool for multiscale analysis of rock fabric. Geophysical Research Letters, 24, 1819–22.CrossRefGoogle Scholar
Gaillot, P., Darrozes, J. & Bouchez, J. L. (1999). Wavelet transform: a future of rock fabric analysis?Journal of Structural Geology, 21, 1615–21.CrossRefGoogle Scholar
Galwey, A. K. & Jones, K. A. (1963). An attempt to determine the mechanism of a natural mineral-forming reaction from examination of the products. Journal of the Chemical Society (London), 5681–6.Google Scholar
Galwey, A. K. & Jones, K. A. (1966). Crystal size frequency distribution of garnets in some analysed metamorphic rocks from Mallaig, Inverness, Scotland. Geological Magazine, 103, 143–52.CrossRefGoogle Scholar
Gaonac'h, H., Lovejoy, S., Stix, J. & Scherzter, D. (1996a). A scaling growth model for bubbles in basaltic lava flows. Earth and Planetary Science Letters, 139, 395–409.CrossRefGoogle Scholar
Gaonac'h, H., Stix, J. & Lovejoy, S. (1996b). Scaling effects on vesicle shape, size and heterogeneity of lavas from Mount Etna. Journal of Volcanology and Geothermal Research, 74, 131–52.CrossRefGoogle Scholar
Gaonac'h, H., Lovejoy, S. & Schertzer, D. (2003). Percolating magmas and explosive volcanism. Geophysical Research Letters, 30, 1559.CrossRefGoogle Scholar
Gardner, J. E. & Denis, M.-H. (2004). Heterogeneous bubble nucleation on Fe-Ti oxide crystals in high-silica rhyolitic melts. Geochimica et Cosmochimica Acta, 68, 3587–97.CrossRefGoogle Scholar
Gardner, J. E., Hilton, M. & Carroll, M. R. (1999). Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure. Earth and Planetary Science Letters, 168, 201–18.CrossRefGoogle Scholar
Garrido, C. J., Kelemen, P. B. & Hirth, G. (2001). Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge; plagioclase crystal size distributions in gabbros from the Oman Ophiolite. Geochemistry Geophysics Geosystems, doi: 10.1029/2000GC000136.CrossRefGoogle Scholar
Gee, J. S., Meurer, W. P., Selkin, P. A. & Cheadle, M. J. (2004). Quantifying three-dimensional silicate fabrics in cumulates using cumulative distribution functions. Journal of Petrology, 45, 1983–2009.CrossRefGoogle Scholar
Geoffroy, L., Callot, J. P., Aubourg, C. & Moreira, M. (2002). Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation. Terra Nova, 14, 183–90.CrossRefGoogle Scholar
Ghiorso, M. S. & Sack, R. O. (1995). Chemical mass-transfer in magmatic processes. 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197–212.CrossRefGoogle Scholar
Gingras, M. K., MacMillan, B. & Balcom, B. J. (2002). Visualizing the internal physical characteristics of carbonate sediments with magnetic resonance imaging and petrography. Bulletin of Canadian Petroleum Geology, 50, 363–9.CrossRefGoogle Scholar
Goodchild, J. S. & Fueten, F. (1998). Edge detection in petrographic images using the rotating polarizer stage. Computers & Geosciences, 24, 745–51.CrossRefGoogle Scholar
Goodrich, C. A. (2003). Petrogenesis of olivine-phyric shergottites Sayh Al Uhaymir 005 and elephant moraine A79001 lithology A. Geochimica et Cosmochimica Acta, 67, 3735–72.CrossRefGoogle Scholar
Gray, N. H. (1970). Crystal growth and nucleation in two large diabase dykes. Canadian Journal of Earth Sciences, 7, 366–75.CrossRefGoogle Scholar
Gray, N. H., Philpotts, A. R. & Dickson, L. D. (2003). Quantitative measures of textural anisotropy resulting from magmatic compaction illustrated by a sample from the Palisades sill, New Jersey. Journal of Volcanology and Geothermal Research, 121, 293–312.CrossRefGoogle Scholar
Gregg, S. J. & Sing, K. S. W. (1982). Adsorption, Surface Area, and Porosity. London: Academic Press.Google Scholar
Gregoire, V., Darrozes, J., Gaillot, P., Nedelec, A. & Launeau, P. (1998). Magnetite grain shape fabric and distribution anisotropy vs rock magnetic fabric: a three-dimensional case study. Journal of Structural Geology, 20, 937–44.CrossRefGoogle Scholar
Greshake, A., Fritz, J. & Stoffler, D. (2004). Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single-stage ejection history. Geochimica et Cosmochimica Acta, 68, 2359–77.CrossRefGoogle Scholar
Gualda, G., Cook, D., Chopra, R.et al. (2004). Fragmentation, nucleation and migration of crystals and bubbles in the Bishop Tuff rhyolitic magma. Transactions of the Royal Society of Edinburgh-Earth Sciences, 95, 375–90.CrossRefGoogle Scholar
Habesch, S. M. (2000). Electron backscattered diffraction analyses combined with environmental scanning electron microscopy: potential applications for non-conducting, uncoated mineralogical samples. Materials Science and Technology, 16, 1393–8.CrossRefGoogle Scholar
Hammer, J. E., Cashman, K. V., Hoblitt, R. P. & Newman, S. (1999). Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bulletin of Volcanology, 60, 355–80.CrossRefGoogle Scholar
Hanchar, J. M. & Hoskin, P. W. O., eds., (2003). Zircon. Reviews in Mineralogy and Geochemistry, 53. Washington, DC: Mineralogical Society of America.Google Scholar
Harvey, P. K. & Laxton, R. R. (1980). The estimate of finite strain from the orientation distribution of passively deformed linear markers: eigenvalue relationships. Tectonophysics, 70, 285–307.CrossRefGoogle Scholar
Heilbronner, P. R. & Bruhn, D. (1998). The influence of three-dimensional grain size distributions on the rheology of polyphase rocks. Journal of Structural Geology, 20, 695–705.CrossRefGoogle Scholar
Heilbronner, R. (2002). Analysis of bulk fabrics and microstructure variations using tesselations of autocorrelation functions. Computers & Geosciences, 28, 447–55.CrossRefGoogle Scholar
Heilbronner, R. P. (1992). The autocorrelation function – an image-processing tool for fabric analysis. Tectonophysics, 212, 351–70.CrossRefGoogle Scholar
Heilbronner, R. P. & Pauli, C. (1993). Integrated spatial and orientation analysis of quartz c-axes by computer-aided microscopy. Journal of Structural Geology, 15, 369–82.CrossRefGoogle Scholar
Herring, C. (1951a). Some theorems on the free energies of crystal surfaces. Physics Reviews, 82, 87–93.CrossRefGoogle Scholar
Herring, C. (1951b). Surface tension as a motivation for sintering. In Kingston, W., ed., Physics of Powder Metallurgy. New York: McGraw-Hill.Google Scholar
Herwegh, M. (2000). A new technique to automatically quantify microstructures of fine grained carbonate mylonites: two-step etching combined with SEM imaging and image analysis. Journal of Structural Geology, 22, 391–400.CrossRefGoogle Scholar
Herwegh, M., Bresser, J. & Heege, J. (2005). Combining natural microstructures with composite flow laws: an improved approach for the extrapolation of lab data to nature. Journal of Structural Geology, 27, 503–21.CrossRefGoogle Scholar
Hext, G. (1963). The estimation of second-order tensors, with related tests and designs. Biometrika, 50, 353–73.CrossRefGoogle Scholar
Heyraud, J. C. & Metois, J. J. (1987). Equilibrium shape of an ionic-crystal in equilibrium with its vapor (NaCl). Journal of Crystal Growth, 84, 503–8.CrossRefGoogle Scholar
Higgins, M. D. (1991). The origin of laminated and massive anorthosite, Sept Iles intrusion, Quebec, Canada. Contributions to Mineralogy and Petrology, 106, 340–54.CrossRefGoogle Scholar
Higgins, M. D. (1994). Determination of crystal morphology and size from bulk measurements on thin sections: numerical modelling. American Mineralogist, 79, 113–19.Google Scholar
Higgins, M. D. (1996a). Crystal size distributions and other quantitative textural measurements in lavas and tuff from Mt Taranaki (Egmont volcano), New Zealand. Bulletin of Volcanology, 58, 194–204.CrossRefGoogle Scholar
Higgins, M. D. (1996b). Magma dynamics beneath Kameni volcano, Greece, as revealed by crystal size and shape measurements. Journal of Volcanology and Geothermal Research, 70, 37–48.CrossRefGoogle Scholar
Higgins, M. D. (1998). Origin of anorthosite by textural coarsening: Quantitative measurements of a natural sequence of textural development. Journal of Petrology, 39, 1307–25.CrossRefGoogle Scholar
Higgins, M. D. (1999). Origin of megacrysts in granitoids by textural coarsening: a crystal size distribution (CSD) study of microcline in the Cathedral Peak granodiorite, Sierra Nevada, California. In Fernandez, C. & Castro, A., eds., Understanding Granites: Integrating Modern and Classical Techniques. Special Publication 158. London: Geological Society of London, pp. 207–19.Google Scholar
Higgins, M. D. (2000). Measurement of crystal size distributions. American Mineralogist, 85, 1105–16.CrossRefGoogle Scholar
Higgins, M. D. (2002a). Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. American Mineralogist, 87, 171–5.CrossRefGoogle Scholar
Higgins, M. D. (2002b). A crystal size-distribution study of the Kiglapait layered mafic intrusion, Labrador, Canada: evidence for textural coarsening. Contributions to Mineralogy and Petrology, 144, 314–30.CrossRefGoogle Scholar
Higgins, M. D. (2005). A new model for the structure of the Sept Iles intrusive suite, Canada. Lithos, 83, 199–213.CrossRefGoogle Scholar
Higgins, M. D. (2006). Use of appropriate diagrams to determine if crystal size distributions (CSD) are dominantly semi-logarithmic, lognormal or fractal (scale invariant). Journal of Volcanology and Geothermal Research.Google Scholar
Higgins, M. D. & Roberge, J. (2003). Crystal size distribution (CSD) of plagioclase and amphibole from Soufriere Hills volcano, Montserrat: Evidence for dynamic crystallisation / textural coarsening cycles. Journal of Petrology, 44, 1401–11.CrossRefGoogle Scholar
Hiraga, T., Nishikawa, O., Nagase, T. & Akizuki, M. (2001). Morphology of intergranular pores and wetting angles in pelitic schists studied by transmission electron microscopy. Contributions to Mineralogy and Petrology, 141, 613–22.CrossRefGoogle Scholar
Hiraga, T., Nishikawa, O., Nagase, T., Akizuki, M. & Kohlstedt, D. L. (2002). Interfacial energies for quartz and albite in pelitic schist. Contributions to Mineralogy and Petrology, 143, 664–72.CrossRefGoogle Scholar
Holness, M. B. (1993). Temperature and pressure-dependence of quartz aqueous fluid dihedral angles – the control of adsorbed H2O on the permeability of quartzites. Earth and Planetary Science Letters, 117, 363–77.CrossRefGoogle Scholar
Holness, M. B. (2005). Spatial constraints on magma chamber replenishment events from textural observations of cumulates: the Rum layered intrusion, Scotland. Journal of Petrology, 46, 1585–601.CrossRefGoogle Scholar
Holness, M. B. & Siklos, S. T. C. (2000). The rates and extent of textural equilibration in high-temperature fluid-bearing systems. Chemical Geology, 162, 137–53.CrossRefGoogle Scholar
Holness, M. B., Cheadle, M. C. & McKenzie, D. (2005). On the use of changes in dihedral angle to decode late-stage textural evolution in cumulates. Journal of Petrology, 46, 1565–83.CrossRefGoogle Scholar
Houghton, B. F. & Wilson, C. J. N. (1989). A vesicularity index for pyroclastic deposits. Bulletin of Volcanology, 51, 451–62.CrossRefGoogle Scholar
Howard, V. & Reed, M. G. (1998). Unbiased Stereology: Three-Dimensional Measurement in Microscopy. Oxford, UK: Bios Scientific Publishers, New York: Springer.Google Scholar
Howarth, D. & Rowlands, J. (1986). Development of an index to quantify rock textures for quantitative assessment of intact rock properties. Geotechnical Testing Journal, 9, 169–79.Google Scholar
Hunter, R. H. (1987). Textural Equilibrium in Layered Igneous Rocks. In Parsons, I., ed., Origins of Igneous Layering. Dordrecht: D. Reidel, pp. 473–503.CrossRefGoogle Scholar
Hunter, R. H. (1996). Textural Development in Cumulate Rocks. In Cawthorn, R. G., ed., Layered Intrusions. Amsterdam: Elsevier, pp. 77–101.Google Scholar
Hurwitz, S. & Navon, O. (1994). Bubble nucleation in rhyolitic melts – experiments at high-pressure, temperature, and water-content. Earth and Planetary Science Letters, 122, 267–80.CrossRefGoogle Scholar
Hutchison, C. S. (1974). Laboratory Handbook of Petrographic Techniques. Hoboken NY: John Wiley & Sons.Google Scholar
Iezzi, G. & Ventura, G. (2002). Crystal fabric evolution in lava flows: results from numerical simulations. Earth and Planetary Science Letters, 200, 33–46.CrossRefGoogle Scholar
Ihinger, P. D. & Zink, S. I. (2000). Determination of relative growth rates of natural quartz crystals. Nature, 404, 865–9.CrossRefGoogle ScholarPubMed
Ikeda, S., Toriumi, M., Yoshida, H. & Shimizu, I. (2002). Experimental study of the textural development of igneous rocks in the late stage of crystallization: the importance of interfacial energies under non-equilibrium conditions. Contributions to Mineralogy and Petrology, 142, 397–415.CrossRefGoogle Scholar
Ikeda, S., Nakano, T., Tsuchiyama, A., Uesugi, K., Suzuki, Y., Nakamura, K., Nakashima, Y. & Yoshida, H. (2004). Nondestructive three-dimensional element-concentration mapping of a Cs-doped partially molten granite by X-ray computed tomography using synchrotron radiation. American Mineralogist, 89, 1304–13.CrossRefGoogle Scholar
Ildefonse, B., Launeau, P. & Bouchez, J.-L. (1992). Effect of mechanical interactions on the development of shape preferred orientations: a two-dimensional experimental approach. Journal of Structural Geology, 14, 73–83.CrossRefGoogle Scholar
Jackson, E. D. (1961). Primary textures and mineral associations in the ultramafic zone of the Stillwater complex, Montana. United States Geological Survey Professional Paper, 358.Google Scholar
Jackson, M. (1991). Anisotropy of magnetic remanence – a brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. Pure and Applied Geophysics, 136, 1–28.CrossRefGoogle Scholar
Jackson, M., Gruber, W., Marvin, J. & Banerjee, S. K. (1988). Partial anhysteretic remanence and its anisotropy – applications and grainsize-dependence. Geophysical Research Letters, 15, 440–3.CrossRefGoogle Scholar
Jamtveit, B. & Meakin, P., eds., (1999). Growth, Dissolution, and Pattern Formation in Geosystems. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Jelinek, V. (1978). Statistical processing of anisotropy of magnetic-susceptibility measured on groups of specimens. Studia Geophysica et Geodaetica, 22, 50–62.CrossRefGoogle Scholar
Jerram, D. A. (2001). Visual comparators for degree of grain-size sorting in two and three-dimensions. Computers & Geoscience, 27, 485–92.CrossRefGoogle Scholar
Jerram, D. A. & Cheadle, M. J. (2000). On the cluster analysis of grains and crystals in rocks. American Mineralogist, 85, 47–67.CrossRefGoogle Scholar
Jerram, D. A., Cheadle, M. J., Hunter, R. H. & Elliott, M. T. (1996). The spatial distribution of grains and crystals in rocks. Contributions to Mineralogy and Petrology, 125, 60–74.CrossRefGoogle Scholar
Jerram, D. A., Cheadle, M. J. & Philpotts, A. R. (2003). Quantifying the building blocks of igneous rocks: Are clustered crystal frameworks the foundation? Journal of Petrology, 44, 2033–51.CrossRefGoogle Scholar
Ji, S. C., Zhao, X. O. & Zhao, P. L. (1994). On the measurement of plagioclase lattice preferred orientations. Journal of Structural Geology, 16, 1711–18.CrossRefGoogle Scholar
Jillavenkateas, A., Dapkunas, S. J. & Lum, L.-S. H. (2001). Particle Size Characterisation: NIST Recommended Practice Guide. Washington DC, USA: National Institute of Standards and Technology.Google Scholar
Johnson, M. R. (1994). Thin-section grain-size analysis revisited. Sedimentology, 41, 985–99.CrossRefGoogle Scholar
Jung, H. & Karato, S. (2001). Effects of water on dynamically recrystallized grain-size of olivine. Journal of Structural Geology, 23, 1337–44.CrossRefGoogle Scholar
Jurewicz, S. R. & Jurewicz, A. J. G. (1986). Distribution of apparent angles on random sections with emphasis on dihedral angle measurements. Journal of Geophysical Research-Solid Earth and Planets, 91, 9277–82.CrossRefGoogle Scholar
Jurewicz, S. R. & Watson, E. B. (1985). The distribution of partial melt in a granitic system – the application of liquid-phase sintering theory. Geochimica et Cosmochimica Acta, 49, 1109–21.CrossRefGoogle Scholar
Karato, S. & Wenk, H.-R. (2002). Plastic Deformation of Minerals and Rocks. Washington, DC: Mineralogical Society of America.Google Scholar
Ketcham, R. A. (2005). Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere, 1, 32–41.CrossRefGoogle Scholar
Ketcham, R. A. & Carlson, W. D. (2001). Acquisition, optimization and interpretation of X-ray computed tomographic imagery; applications to the geosciences. Computers & Geoscience, 27, 381–400.CrossRefGoogle Scholar
Ketcham, R. A. & Ryan, T. M. (2004). Quantification and visualization of anisotropy in trabecular bone. Journal of Microscopy-Oxford, 213, 158–71.CrossRefGoogle ScholarPubMed
Kile, D. E., Eberl, D. D., Hoch, A. R. & Reddy, M. M. (2000). An assessment of calcite crystal growth mechanisms based on crystal size distributions. Geochimica et Cosmochimica Acta, 64, 2937–50.CrossRefGoogle Scholar
Klug, C. & Cashman, K. (1994). Vesiculation of May 18, 1980 Mount St. Helens magma. Geology, 22, 468–72.2.3.CO;2>CrossRefGoogle Scholar
Klug, C., Cashman, K. V. & Bacon, C. R. (2002). Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon. Bulletin of Volcanology, 64, 486–501.Google Scholar
Knight, M. D., Walker, G. P. L., Ellwood, B. B. & Diehl, J. F. (1986). Stratigraphy, paleomagnetism, and magnetic fabric of the Toba Tuffs – constraints on the sources and eruptive styles. Journal of Geophysical Research-Solid Earth and Planets, 91, 355–82.CrossRefGoogle Scholar
Kocks, U. F., Wenk, H.-R. & Tomé, C. N. (2000). Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Material Properties. Cambridge, UK: Cambridge University Press.Google Scholar
Kolmogorov, A. (1941). The lognormal law of distribution of particle sizes during crushing. Doklady Akademii Nauk SSSR, 31, 99–101.Google Scholar
Kong, M. Y., Bhattacharya, R. N., James, C. & Basu, A. (2005). A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions. Geological Society of America Bulletin, 117, 244–9.CrossRefGoogle Scholar
Kostov, I. & Kostov, R. I. (1999). Crystal Habits of Minerals. Sofia: Prof. Marin Drinov Academic Publishing House; Pensoft Publishers.Google Scholar
Kotov, S. & Berendsen, P. (2002). Statistical characteristics of xenoliths in the Antioch kimberlite pipe, Marshall county, northeastern Kansas. Natural Resources Research, 11, 289–97.CrossRefGoogle Scholar
Kouchi, A., Tsuchiyama, A. & Sunagawa, I. (1986). Effects of stirring on crystallization of basalt: Texture and element partitioning. Contributions to Mineralogy and Petrology, 93, 429–38.CrossRefGoogle Scholar
Kretz, R. (1966a). Grain-size distribution for certain metamorphic minerals in relation to nucleation and growth. Journal of Geology, 74, 147–73.CrossRefGoogle Scholar
Kretz, R. (1966b). Interpretation of shape of mineral grains in metamorphic rocks. Journal of Petrology, 7, 68–94.CrossRefGoogle Scholar
Kretz, R. (1969). On the spatial distribution of crystals in rocks. Lithos, 2, 39–65.CrossRefGoogle Scholar
Kretz, R. (1993). A garnet population in Yellowknife schist, Canada. Journal of Metamorphic Geology, 11, 101–20.CrossRefGoogle Scholar
Krug, H. J., Brandtstadter, H. & Jacob, K. H. (1996). Morphological instabilities in pattern formation by precipitation and crystallization processes. Geologische Rundschau, 85, 19–28.CrossRefGoogle Scholar
Kruhl, J. H. & Nega, M. (1996). The fractal shape of sutured quartz grain boundaries: Application as a geothermometer. Geologische Rundschau, 85, 38–43.CrossRefGoogle Scholar
Kruhl, J. H. & Peternell, M. (2002). The equilibration of high-angle grain boundaries in dynamically recrystallized quartz: the effect of crystallography and temperature. Journal of Structural Geology, 24, 1125–37.CrossRefGoogle Scholar
Lane, A. C. (1898). Geological Report on Isle Royale, Michigan. Lansing, MI: Michigan Geological Survey.Google Scholar
Laporte, D. & Provost, A. (2000). Equilibrium geometry of a fluid phase in a polycrystalline aggregate with anisotropic surface energies: Dry grain boundaries. Journal of Geophysical Research-Solid Earth, 105, 25937–53.CrossRefGoogle Scholar
Laporte, D. & Watson, E. B. (1995). Experimental and theoretical constraints on melt distribution in crustal sources – the effect of crystalline anisotropy on melt interconnectivity. Chemical Geology, 124, 161–84.CrossRefGoogle Scholar
Larsen, J. F. & Gardner, J. E. (2000). Experimental constraints on bubble interactions in rhyolite melts; implications for vesicle size distributions. Earth and Planetary Science Letters, 180, 201–14.CrossRefGoogle Scholar
Larsen, J. F., Denis, M. H. & Gardner, J. E. (2004). Experimental study of bubble coalescence in rhyolitic and phonolitic melts. Geochimica et Cosmochimica Acta, 68, 333–44.CrossRefGoogle Scholar
Larsen, L. & Poldervaart, A. (1957). Measurements and distribution of zircons in some granitic rocks of magmatic origin. Mineralogical Magazine, 31, 544–64.Google Scholar
Lasaga, A. C. (1998). Kinetic Theory in the Earth Sciences. Princeton NJ: Princeton University Press.CrossRefGoogle Scholar
Launeau, P. (2004). Mise en evidence des écoulments magmatiques par analyse d'images 2D des distibutions 3D d'orientations préférentielles de formes. Bulletin de la Société Géologique de France, 175, 331–50.CrossRefGoogle Scholar
Launeau, P. & Cruden, A. R. (1998). Magmatic fabric acquisition mechanisms in a syenite: results of a combined AMS and image analysis study. Journal of Geophysical Research, 103, 5067–89.CrossRefGoogle Scholar
Launeau, P. & Robin, P. Y. F. (1996). Fabric analysis using the intercept method. Tectonophysics, 267, 91–119.CrossRefGoogle Scholar
Launeau, P., Bouchez, J. L. & Benn, K. (1990). Shape preferred orientation of object populations; automatic analysis of digitized images. Tectonophysics, 180, 201–11.CrossRefGoogle Scholar
Launeau, P., Cruden, A. R. & Bouchez, J. L. (1994). Mineral recognition in digital images of rocks – a new approach using multichannel classification. Canadian Mineralogist, 32, 919–33.Google Scholar
Lemelle, L., Simionovici, A., Truche, R.et al. (2004). A new nondestructive X-ray method for the determination of the 3D mineralogy at the micrometer scale. American Mineralogist, 89, 547–53.CrossRefGoogle Scholar
Lentz, R. C. F. & McSween, H. Y. Jr. (2000). Crystallization of the basaltic shergottites; insights from crystal size distribution (CSD) analysis of pyroxenes. Meteoritics & Planetary Science, 35, 919–27.CrossRefGoogle Scholar
Lewis, D. W. & McConchie, D. (1994a). Analytical Sedimentology. New York: Chapman & Hall.CrossRefGoogle Scholar
Lewis, D. W. & McConchie, D. (1994b). Practical Sedimentology. New York: Chapman & Hall.CrossRefGoogle Scholar
Lifshitz, I. M. & Slyozov, V. V. (1961). The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids, 19, 35–50.CrossRefGoogle Scholar
Lofgren, G. E. (1974). An experimental study of plagioclase crystal morphology: isothermal crystallization. American Journal of Science, 274, 243–73.CrossRefGoogle Scholar
Lofgren, G. E. & Donaldson, C. H. (1975). Curved branching crystals and differentiation in comb-layered rocks. Contributions to Mineralogy and Petrology, 49, 309–19.CrossRefGoogle Scholar
Maaloe, S., Tumyr, O. & James, D. (1989). Population density and zoning of olivine phenocrysts in tholeiites from Kauai, Hawaii. Contributions to Mineralogy and Petrology, 101, 176–86.CrossRefGoogle Scholar
Mainprice, D. & Nicolas, A. (1989). Development of shape and lattice preferred orientations – application to the seismic anisotropy of the lower crust. Journal of Structural Geology, 11, 175–89.CrossRefGoogle Scholar
Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. San Francisco: W. H. Freeman.Google Scholar
Manga, M. (1998). Orientation distribution of microlites in obsidian. Journal of Volcanology and Geothermal Research, 86, 107–15.CrossRefGoogle Scholar
Mangan, M. T. (1990). Crystal size distribution and the determination of magma storage times: The 1959 eruption of Kilauea volcano, Hawaii. Journal of Volcanology and Geothermal Research, 44, 295–302.CrossRefGoogle Scholar
Mangan, M. T. & Cashman, K. V. (1996). The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. Journal of Volcanology and Geothermal Research, 73, 1–18.CrossRefGoogle Scholar
Mangan, M. T., Cashman, K. V. & Newman, S. (1993). Vesiculation of basaltic magma during eruption. Geology, 21, 157–60.2.3.CO;2>CrossRefGoogle Scholar
Mardia, K. V. & Jupp, P. E. (2000). Directional Statistics. Chichester; New York: John Wiley & Sons.Google Scholar
Markov, I. V. (1995). Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy. Singapore: River Edge N.J.CrossRefGoogle Scholar
Marqusee, J. A. & Ross, J. (1983). Kinetics of phase-transitions – theory of Ostwald ripening. Journal of Chemical Physics, 79, 373–8.CrossRefGoogle Scholar
Marschallinger, R. (1997). Automatic mineral classification in the macroscopic scale. Computers & Geosciences, 23, 119–26.CrossRefGoogle Scholar
Marschallinger, R. (1998a). Correction of geometric errors associated with the 3D reconstruction of geological materials by precision serial lapping. Mineralogical Magazine, 62, 783–92.CrossRefGoogle Scholar
Marschallinger, R. (1998b). A method for three-dimensional reconstruction of macroscopic features in geological materials. Computers & Geosciences, 24, 875–83.CrossRefGoogle Scholar
Marschallinger, R. (2001). Three-dimensional reconstruction and visualization of geological materials with IDL – examples and source code. Computers & Geosciences, 27, 419–26.CrossRefGoogle Scholar
Marsh, B. D. (1988a). Crystal capture, sorting, and retention in convecting magma. Geological Society of America Bulletin, 100, 1720–37.2.3.CO;2>CrossRefGoogle Scholar
Marsh, B. D. (1988b). Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contributions to Mineralogy and Petrology, 99, 277–91.CrossRefGoogle Scholar
Marsh, B. D. (1998). On the interpretation of crystal size distributions in magmatic systems. Journal of Petrology, 39, 553–600.CrossRefGoogle Scholar
Martin-Hernandez, F., Luneburg, C., Aubourg, C. & Jackson, M., eds., (2005). Magnetic Fabric: Methods and Applications. Geological Society Special Publication, 238. London: The Geological Society.Google Scholar
McBirney, A. R. & Hunter, R. H. (1995). The cumulate paradigm reconsidered. Journal of Geology, 103, 114–22.CrossRefGoogle Scholar
McBirney, A. R. & Nicolas, A. (1997). The Skaergaard layered series: Part II. Dynamic layering. Journal of Petrology, 38, 569–80.CrossRefGoogle Scholar
McConnell, J. (1975). Microstructures of minerals as petrogenetic indictors. Annual Review of Earth and Planetary Sciences, 3, 129–55.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L.et al. (1996). Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–30.CrossRefGoogle ScholarPubMed
McKenzie, D. (1984). The generation and compaction of partially molten rock. Journal of Petrology, 25, 713–65.CrossRefGoogle Scholar
Medley, E. W. (2002). Estimating block size distributions of melanges and similar block-in-matrix rocks (bimrocks). In Hammah, R., Bawden, W., Curran, J. & Telesnicki, M., eds., North American Rock Mechanics Symposium. Toronto, Canada: University of Toronto Press, pp. 509–606.Google Scholar
Mees, F., Swennen, R., Geet, M. & Jacobs, P., eds., (2003). Applications of X-ray Computed Tomography in the Geosciences. Geological Society Special Publication, 215. London: The Geological Society.Google Scholar
Meng, B. (1996). Determination and interpretation of fractal properties of the sandstone pore system. Materials and Structures, 29, 195–205.CrossRefGoogle Scholar
Merriam, D. F. (2004). The quantification of geology: from abacus to Pentium: A chronicle of people, places, and phenomena. Earth-Science Reviews, 67, 55–89.CrossRefGoogle Scholar
Meurer, W. P. & Boudreau, A. E. (1998). Compaction of igneous cumulates; Part II, Compaction and the development of igneous foliations. Journal of Geology, 106, 293–304.CrossRefGoogle Scholar
Middleton, G. V. (2000). Data Analysis in the Earth Sciences Using MATLAB®. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Milligan, T. & Kranck, K. (1991). Electroresistance particle size analysers. In Syvitski, J. P. M., ed., Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
Miyazaki, K. (1996). A numerical simulation of textural evolution due to Ostwald ripening in metamorphic rocks: A case for small amount of volume of dispersed crystals. Geochimica et Cosmochimica Acta, 60, 277–90.CrossRefGoogle Scholar
Miyazaki, K. (2000). The case against Ostwald ripening of porphyroblasts: Discussion. Canadian Mineralogist, 38, 1027–8.CrossRefGoogle Scholar
Mock, A., Jerram, D. A. & Breitkreuz, C. (2003). Using quantitative textural analysis to understand the emplacement of shallow-level rhyolitic laccoliths – A case study from the Halle Volcanic Complex, Germany. Journal of Petrology, 44, 833–49.CrossRefGoogle Scholar
Mora, C. F. & Kwan, A. K. H. (2000). Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cement and Concrete Research, 30, 351–8.CrossRefGoogle Scholar
Morishita, R. (1998). Statistical properties of ideal rock textures: Relationship between crystal size distribution and spatial correlation in minerals. Mathematical Geology, 30, 409–34.CrossRefGoogle Scholar
Morishita, R. & Obata, M. (1995). A new statistical description of the spatial distribution of minerals in rocks. Journal of Geology, 103, 232–40.CrossRefGoogle Scholar
Morse, S. A. (1969). The Kiglapait layered intrusion, Labrador. Geological Society of America, Memoir, 112, 204.Google Scholar
Morse, S. A. (1979). Kiglapait geochemistry, II. Petrography. Journal of Petrology, 20, 591–624.CrossRefGoogle Scholar
Muir, I. D. (1981). The 4-Axis Universal Stage. Chicago: Microscope Publications.Google Scholar
Mungall, J. & Su, S. (2005). Interfacial tension between sulfide and silicate liquids: Constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks. Earth and Planetary Science Letters, 234, 135–49.CrossRefGoogle Scholar
Murthy, D. N. P., Xie, M. & Jiang, R. (2004). Weibull Models. Wiley Series in Probability and Statistics. Hoboken NJ: John Wiley and Sons.Google Scholar
Naslund, H. R. & McBirney, A. R. (1996). Mechanisms of formation of igneous layering. In Cawthorn, R. G., ed., Layered Intrusions. Amsterdam: Elsevier, pp. 1–44.Google Scholar
Nemchin, A. A., Giannini, L. M., Bodorkos, S. & Olivier, N. H. S. (2001). Ostwald ripening as a possible mechanism for zircon overgrowth formation during anatexis: theoretical constraints, a numerical model, and its application to pelitic migmatites of the Tickalra Metamorphics, northwestern Australia. Geochimica et Cosmochimica Acta, 65, 2771–88.CrossRefGoogle Scholar
Nesse, W. D. (1986). Introduction to Optical Mineralogy. New York: Oxford University Press.Google Scholar
Nicolas, A. (1992). Kinematics in magmatic rocks with special reference to gabbros. Journal of Petrology, 33, 891–915.CrossRefGoogle Scholar
Nicolas, A. & Ildefonse, B. (1996). Flow mechanism and viscosity in basaltic magma chambers. Geophysical Research Letters, 23, 2013–16.CrossRefGoogle Scholar
Orford, J. D. & Whalley, W. B. (1983). The use of the fractal dimension to quantify the morphology of irregular-shaped particles. Sedimentology, 30, 655–68.CrossRefGoogle Scholar
Ortoleva, P. J. (1994). Geochemical Self-Organisation. New York: Oxford University Press.Google Scholar
Pagel, M. (2000). Cathodoluminescence in Geosciences. Berlin: Springer.CrossRefGoogle Scholar
Palmer, H. C. & MacDonald, W. D. (1999). Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations. Tectonophysics, 307, 207–18.CrossRefGoogle Scholar
Palmer, H. C. & MacDonald, W. D. (2002). The Northeast Nevada Volcanic Field: Magnetic properties and source implications. Journal of Geophysical Research-Solid Earth, 107, (B11), article number 2298.CrossRefGoogle Scholar
Pan, Y. (2001). Inherited correlation in crystal size distribution. Geology, 29, 227–30.2.0.CO;2>CrossRefGoogle Scholar
Pareschi, M., Pompilio, M. & Innocenti, F. (1990). Automated evaluation of spatial grain size distribution density from thin section images. Computers & Geosciences, 16, 1067–84.CrossRefGoogle Scholar
Park, H. H. & Yoon, D. N. (1985). Effect of dihedral angle on the morphology of grains in a matrix phase. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 16, 923–8.CrossRefGoogle Scholar
Parsons, I., ed., (1987). Origins of Igneous Layering. NATO ASI series. Series C, Mathematical and Physical Sciences. Vol. 196. Dordrecht: D. Reidel Pub. Co., Boston/Norwell, MA, USA: Kluwer Academic Publishers.CrossRefGoogle Scholar
Pearce, T. H. & Clark, A. H. (1989). Nomarski interference contrast observations of textural details in volcanic rocks. Geology, 17, 757–9.2.3.CO;2>CrossRefGoogle Scholar
Pearce, T. H., Russell, J. K. & Wolfson, I. (1987). Laser-interference and Nomarski interference imaging of zoning profiles in plagioclase phenocrysts from the May 18, 1980, eruption of Mount St. Helens, Washington. American Mineralogist, 72, 1131–43.Google Scholar
Perring, C. S., Barnes, S. J., Verrall, M. & Hill, R. E. T. (2004). Using automated digital image analysis to provide quantitative petrographic data on olivine-phyric basalts. Computers & Geosciences, 30, 183–95.CrossRefGoogle Scholar
Peterson, T. D. (1990). Petrology and genesis of natrocarbonatite. Contributions to Mineralogy and Petrology, 105, 143–55.CrossRefGoogle Scholar
Peterson, T. D. (1996). A refined technique for measuring crystal size distributions in thin section. Contributions to Mineralogy and Petrology, 124, 395–405.CrossRefGoogle Scholar
Petford, N., Davidson, G. & Miller, J. A. (2001). Investigation of the petrophysical properties of a porous sandstone sample using confocal scanning laser microscopy. Petroleum Geoscience, 7, 99–105.CrossRefGoogle Scholar
Petrik, I., Nabelek, P. I., Janak, M. & Plasienka, D. (2003). Conditions of formation and crystallization kinetics of highly oxidized pseudo tachylytes from the high Tatras (Slovakia). Journal of Petrology, 44, 901–27.CrossRefGoogle Scholar
Petruk, W. (1989). Image Analysis in Earth Sciences. Ottawa: Mineralogical Association of Canada.Google Scholar
Philpotts, A. R. & Dickson, L. D. (2000). The formation of plagioclase chains during convective transfer in basaltic magma. Nature, 406, 59–61.CrossRefGoogle ScholarPubMed
Philpotts, A. R. & Dickson, L. D. (2002). Millimeter-scale modal layering and the nature of the upper solidification zone in thick flood-basalt flows and other sheets of magma. Journal of Structural Geology, 24, 1171–7.CrossRefGoogle Scholar
Philpotts, A. R., Shi, J. Y. & Brustman, C. (1998). Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature, 395, 343–6.CrossRefGoogle Scholar
Philpotts, A. R., Brustman, C. M., Shi, J. Y., Carlson, W. D. & Denison, C. (1999). Plagioclase-chain networks in slowly cooled basaltic magma. American Mineralogist, 84, 1819–29.CrossRefGoogle Scholar
Pickering, G., Bull, J. M. & Sanderson, D. J. (1995). Sampling power-law distributions. Tectonophysics, 248, 1–20.CrossRefGoogle Scholar
Pirard, E. (2004). Multispectral imaging of ore minerals in optical microscopy. Mineralogical Magazine, 68, 323–33.CrossRefGoogle Scholar
Polacci, M., Cashman, K. V. & Kauahikaua, J. P. (1999). Textural characterization of the pahoehoe-a'a transition in Hawaiian basalt. Bulletin of Volcanology, 60, 595–609.CrossRefGoogle Scholar
Poland, M. P., Fink, J. H. & Tauxe, L. (2004). Patterns of magma flow in segmented silicic dikes at Summer Coon volcano, Colorado: AMS and thin section analysis. Earth and Planetary Science Letters, 219, 155–69.CrossRefGoogle Scholar
Prince, C. M., Ehrlich, R. & Anguy, Y. (1995). Analysis of spatial order in sandstones. 2. Grain clusters, packing flaws, and the small-scale structure of sandstones. Journal of Sedimentary Research Section A-Sedimentary Petrology and Processes, 65, 13–28.Google Scholar
Prior, D. J., Boyle, A. P., Brenker, F.et al. (1999). The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84, 1741–59.CrossRefGoogle Scholar
Prior, D. J., Wheeler, J., Peruzzo, L., Spiess, R. & Storey, C. (2002). Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies. Journal of Structural Geology, 24, 999–1011.CrossRefGoogle Scholar
Proussevitch, A. A. & Sahagian, D. L. (2001). Recognition and separation of discrete objects within complex 3D voxelized structures. Three-Dimensional Reconstruction, Modelling and Visualization of Geological Materials, 27, 441–54.Google Scholar
Pupin, J. P. (1980). Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207–20.CrossRefGoogle Scholar
Randle, V. & Caul, M. (1996). Representation of electron backscatter diffraction data. Materials Science and Technology, 12, 844–50.CrossRefGoogle Scholar
Randle, V. & Engler, O. (2000). Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. Reading, UK: Gordon and Breach Science Publishers.Google Scholar
Randolph, A. D. & Larson, M. A. (1971). Theory of Particulate Processes. New York: Academic Press.Google Scholar
Reed, S. J. B. (1996). Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge, New York: Cambridge University Press.Google Scholar
Reimann, C. & Filzmoser, P. (2000). Normal and lognormal data distribution in geochemistry; death of a myth; consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39, 1001–14.CrossRefGoogle Scholar
Resmini, R. G. & Marsh, B. D. (1995). Steady-state volcanism, paleoeffusion rates, and magma system volume inferred from plagioclase crystal size distributions in mafic lavas; Dome Mountain, Nevada. Journal of Volcanology and Geothermal Research, 68, 273–96.CrossRefGoogle Scholar
Riegger, O. & Vlack, L. (1960). Dihedral angle measurement. Metallurgical Society of the American Institute of Metallurgical Engineers Transactions, 218, 933–5.Google Scholar
Robin, P. Y. F. (2002). Determination of fabric and strain ellipsoids from measured sectional ellipses – theory. Journal of Structural Geology, 24, 531–44.CrossRefGoogle Scholar
Rochette, P., Aubourg, C. & Perrin, M. (1999). Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics, 307, 219–34.CrossRefGoogle Scholar
Rochette, P., Jackson, M. & Aubourg, C. (1992). Rock magnetism and the interpretation of anisotropy of magnetic-susceptibility. Reviews of Geophysics, 30, 209–26.CrossRefGoogle Scholar
Rodriguez-Navarro, A. B. & Romanek, C. S. (2002). Mineral fabrics analysis using a low-cost universal stage for X-ray diffractometry. European Journal of Mineralogy, 14, 987–92.CrossRefGoogle Scholar
Rogers, C. D. F., Dijkstra, T. A. & Smalley, I. J. (1994). Particle packing from an earth-science viewpoint. Earth-Science Reviews, 36, 59–82.CrossRefGoogle Scholar
Rombouts, L. (1995). Sampling and statistical evaluation of diamond deposits. Journal of Geochemical Exploration, 53, 351–67.CrossRefGoogle Scholar
Rosenberg, C. L. & Handy, M. R. (2005). Experimental deformation of partially melted granite revisited: implications for the continental crust. Journal of Metamorphic Geology, 23, 19–28.CrossRefGoogle Scholar
Ross, B. J., Fueten, F. & Yashkir, D. Y. (2001). Automatic mineral identification using genetic programming. Machine Vision and Applications, 13, 61–9.CrossRefGoogle Scholar
Royet, J.-P. (1991). Stereology: A method for analysing images. Progress in Neurobiology, 37, 433–74.CrossRefGoogle Scholar
Rubin, A. E. (2000). Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth-Science Reviews, 50, 3–27.CrossRefGoogle Scholar
Rubin, A. E. & Grossman, J. N. (1987). Size-frequency-distributions of EH3 chondrules. Meteoritics, 22, 237–51.CrossRefGoogle Scholar
Rudashevsky, N. S., Burakov, B. E., Lupal, S. D., Thalhammer, O. A. R. & Sainieidukat, B. (1995). Liberation of accessory minerals from various rock types by electric-pulse disintegration-method and application. Transactions of the Institution of Mining and Metallurgy Section C-Mineral Processing and Extractive Metallurgy, 104, C25–C29.Google Scholar
Russ, J. C. (1986). Practical Stereology. New York: Plenum Press.CrossRefGoogle Scholar
Russ, J. C. (1999). The Image Processing Handbook. Boca Raton, Florida, USA: CRC Press.Google Scholar
Rust, A. C. & Cashman, K. V. (2004). Permeability of vesicular silicic magma: inertial and hysteresis effects. Earth and Planetary Science Letters, 228, 93–107.CrossRefGoogle Scholar
Rust, A. C., Manga, M. & Cashman, K. V. (2003). Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations. Journal of Volcanology and Geothermal Research, 122, 111–32.CrossRefGoogle Scholar
Sahagian, D. L. & Maus, J. E. (1994). Basalt vesicularity as a measure of atmospheric-pressure and palaeoelevation. Nature, 372, 449–51.CrossRefGoogle Scholar
Sahagian, D. L. & Proussevitch, A. A. (1998). 3D particle size distributions from 2D observations; stereology for natural applications. Journal of Volcanology and Geothermal Research, 84, 173–96.CrossRefGoogle Scholar
Sahagian, D. L., Proussevitch, A. A. & Carlson, W. D. (2002a). Analysis of vesicular basalts and lava emplacement processes for application as a paleobarometer/paleoaltimeter. Journal of Geology, 110, 671–85.CrossRefGoogle Scholar
Sahagian, D. L., Proussevitch, A. A. & Carlson, W. L. (2002b). Timing of Colorado Plateau uplift: Initial constraints from vesicular basalt-derived paleoelevations. Geology, 30, 807–10.2.0.CO;2>CrossRefGoogle Scholar
Saiki, K. (1997). Morphology and simulation of solid state rounding process. Geophysical Research Letters, 24, 1519–22.CrossRefGoogle Scholar
Saiki, K., Laporte, D., Vielzeuf, D., Nakashima, S. & Boivin, P. (2003). Morphological analysis of olivine grains annealed in an iron-nickel matrix: Experimental constraints on the origin of pallasites and on the thermal history of their parent bodies. Meteoritics & Planetary Science, 38, 427–44.CrossRefGoogle Scholar
Saint-Blanquat, M. & Tikoff, B. (1997). Development of magmatic to solid-state fabrics during syntectonic emplacement of the Mono Creek granite, Sierra Nevada Batholith. In Bouchez, J. L., Hutton, D. H. W., & Stephens, W. E., eds., Granite: From Segregation of Melt to Emplacement Fabrics. Dordrecht: Kluwer Academic Publishers, pp. 231–52.CrossRefGoogle Scholar
Saltikov, S. A. (1967). The determination of the size distribution of particles in an opaque material from a measurement of the size distributions of their sections. In Elias, H., ed., Proceedings of the Second International Congress for Stereology. Berlin: Springer-Verlag, pp. 163–73.Google Scholar
Saltzer, R. L., Chatterjee, N. & Grove, T. L. (2001). The spatial distribution of garnets and pyroxenes in mantle peridotites: Pressure-temperature history of peridotites from the Kaapvaal craton. Journal of Petrology, 42, 2215–29.CrossRefGoogle Scholar
Sato, H. (1995). Textural difference between pahoehoe and a'a lavas of Izu-Oshima volcano, Japan; an experimental study on population density of plagioclase. Models of Magmatic Processes and Volcanic Eruptions, 66, 101–13.Google Scholar
Schafer, F. & Foley, S. F. (2002). The effect of crystal orientation on the wetting behaviour of silicate melts on the surfaces of spinel peridotite minerals. Contributions to Mineralogy and Petrology, 143, 254–61.Google Scholar
Schafer, W. (2002). Neutron diffraction applied to geological texture and stress analysis. European Journal of Mineralogy, 14, 263–89.CrossRefGoogle Scholar
Schmid, S. M., Casey, M. & Starkey, J. (1981). An illustration of the advantages of a complete texture analysis described by the orientation distribution function (ODF) using quartz pole figure data. Tectonophysics, 78, 101–17.CrossRefGoogle Scholar
Schwindinger, K. R. (1999). Particle dynamics and aggregation of crystals in a magma chamber with application to Kilauea Iki olivines. Journal of Volcanology and Geothermal Research, 88, 209–38.CrossRefGoogle Scholar
Schwindinger, K. R. & Anderson, A. T. (1989). Synneusis of Kilauea Iki olivines. Contributions to Mineralogy and Petrology, 103, 187–98.CrossRefGoogle Scholar
Scott, R. G. & Benn, K. (2001). Peak-ring rim collapse accommodated by impact melt-filled transfer faults, Sudbury impact structure, Canada. Geology, 29, 747–50.2.0.CO;2>CrossRefGoogle Scholar
Sempels, J.-M. (1978). Evidence for constant habit development of plagioclase crystals from igneous rocks. Canadian Mineralogist, 16, 257–63.Google Scholar
Shelley, D. (1985). Determining paleo-flow directions from groundmass fabrics in the Lyttelton radial dykes, New Zealand. Journal of Volcanology and Geothermal Research, 25, 69–79.CrossRefGoogle Scholar
Shin, H., Lindquist, W. B., Sahagian, D. L. & Song, S. R. (2005). Analysis of the vesicular structure of basalts. Computers & Geosciences, 31, 473–87.CrossRefGoogle Scholar
Shore, M. & Fowler, A. D. (1999). The origin of spinifex texture in komatiites. Nature, 397, 691–4.CrossRefGoogle Scholar
Smit, T. H., Schneider, E. & Odgaard, A. (1998). Star length distribution: a volume-based concept for the characterization of structural anisotropy. Journal of Microscopy-Oxford, 191, 249–57.CrossRefGoogle ScholarPubMed
Smith, C. S. (1948). Grains, phases and interfaces: an interpretation of microstructure. Transactions of the Metallurgical Society of the AIME, 175, 15–51.Google Scholar
Smith, C. S. (1964). Some elementary principles of polycrystalline microstructure. Metallurgical Review, 9, 1–48.Google Scholar
Smith, J. V. (2002). Structural analysis of flow-related textures in lavas. Earth-Science Reviews, 57, 279–97.CrossRefGoogle Scholar
Song, S. R., Jones, K. W., Lindquist, W. B., Dowd, B. A. & Sahagian, D. L. (2001). Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rocks. Bulletin of Volcanology, 63, 252–63.CrossRefGoogle Scholar
Sparks, R. S. J. (1978). Dynamics of bubble formation and growth in magmas – review and analysis. Journal of Volcanology and Geothermal Research, 3, 1–37.CrossRefGoogle Scholar
Sparks, R. S. J. (1997). Causes and consequences of pressurisation in lava dome eruptions. Earth and Planetary Science Letters, 150, 177–89.CrossRefGoogle Scholar
Spiess, R., Peruzzo, L., Prior, D. J. & Wheeler, J. (2001). Development of garnet porphyroblasts by multiple nucleation, coalescence and boundary misorientation-driven rotations. Journal of Metamorphic Geology, 19, 269–90.CrossRefGoogle Scholar
Stamatelopoulou-Seymour, K., Vlassopoulos, D., Pearce, T. H. & Rice, C. (1990). The record of magma chamber processes in plagioclase phenocrysts at Thera volcano, Aegean Volcanic Arc, Greece. Contributions to Mineralogy and Petrology, 104, 73–84.CrossRefGoogle Scholar
Stipp, M. & Tullis, J. (2003). The recrystallized grain size piezometer for quartz. Geophysical Research Letters, 30, article number 2088.CrossRefGoogle Scholar
Sturm, R. (2004). Imaging of growth banding of minerals using 2-stage sectioning: application to accessory zircon. Micron, 35, 681–4.CrossRefGoogle ScholarPubMed
Sunagawa, I. (1987a). Morphology of Crystals. Dordrecht: D. Reidel.Google Scholar
Sunagawa, I. (1987b). Morphology of minerals. In Sunagawa, I., ed., Morphology of Crystals. Dordrecht: D. Reidel, pp. 509–88.Google Scholar
Suteanu, C. & Kruhl, J. H. (2002). Investigation of heterogeneous scaling intervals exemplified by sutured quartz grain boundaries. Fractals-Complex Geometry Patterns and Scaling in Nature and Society, 10, 435–49.Google Scholar
Suteanu, C., Zugravescu, D. & Munteanu, F. (2000). Fractal approach of structuring by fragmentation. Pure and Applied Geophysics, 157, 539–57.CrossRefGoogle Scholar
Sutton, A. P. & Balluffi, R. W. (1996). Interfaces in Crystalline Materials. Oxford, UK: Oxford Science Publications.Google Scholar
Swan, A. R. H. & Sandilands, M. (1995). Introduction to Geological Data Analysis. Cambridge, MA, USA: Blackwell Science.Google Scholar
Syvitski, J. P. M. (1991). Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
Syvitski, J. P. M., Asprey, K. & Clattenberg, D. (1991). Principles, design, and calibration of settling tubes. In Syvitski, J. P. M., ed., Principles, Methods, and Application of Particle Size Analysis. New York: Cambridge University Press, pp. 45–63.CrossRefGoogle Scholar
Takahashi, M. & Nagahama, H. (2000). Fractal grain boundary migration. Fractals, 8, 189–94.CrossRefGoogle Scholar
Tarling, D. H. & Hrouda, F. (1993). The Magnetic Anisotropy of Rocks. London: Chapman & Hall.Google Scholar
Tarquini, S. & Armienti, P. (2001). Film color scanner as a new and cheap tool for image analysis in petrology. Image Analysis and Stereology, 20 (Suppl. 1), 567–72.Google Scholar
Taylor, L. (2000). Diamonds and their mineral inclusions, and what they tell us: A detailed pull-part of a diamondiferous eclogite. International Geology Review, 42, 959–83.CrossRefGoogle Scholar
Taylor, L. A., Nazarov, M. A., Shearer, C. K.et al. (2002). Martian meteorite Dhofar 019: A new shergottite. Meteoritics & Planetary Science, 37, 1107–28.CrossRefGoogle Scholar
Thomas, M. C., Wiltshire, R. J. & Williams, A. T. (1995). The use of Fourier descriptors in the classification of particle-shape. Sedimentology, 42, 635–45.CrossRefGoogle Scholar
Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L.et al. (2000). Elongated prismatic magnetite crystals in ALH84001 carbonate globules: Potential Martian magnetofossils. Geochimica et Cosmochimica Acta, 64, 4049–81.CrossRefGoogle ScholarPubMed
Thompson, S., Fueten, F. & Bockus, D. (2001). Mineral identification using artificial neural networks and the rotating polarizer stage. Computers & Geosciences, 27, 1081–9.CrossRefGoogle Scholar
Titkov, S. V., Saparin, G. V. & Obyden, S. K. (2002). Evolution of growth sectors in natural diamond crystals as revealed by cathodoluminescence topography. Geology of Ore Deposits, 44, 350–60.Google Scholar
Toramaru, A. (1989). Vesiculation process and bubble size distributions in ascending magmas with constant velocities. Journal of Geophysical Research, B, Solid Earth and Planets, 94, 17523–42.CrossRefGoogle Scholar
Toramaru, A. (1990). Measurement of bubble-size distributions in vesiculated rocks with implications for quantitative estimation of eruption processes. Journal of Volcanology and Geothermal Research, 43, 71–90.CrossRefGoogle Scholar
Treiman, A. H. (2003). Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: Inorganic, abiotic formation by shock and thermal metamorphism. Astrobiology, 3, 369–92.CrossRefGoogle ScholarPubMed
Trindade, R. I. F., Bouchez, J. L., Bolle, O.et al. (2001). Secondary fabrics revealed by remanence anisotropy: methodological study and examples from plutonic rocks. Geophysical Journal International, 147, 310–18.CrossRefGoogle Scholar
Tuffen, H. (1998). L'origine des cristaux dans le chambre magmatique de Santorin (Grèce). Clermont-Ferrand, France: Université Blaise-Pascal.
Turcotte, D. L. (1992). Fractals and Chaos in Geology and Geophysics. Cambridge, New York: Cambridge University Press.Google Scholar
Turner, S., George, R., Jerram, D. A., Carpenter, N. & Hawkesworth, C. (2003). Case studies of plagioclase growth and residence times in island arc lavas from Tonga and the Lesser Antilles, and a model to reconcile discordant age information. Earth and Planetary Science Letters, 214, 279–94.CrossRefGoogle Scholar
Underwood, E. E. (1970). Quantitative Stereology. Reading, MA: Addison-Wesley.Google Scholar
Berg, E. H., Meesters, A. G. C. A., Kenter, J. A. M. & Schlager, W. (2002). Automated separation of touching grains in digital images of thin sections∗1. Computers & Geosciences, 28, 179–90.CrossRefGoogle Scholar
Vance, J. A. (1969). On synneusis. Contributions to Mineralogy and Petrology, 24, 7–29.CrossRefGoogle Scholar
Vavra, G. (1993). A guide to quantitative morphology of accessory zircon. Chemical Geology, 110, 15–28.CrossRefGoogle Scholar
Ventura, G. (2001). The strain path and emplacement mechanism of lava flows: an example from Salina (southern Tyrrhenian Sea, Italy). Earth and Planetary Science Letters, 188, 229–40.CrossRefGoogle Scholar
Ventura, G., DeRosa, R., Colletta, E. & Mazzuoli, R. (1996). Deformation patterns in a high-viscosity lava flow inferred from the crystal preferred orientation and imbrication structures: An example from Salina (Aeolian Islands, southern Tyrrhenian Sea, Italy). Bulletin of Volcanology, 57, 555–62.CrossRefGoogle Scholar
Vernon, R. (1970). Comparative grain boundary studies of some basic and ultrabasic granulites, nodules and cumulates. Scottish Journal of Geology, 6, 337–51.CrossRefGoogle Scholar
Vernon, R. H. (1968). Microstructures of high-grade metamorphic rocks at Broken Hill, Australia. Journal of Petrology, 9, 1–22.CrossRefGoogle Scholar
Vernon, R. H. (1986). K-feldspar megacrysts in granites – phenocrysts not porphyroblasts. Earth-Science Reviews, 23, 1–63.CrossRefGoogle Scholar
Vernon, R. H. (2004). A Practical Guide to Rock Microstructure. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Verrecchia, E. P. (2003). Foreword: image analysis and morphometry of geological objects. Mathematical Geology, 35, 759–62.CrossRefGoogle Scholar
Vigneresse, J. L., Barbey, P. & Cuney, M. (1996). Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology, 37, 1579–1600.CrossRefGoogle Scholar
Voorhees, P. W. (1992). Ostwald ripening of two-phase mixtures. Annual Review of Materials Science, 22, 197–215.CrossRefGoogle Scholar
Wada, Y. (1992). Magma flow directions inferred from preferred orientations of phenocryst in a composite feeder dyke, Miyake-Jima, Japan. Journal of Volcanology and Geothermal Research, 49, 119–26.CrossRefGoogle Scholar
Waff, H. S. & Bulau, J. R. (1979). Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. Journal of Geophysical Research, 84, 6109–14.CrossRefGoogle Scholar
Wager, L. R. (1961). A note on the origin of ophitic texture in the chilled olivine gabbro of the Skaergaard intrusion. Geological Magazine, 98, 353–66.CrossRefGoogle Scholar
Wager, L. R. & Brown, G. M. (1968). Layered Igneous Rocks. Edinburgh; London: Oliver & Boyd.Google Scholar
Waters, C. & Boudreau, A. E. (1996). A re-evaluation of crystal size distribution in chromite cumulates. American Mineralogist, 81, 1452–9.CrossRefGoogle Scholar
Watson, E. B. & Brenan, J. M. (1987). Fluids in the lithosphere.1. experimentally-determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical-properties, and fluid inclusion formation. Earth and Planetary Science Letters, 85, 497–515.CrossRefGoogle Scholar
Wegner, M. & Christie, J. (1985). General chemical etchants for microstructures and defects in silicates. Physics and Chemistry of Minerals, 12, 90–2.CrossRefGoogle Scholar
Wenk, H. R. (2002). Texture and anisotropy. In Plastic Deformation of Minerals and Rocks. Reviews in Mineralogy & Geochemistry, 51. Washington DC: Mineralogical Society of America, pp. 291–329.Google Scholar
Wenk, H. R. (1985). Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis. Orlando FL: Academic Press.Google Scholar
Wenk, H. R. & Grigull, S. (2003). Synchrotron texture analysis with area detectors. Journal of Applied Crystallography, 36, 1040–9.CrossRefGoogle Scholar
Wenk, H. R. & Houtte, P. (2004). Texture and anisotropy. Reports on Progress in Physics, 67, 1367–428.CrossRefGoogle Scholar
Whitham, A. & Sparks, R. (1986). Pumice. Bulletin of Volcanology, 48, 209–23.CrossRefGoogle Scholar
Wilson, B., Dewers, T., Ze'ev, R. & Brune, J. (2005). Particle size and energetics of gouge from earthquake rupture zones. Nature, 434, 749–52.CrossRefGoogle ScholarPubMed
Wright, I. C., Gamble, J. A. & Shane, P. A. R. (2003). Submarine silicic volcanism of the Healy caldera, southern Kermadec arc (SW Pacific): I – volcanology and eruption mechanisms. Bulletin of Volcanology, 65, 15–29.Google Scholar
Wulff, G. (1901). Zur frage der Geschwindigkeit des Wachstums und der Auflosumg der Krystallflachen. Zeitschift für Kristallographie und Mineralogie, 34, 449–530.Google Scholar
Xie, Y. X., Wenk, H. R. & Matthies, S. (2003). Plagioclase preferred orientation by TOF neutron diffraction and SEM-EBSD. Tectonophysics, 370, 269–86.CrossRefGoogle Scholar
Yaouancq, G. & MacLeod, C. J. (2000). Petrofabric investigation of gabbros from the Oman ophiolite: comparison between AMS and rock fabric. Marine Geophysical Researches, 21, 289–305.CrossRefGoogle Scholar
Zeh, A. (2004). Crystal size distribution (CSD) and textural evolution of accessory apatite, titanite and allanite during four stages of metamorphism: an example from the Moine supergroup, Scotland. Journal of Petrology, 45, 2101–32.CrossRefGoogle Scholar
Zellmer, G., Turner, S. & Hawkesworth, C. (2000). Timescales of destructive plate margin magmatism; new insights from Santorini, Aegean volcanic arc. Earth and Planetary Science Letters, 174, 265–81.CrossRefGoogle Scholar
Zhou, Y., Starkey, J. & Mansinha, L. (2004a). Identification of mineral grains in a petrographic thin section using phi- and max-images. Mathematical Geology, 36, 781–801.CrossRefGoogle Scholar
Zhou, Y., Starkey, J. & Mansinha, L. (2004b). Segmentation of petrographic images by integrating edge detection and region growing. Computers & Geosciences, 30, 817–31.CrossRefGoogle Scholar
Zieg, M. J. & Marsh, B. D. (2002). Crystal size distributions and scaling laws in the quantification of igneous textures. Journal of Petrology, 43, 85–101.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Michael Denis Higgins, Université du Québec à Chicoutimi, Québec
  • Book: Quantitative Textural Measurements in Igneous and Metamorphic Petrology
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535574.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Michael Denis Higgins, Université du Québec à Chicoutimi, Québec
  • Book: Quantitative Textural Measurements in Igneous and Metamorphic Petrology
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535574.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Michael Denis Higgins, Université du Québec à Chicoutimi, Québec
  • Book: Quantitative Textural Measurements in Igneous and Metamorphic Petrology
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535574.009
Available formats
×