Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-16T03:24:30.758Z Has data issue: false hasContentIssue false

8 - Hydrodynamics

Published online by Cambridge University Press:  05 June 2012

P. M. Chaikin
Affiliation:
Princeton University, New Jersey
T. C. Lubensky
Affiliation:
University of Pennsylvania
Get access

Summary

Thermodynamics provides a description of the equilibrium states of systems with many degrees of freedom. It focuses on a small number of macroscopic degrees of freedom, such as internal energy, temperature, number density, or magnetization, needed to characterize a homogeneous equilibrium state. In systems with a broken continuous symmetry, thermodynamics can be extended to include slowly varying elastic degrees of freedom and to provide descriptions of spatially nonuniform states produced by boundary conditions or external fields. Since the wavelengths of the elastic distortions are long compared to any microscopic length, the departure from ideal homogeneous equilibrium is small. In this chapter, we will develop equations governing dynamical disturbances in which the departure from ideal homogeneous equilibrium of each point in space is small at all times.

Conserved and broken-symmetry variables

Thermodynamic equilibrium is produced and maintained by collisions between particles or elementary excitations that occur at a characteristic time interval τ. In classical fluids, τ is of order 10−10 to 10−14 seconds. In low-temperature solids or in quantum liquids, τ can be quite large, diverging as some inverse power of the temperature T. The mean distance λ between collisions (mean free path) of particles or excitations is a characteristic velocity v times τ. In fluids, v is determined by the kinetic energy, v ~ (T/m)½, where m is a mass. In solids, v is typically a sound velocity. Imagine now a disturbance from the ideal equilibrium state that varies periodically in time and space with frequency ω and wave number q.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Hydrodynamics
  • P. M. Chaikin, Princeton University, New Jersey, T. C. Lubensky, University of Pennsylvania
  • Book: Principles of Condensed Matter Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813467.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Hydrodynamics
  • P. M. Chaikin, Princeton University, New Jersey, T. C. Lubensky, University of Pennsylvania
  • Book: Principles of Condensed Matter Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813467.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Hydrodynamics
  • P. M. Chaikin, Princeton University, New Jersey, T. C. Lubensky, University of Pennsylvania
  • Book: Principles of Condensed Matter Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813467.009
Available formats
×