Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-25T22:39:31.575Z Has data issue: false hasContentIssue false

1 - Polymer Processing

Published online by Cambridge University Press:  05 June 2012

Morton M. Denn
Affiliation:
City College, City University of New York
Get access

Summary

Introduction

Polymeric materials – often called plastics in popular usage – are ubiquitous in modern life. Applications range from film to textile fibers to complex electronic interconnects to structural units in automobiles and airplanes to orthopedic implants. Polymers are giant molecules, consisting of hundreds or thousands of connected monomers, or basic chemical units; a polyethylene molecule, for example, is simply a chain of covalently bonded carbon atoms, each carbon containing two hydrogen atoms to complete the four valence sites. The polyethylene used to manufacture plastic film typically has an average molecular weight (called the number-average molecular weight, denoted Mn) of about 29,000, or about 2,000 –CH2– units, each with a molecular weight of 14. The symbol “–” on each side of the CH2 denotes a single covalent bond with the adjacent carbon atom. (The monomer is actually ethylene, CH2=CH2, where “=” denotes a double bond between the carbons that opens during the polymerization process, and a single “mer” is –CH2–CH2–; hence, the molecular weight of the monomer is 28 and the degree of polymerization is about 1,000.) The ultra-high molecular weight polyethylene used in artificial hips and other prosthetic devices has about 36,000 –CH2– units. Polystyrene is also a chain of covalently bonded carbon atoms, but one hydrogen on every second carbon is replaced with a phenyl (benzene) ring. Two or more monomers might be polymerized together to form a copolymer, appearing on the chain in either a regular or random sequence.

Type
Chapter
Information
Polymer Melt Processing
Foundations in Fluid Mechanics and Heat Transfer
, pp. 1 - 17
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Grossberg, A. Yu., and Khokhlov, A. R., Giant Molecules, Academic Press, San Diego, 1997Google Scholar
Graessley, W. W., Polymeric Liquids and Networks: Structure and Properties, Garland Science, New York, 2004.Google Scholar
Rubinstein, M., and Colby, R. H., Polymer Physics, Oxford University Press, New York, 2003.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Polymer Processing
  • Morton M. Denn, City College, City University of New York
  • Book: Polymer Melt Processing
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813177.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Polymer Processing
  • Morton M. Denn, City College, City University of New York
  • Book: Polymer Melt Processing
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813177.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Polymer Processing
  • Morton M. Denn, City College, City University of New York
  • Book: Polymer Melt Processing
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511813177.002
Available formats
×