Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-25T22:52:58.396Z Has data issue: false hasContentIssue false

10 - Viscoelasticity in Processing Flows

Published online by Cambridge University Press:  05 June 2012

Morton M. Denn
Affiliation:
City College, City University of New York
Get access

Summary

Introduction

Viscoelasticity will clearly have a large effect in some processing operations and little or none in others, and we require a way to discriminate between these cases. One clue follows from the linear viscoelastic experiments shown in Figures 9.2 and 9.3 and the accompanying spectral description in Equations 9.11a–b. The entangled network is able to relax at low frequencies, so the elastic contribution to the stress is negligible and the deformation is mostly dissipative (G′ ‎ 0). The stress at high frequencies cannot relax, so dissipation is negligible and the deformation is recoverable (η′ ‎ 0). The transition between these two extremes is sharp for a liquid with a single Maxwell mode and occurs in the neighborhood of λω ~ 1.ω-1 is the characteristic time for the oscillatory deformation, so we may think of the two limiting cases as representing processes that are slow and fast, respectively, relative to the characteristic time of the fluid. The transition is murkier for most polymer melts, where there are many dynamical modes, but there will be some relaxation time – a mean value like that given by Equation 9.20 or the longest relaxation time in the spectrum – such that the same criterion can be usefully applied. The ratio of the characteristic time of the fluid to the characteristic time of the process is known as the Deborah number and is usually denoted De. The time scale for the process is usually the residence time.

Type
Chapter
Information
Polymer Melt Processing
Foundations in Fluid Mechanics and Heat Transfer
, pp. 153 - 174
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Keunings, R. “Simulation of Viscoelastic Fluid Flow,” in Tucker, III C. L., Ed., Fundamentals of Computer Modeling for Polymer Processing, Hanser, Munich, 1989, pp. 403ff.Google Scholar
Baaijens, F. P. T., J. Non-Newtonian Fluid Mech., 79, 361 (1998).CrossRef
Owens, R. G., and Phillips, T. N., Computational Rheology, Imperial College Press, London, 2002.CrossRefGoogle Scholar
Keunings, R., “Finite Element Methods for Integral Viscoelastic Fluids,” in Walters, K., Ed., Annual Rheology Reviews, British Society of Rheology, London, 2002.Google Scholar
Agassant, J. F., Int. Polym. Proc., XVII, 3 (2002).CrossRef
Tanner, R. I., Engineering Rheology, 2nd ed., Oxford, New York, 2000, pp. 418ff.Google Scholar
Yousefi, A.-M., Collins, P., Chang, S., and DiRaddo, R. W., Polym. Eng. Sci., 47, 1 (2007).CrossRef
Debbaut, B., Homerin, O., and Jivraj, N., Polym. Eng. Sci., 39, 1812 (1999).CrossRef
Denn, M. M., “Fibre Spinning,” in Pearson, J. R. A. and Richardson, S. M., Eds., Computational Analysis of Polymer Processing, Applied Science, London, 1983, pp. 179ff.CrossRefGoogle Scholar
Devereux, B. M., and Denn, M. M., Ind. Eng. Chem. Res., 33, 2384 (1994).CrossRef
Doufas, A. K., and McHugh, A. J., J. Rheol., 45, 403 and 855 (2001).CrossRef
Shrinkhande, P., Kohler, W. H., and McHugh, A. J., J. Appl. Polym. Sci., 100, 3240 (2006).CrossRef
Kohler, W. H., and McHugh, A. J., J. Rheol., 51, 721 (2007).CrossRef
Kannan, K., Rao, I. J., and Rajagopal, K. R., J. Rheol., 46, 977 (2002).CrossRef
Shin, D. M., Lee, J. S., Jung, H. W., and Hyun, J. C., Rheol. Acta, 45, 575 (2006).CrossRef
Pearson, J. R. A., Mechanics of Polymer Processing, Elsevier Applied Science Publishers, London, 1985;Google Scholar
Petrie, C. J. S., “Film Blowing, Blow Moulding, and Thermoforming,” in Pearson, J. R. A. and Richardson, S. M., Eds., Computational Analysis of Polymer Processing, Applied Science Publishers, London, 1983, pp. 217ff.CrossRefGoogle Scholar
Cain, J. J., and Denn, M. M., Polym. Eng. Sci., 28, 1527 (1988).CrossRef
Shin, D. M., Lee, J. S., Jung, H. W., and Hyun, J. C., J. Rheol., 51, 605 (2007).CrossRef
Housiadis, K. D., Klidis, G., and Tsamopoulos, J., J. Non-Newtonian Fluid Mech., 141, 193 (2007).CrossRef
André, J.-M., Modelisation Thermomécanique et Structurale du Soufflage de Gaine de Polyéthylènes, Thèse, Ecole Nationale Supérieure de Physique de Grenoble, 1999,
André, J.-M., Demay, Y., and Agassant, J.-F., C. R. Acad. Sci. Paris, 325, Ser. II, 621 (1997).
André, J.-M., Agassant, J.-F., Demay, Y., Haudin, J.-M., and Monasse, B., Int. J. Forming Proc., 1, 187 (1998).
Muslet, I. A., and Kamal, M. R., J. Rheol., 48, 525 (2004).CrossRef
Henrichsen, L. K., and McHugh, A. J., Int. Polym. Proc., XXII, 179 (2007).CrossRef
White, J. L., Appl. Polym. Symp., 20, 155 (1973).
Petrie, C. J. S., and Denn, M. M., AIChE J., 22, 209 (1976).CrossRef
Boger, D. V., and Walters, K., Rheological Phenomena in Focus, Elsevier, Amsterdam, 1993.Google Scholar
Verbeeten, W. M. H., Peters, G. W. M., and Baaijens, F. P. T., J. Non-Newtonian Fluid Mech., 117, 73 (2004).CrossRef
Mitsoulis, E., Hatzikiriakos, S. G., Christodoulou, K., and Vlassopoulos, D., Rheol. Acta, 37, 438 (1998).CrossRef
Rajagopalan, D.,Rheol. Acta, 39, 138 (2000).CrossRef
Baaijens, F. P. T., Selen, S. H. A., Baaijens, H. P. W., Peters, G. W. M., and Meier, H. E. H., J. Non-Newtonian Fluid Mech., 68, 173 (1997).CrossRef
Baaijens, F. P. T., and Peters, G. W. M., J. Non-Newtonian Fluid Mech., 68, 205 (1997).CrossRef
Dooley, J., Viscoelastic Flow Effects in Multilayer Polymer Coextrusion, Ph.D. dissertation, Technical University of Eindhoven, the Netherlands, 2002.Google Scholar
Debbaut, B., Avalosse, T., Dooley, J., and Hughes, K., J. Non-Newtonian Fluid Mech., 69, 255 (1997).CrossRef
Debbaut, B., and Dooley, J., J. Rheol., 43, 1525 (1999).CrossRef
Bousfield, D. W., Keunings, R., Marrucci, G., and Denn, M. M., J. Non-Newtonian Fluid Mech., 21, 79 (1986).CrossRef
Langouche, F., and Debbaut, B., Rheol. Acta, 38, 48 (1999).CrossRef
Debbaut, B., J. Non-Newtonian Fluid Mech., 98, 15 (2001).CrossRef
Lee, K., Mackley, M. R., McLeish, T. C. B., Nicholson, T. M., and Harlen, O. G., J. Rheol., 45, 1261 (2001).CrossRef
Os, R. G. M., and Phillips, T. N., J. Non-Newtonian Fluid Mech., 129, 142 (2005).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×