Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-23T21:48:02.435Z Has data issue: false hasContentIssue false

11 - Providing plant foods for natural enemies in farming systems: balancing practicalities and theory

Published online by Cambridge University Press:  15 December 2009

G. M. Gurr
Affiliation:
Faculty of Rural Management University of Sydney Australia
S. D. Wratten
Affiliation:
Soil, Plant and Ecological Sciences Division Lincoln University New Zealand
J. Tylianakis
Affiliation:
Soil, Plant and Ecological Sciences Division Lincoln University New Zealand
J. Kean
Affiliation:
Biocontrol and Biosecurity group AgResearch Lincoln New Zealand
M. Keller
Affiliation:
School of Agriculture and Wine Adelaide University Australia
F. L. Wäckers
Affiliation:
Netherlands Institute of Ecology
P. C. J. van Rijn
Affiliation:
Netherlands Institute of Ecology
J. Bruin
Affiliation:
Universiteit van Amsterdam
Get access

Summary

Introduction

The need for a theoretical foundation to biological control has often been emphasized (Waage 1990; DeBach and Rosen 1991; Ehler 1994; Sheehan 1994; Barbosa 1998; Gurr et al. 1998; Wratten et al. 1998; Berryman 1999; Hawkins and Cornell 1999; Landis et al. 2000). Enhancement of natural enemy efficacy with floral resources provides a perfect opportunity for this kind of input; however, a divide exists between ecological principles and the needs of practical agriculture. In order for advances in theory to be utilized, protocols based on both ecology and agricultural realism are needed. Partial information, based on anecdote, may lead to the accidental introduction of noxious weeds, and the enhancement of pest populations (Baggen and Gurr 1998) or higher-order predators/hyperparasitoids (Stephens et al. 1998). Thus the introduction of non-crop plants as nectar and pollen sources has the potential to cause harm as well as to provide benefits (see also Wilkinson and Landis, Chapter 10). Practical guidelines for employing plant foods in farming systems must be based on sound theoretical and empirical foundations, yet be easily integrated into agricultural and horticultural practice.

We review the ways in which researchers, as well as agronomists and farmers, have attempted to provide plant foods to natural enemies of pests. We discuss the various approaches to the use of flowering plants, and draw a distinction between “shotgun” and “directed” approaches.

Type
Chapter
Information
Plant-Provided Food for Carnivorous Insects
A Protective Mutualism and its Applications
, pp. 326 - 347
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, D. R. 1944. Aphidius granarus, Marsh., in relation to its control of Myzus kaltenbachi, Schout. Bulletin of Entomological Research 35: 257–270.CrossRefGoogle Scholar
Ashley, T. R. and Gonzalez, D.. 1974. Effect of various food substances on longevity and fecundity of Trichogramma. Environmental Entomology 3: 169–171.CrossRefGoogle Scholar
Baggen, L. R. and Gurr, G. M.. 1998. The influence of food on Copidosoma koehleri (Hymenoptera: Encyrtidae), and the use of flowering plants as a habitat management tool to enhance biological control of potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Biological Control 11: 9–17.CrossRefGoogle Scholar
Baggen, L. R., Gurr, G. M., and Meats, A.. 1999. Flowers in tri-trophic systems: mechanisms allowing selective exploitation by insect natural enemies for conservation biological control. Entomologia Experimentalis et Applicata 91: 155–161.CrossRefGoogle Scholar
Baggen, L. R., G. M. Gurr, and A. Meats. 2000. Field observations on selective food plants in habitat manipulation for biological control of potato moth by Copidosoma koehleri Blanchard (Hymenoptera: Encyrtidae). In Austin, A. D. and Dowton, M. (eds.) Hymenoptera: Evolution, Biodiversity and Biological Control. Collingwood, Australia: CSIRO, pp. 388–395.Google Scholar
Balmelli, L., Nentwig, W., and Airoldi, J. P.. 1999. Food preferences of the common vole Microtus arvalis in the agricultural landscape with regard to nutritional components of plants. Zeitschrift für Saugetierkunde 64: 154–168. (In German)Google Scholar
Barbosa, P. (ed.) 1998. Conservation Biological Control. San Diego, CA: Academic Press.Google Scholar
Beddington, J. R., Free, C. A., and Lawton, J. H.. 1978. Characteristics of successful natural enemies in models of biological control of insect pests. Nature 273: 513–519.CrossRefGoogle ScholarPubMed
Begum, M., Gurr, G. M., and Wratten, S. D., 2004a. Flower colour affects tri-trophic biocontrol interactions. Biological Control 30: 584–590.CrossRefGoogle Scholar
Begum, M., Gurr, G. M., Wratten, S. D.Hedberg, P., and Nicol, H. I.. 2004b. The effect of floral nectar on the grapevine leafroller parasitoid, Trichogramma carverae. International Journal of Ecology and Envrionmental Sciences 30: 3–12.Google Scholar
Berndt, L. A., Wratten, S. D., and Hassan, P. G.. 2002. Effects of buckwheat flowers on leafroller (Lepidoptera: Tortricidae) parasitoids in a New Zealand vineyard. Agricultural and Forest Entomology 4: 39–45.CrossRefGoogle Scholar
Berryman, A. A. 1999. The theoretical foundations of biological control. In Hawkins, B. A. and Cornell, H. V. (eds.) Theoretical Approaches to Biological Control. Cambridge, UK: Cambridge University Press, pp. 3–21.CrossRefGoogle Scholar
Bowie, M. H., Gurr, G. M., Hossain, Z., Baggen, L. R., and Frampton, C. M.. 1999. Effects of distance from field edge on aphidophagous insects in a wheat crop and observations on trap design and placement. International Journal of Pest Management 45: 69–73.CrossRefGoogle Scholar
Bowie, M. H., Wratten, S. D., and White, A. J.. 1995. Agronomy and phenology of “companion plants” of potential for enhancement of insect biological control. New Zealand Journal of Crop and Horticultural Science 23: 423–427.CrossRefGoogle Scholar
Bugg, R. L. and Waddington, C.. 1994. Using cover crops to manage arthropod pests of orchards: a review. Agriculture Ecosystems and Environment 50: 11–28.CrossRefGoogle Scholar
Bugg, R. L., Dutcher, J. D., and McNeill, P. J.. 1991. Cool-season cover crops in the pecan orchard understory: effects on Coccinellidae (Coleoptera) and pecan aphids (Homoptera: Aphididae). Biological Control 1: 8–15.CrossRefGoogle Scholar
Chaney, W. E. 1998. Biological control of aphids in lettuce using in-field insectaries. In Pickett, C. H. and Bugg, R. L. (eds.) Enhancing Biological Control: Habitat Management to Promote Natural Enemies of Agricultural Pests. Berkeley, CA: University of California Press, pp. 73–83.Google Scholar
Cheesman, O. D. 1998. The impact of some field boundary management practices on the development of Dipsacus fullonum L. flowering stems and implications for conservation. Agriculture, Ecosystems and Environment 68: 41–49.CrossRefGoogle Scholar
Colley, M. R. and Luna, J. M.. 2000. Relative attractiveness of potential beneficial insectary plants to aphidophagous hoverflies (Diptera: Syrphidae). Environmental Entomology 29: 1054–1059.CrossRefGoogle Scholar
Costello, M. J., and Altieri, M. A.. 1995. Abundance, growth-rate and parasitism of Brevicoryne brassicae and Myzus persicae (Homoptera, Aphididae) on broccoli growing in living mulches. Agriculture, Ecosystems and Environment 52: 187–196.CrossRefGoogle Scholar
Cottrell, T. E. and Yeargan, K. V.. 1998. Effect of pollen on Coleomegilla maculata (Coleoptera: Coccinellidae) population density, predation, and cannibalism in sweet corn. Environmental Entomology 27: 1402–1410.CrossRefGoogle Scholar
Dale, V. H., O'Neill, R. V., Southworth, F., and Pedlowski, M.. 1994. Modeling effects of land management in the Brazilian Amazonian settlement of Rondonia. Conservation Biology 8: 196–206.CrossRefGoogle Scholar
DeBach, P. and Rosen, D.. 1991. Biological Control by Natural Enemies, 2nd edn. Cambridge, UK: Cambridge University Press.Google Scholar
Doncaster, C. P., Micol, T., and Jensen, S. P.. 1996. Determining the minimum habitat requirements in theory and practice. Oikos 75: 335–339.CrossRefGoogle Scholar
Dyer, L. E. and Landis, D. A.. 1996. Effects of habitat, temperature, and sugar availability on longevity of Eriborus terebrans (Hymenoptera: Ichneumonidae). Environmental Entomology 25: 1192–1201.CrossRefGoogle Scholar
Ehler, L. E. 1994. Parasitoid communities, parasitoid guilds, and biological control. In Hawkins, B. A. and Sheehan, W. (eds.) Parasitoid Community Ecology. Oxford, UK: Oxford University Press, pp. 418–436.Google Scholar
Ehler, L. E. and Hall, R. W.. 1982. Evidence for competitive exclusion of introduced natural enemies in biological control. Environmental Entomology 11: 1–4.CrossRefGoogle Scholar
Gilbert, F. S. 1985. Ecomorphological relationships in hoverflies (Diptera: Syrphidae). Proceedings of the Royal Society of London Series B 224: 91–95.CrossRefGoogle Scholar
Godfray, H. C. J. and Waage, J. K.. 1991. Predictive modelling in biological control: the mango mealy bug (Rastrococcus invadens) and its parasitoid. Journal of Applied Ecology 28: 434–453.CrossRefGoogle Scholar
Goller, E., Nunnenmacher, L., and Goldbach, H. E.. 1997. Faba beans as a cover crop in organically grown hops: influence on aphids and aphid antagonists. Biological Agriculture and Horticulture 15: 279–284.CrossRefGoogle Scholar
Gorman, M. L. and Reynolds, P.. 1993. The impact of land-use change on voles and raptors. Mammal Review 23: 121–126.CrossRefGoogle Scholar
Grossman, J. and Quarles, W.. 1993. Strip intercropping for biological control. The IPM Practitioner 15: 1–11.Google Scholar
Gurr, G. M., H. F. Van Emden, and S. D. Wratten. 1998. Habitat manipulation and natural enemy efficiency: implications for the control of pests. In Barbosa, P. (ed.) Conservation Biological Control. San Diego, CA: Academic Press, pp. 155–183.Google Scholar
Gurr, G. M. and Wratten, S. D.. 1999. “Integrated biological control”: a proposal for enhancing success in biological control. International Journal of Pest Management 45: 81–84.CrossRefGoogle Scholar
Gurr, G. M. and S. D. Wratten. 2000. Preface. In Gurr, G. M. and Wratten, S. D. (eds.) Biological Control: Measures of Success. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 1–3.CrossRefGoogle Scholar
Gurr, G. M., Wratten, S. D., and Altien, M. A. (eds.). 2004. Ecological Engineering: Advances in Habitat Management for Arthropods. Melbourne, Australia: CSIRO Publishing.Google Scholar
Gurr, G. M., S. D. Wratten, and P. Barbosa. 2000. Success in conservation biological control of arthropods. In Gurr, G. M. and Wratten, S. D. (eds.) Biological Control: Measures of Success. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 105–132.CrossRefGoogle Scholar
Gurr, G. M., Wratten, S. D., and Luna, J.. 2002. Multi-function agricultural biodiversity: pest management and other benefits. Basic and Applied Ecology 4: 107–116.CrossRefGoogle Scholar
Harmon, J. P., Ives, A. R., Losey, J. E., Olson, A. C., and Rauwald, K. S.. 2000. Coleomegilla maculata (Coleoptera: Coccinellidae) predation on pea aphids promoted by proximity to dandelions. Oecologia 125: 543–548.CrossRefGoogle ScholarPubMed
Hassell, M. P. 1980. Foraging strategies, population models and biological control: a case study. Journal of Animal Ecology 49: 603–628.CrossRefGoogle Scholar
Hawkins, B. A. 1992. Parasitoid–host food webs and donor control. Oikos 65: 159–162.CrossRefGoogle Scholar
Hawkins, B. A. and Cornell, H. V. (eds.). 1999. Theoretical Approaches to Biological Control. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Hawkins, B. A., Mills, N. J., Jervis, M. A., and Price, P. W.. 1999. Is the biological control of insects a natural phenomenon?Oikos 86: 493–506.CrossRefGoogle Scholar
Heimpel, G. E., Rosenheim, J. A., and Kattari, D.. 1997. Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus. Entomologia Experimentalis et Applicata 83: 305–315.CrossRefGoogle Scholar
Hickman, J. M. and Wratten, S. D.. 1996. Use of Phacelia tanacetifolia strips to enhance biological control of aphids by hoverfly larvae in cereal fields. Journal of Economic Entomology 89: 832–840.CrossRefGoogle Scholar
Hickman, J. M., Lövei, G. L., and Wratten, S. D.. 1995. Pollen feeding by adults of the hoverfly Melanostoma fasciatum (Diptera: Syrphidae). New Zealand Journal of Zoology 22: 387–392.CrossRefGoogle Scholar
Hopper, K. R. 2001. Research needs concerning non-target impacts of biological control introductions. In Wajnberg, E., Scott, J. K., and Quimby, P. C. (eds.) Evaluating Indirect Ecological Effects of Biological Control. Wallingford, UK: CAB International, pp. 39–56.Google Scholar
Horn, D. J. 1981. Effect of weedy backgrounds on colonization of collards by green peach aphid, Myzus persicae, and its major predators. Environmental Entomology 10: 285–289.CrossRefGoogle Scholar
Horton, D. R., Broers, D. A., Lavis, R. R., et al. 2003. Effects of moving frequency on densities of natural enemies in three Pacific Northwest pear orchards. Entomologia Experimentalis et Applicata 106: 135–145.CrossRefGoogle Scholar
Hossain, Z., Gurr, G. M., and Wratten, S. D.. 1999. Effects of harvest on survival and dispersal of insect predators in hay lucerne. Biological Agriculture and Horticulture 17: 339–348.CrossRefGoogle Scholar
Hossain, Z., Gurr, G. M., and Wratten, S. D. 2002. Habitat manipulation in lucerne (Medicago sativa L.): arthropod population dynamics in harvested and “refuge” crop strips. Journal of Applied Ecology 39: 445–454.CrossRefGoogle Scholar
Howarth, F. G. 2000. Non-target effects of biological control agents. In Gurr, G. M. and Wratten, S. D. (eds.) Biological Control: Measures of Success. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 369–404.CrossRefGoogle Scholar
Hulshof, J. and Jurchenko, O.. 2000. Orius laevigatus in a choice situation: thrips or pollen. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 65: 351–358.Google Scholar
Idris, A. B. and Grafius, E.. 1997. Nectar-collecting behaviour of Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Plutellidae). Biological Control 26: 114–120.Google Scholar
Irvin, N. A., S. D. Wratten, and F. M. Frampton. 2000. Understorey management for the enhancement of the leafroller parasitoid Dolichogenidea tasmanica (Cameron) in orchards at Canterbury, New Zealand. In Austin, A. D. and Dowton, M. (eds.) Hymenoptera: Evolution, Biodiversity and Biological Control. Collingwood, Australia: CSIRO, pp. 396–403.Google Scholar
Jacob, H. S. and Evans, E. W.. 2000. Influence of carbohydrate foods and mating on longevity of the parasitoid Bathyplectes curculionis (Hymenoptera: Ichneumonidae). Environmental Entomology 29: 1088–1095.CrossRefGoogle Scholar
Janssen, A., Pallini, A., Venzon, M., and Sabelis, M. W.. 1998. Behaviour and indirect interactions in food webs of plant-inhabiting arthropods. Experimental and Applied Acarology 22: 497–521.CrossRefGoogle Scholar
Jervis, M. A., Kidd, N. A. C., Fitton, M. G., Huddleston, T., and Dawah, H. A.. 1993. Flower-visiting by hymenopteran parasitoids. Journal of Natural History 27: 67–105.CrossRefGoogle Scholar
Jervis, M. A., J. C. Lee, and G. E. Heimpel. 2004. Conservation biological control using arthropod predators and parasitoids: the role of behavioural and life-history studies. In Gurr, G. M., Wratten, S. D., and Altieri, M. A. (eds.) Ecological Engineering: Advances in Habitat Manipulation for Arthropods. Melboune, Australia: CSIRO Publishing, pp. 65–100.Google Scholar
Johanowicz, D. L. and Mitchell, E. R.. 2000. Effects of sweet alyssum flowers on the longevity of the parasitoid wasps Cotesia marginiventris (Hymenoptera: Braconidae) and Diadegma insulare (Hymenoptera: Ichneumonidae). Florida Entomologist 83: 41–47.CrossRefGoogle Scholar
Kareiva, P. 1996. Contributions of ecology to biological control. Ecology 77: 1963–1964.CrossRefGoogle Scholar
Kean, J. M. and Barlow, N. D.. 2001. A spatial model for the successful biological control of Sitona discoideus by Microctonus aethiopoides. Journal of Applied Ecology 38: 162–169.Google Scholar
Kean, J. M., Wratten, S. D., Tylianakis, J., and Barlow, N. D.. 2003. The population consequences of natural enemy enhancement, and implications for conservation biological control. Ecology Letters 6: 604–612.CrossRefGoogle Scholar
Kruess, A. and Tscharntke, T.. 1994. Habitat fragmentation, species loss, and biological control. Science 264: 1581–1584.CrossRefGoogle ScholarPubMed
Kruess, A. and Tscharntke, T.. 2002. Contrasting responses of plant and insect diversity to variation in grazing intensity. Biological Conservation 106: 293–302.CrossRefGoogle Scholar
Kuiper, J. 1997. Organic mixed farms in the landscape of a brook valley: how can a co-operative of organic mixed farms contribute to ecological and aesthetic qualities of a landscape?Agriculture, Ecosystems and Environment 63: 121–132.CrossRefGoogle Scholar
Landis, D. A., Wratten, S. D., and Gurr, G. M.. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology 45: 175–201.CrossRefGoogle ScholarPubMed
Lavandero, B., S. D. Wratten, and J. Tylianakis. 2004. Marking and tracking techniques for insect predators and parasitoids in ecological engineering. In Gurr, G. M., Wratten, S. D., and Altieri, M. A. (eds.) Ecological Engineering: Advances in Habitat Manipulation for Arthropods. Melbourne, Australia: CSIRO Publishing, pp. 117–132.Google Scholar
Lewis, W. J., Stapel, J. O., Cortesero, A. M., and Takasu, K.. 1998. Understanding how parasitoids balance food and host needs: importance to biological control. Biological Control 11: 175–183.CrossRefGoogle Scholar
Liang, W. and Huang, M.. 1994. Influence of citrus orchard ground cover plants on arthropod communities in China: a review. Agriculture, Ecosystems and Environment 50: 29–37.CrossRefGoogle Scholar
Lonsdale, W. M., D. T. Briese, and J. M. Cullen. 2001. Risk analysis and weed biological control. In Wajnberg, E., Scott, J. K., and Quimby, P. C. (eds.) Evaluating Indirect Ecological Effects of Biological Control. Wallingford, UK: CAB International, pp. 185–210.Google Scholar
Lövei, G. L., D. McDougall, G. Bramley, D. J. Hodgson, and S. D. Wratten. 1992. Floral resources for natural enemies: the effect of Phacelia tanacetifolia (Hydrophyllaceae) on within-field distribution of hoverflies (Diptera: Syrphidae). Proc. 45th New Zealand Plant Protection Conference, pp. 60–61.
Lynch, L. D. and Ives, A. R.. 1999. The use of population models in informing non-target risk assessment in biocontrol. Aspects of Applied Biology 53: 181–188.Google Scholar
May, R. M. 1981. Models for two interacting populations. In May, R. M. (ed.) Theoretical Ecology: Principles and Applications. Oxford, UK: Blackwell Scientific Publications, pp. 78–104.Google Scholar
Mensah, R. K. 2002. Development of an integrated pest management programme for cotton. I. Establishing and utilizing natural enemies. International Journal of Pest Management 48: 87–94.CrossRefGoogle Scholar
Mills, N. J. 1992. Parasitoid guilds, life-styles and host ranges in the parasitoid complexes of tortricoid hosts (Lepidoptera: Tortricoidea). Environmental Entomology 21: 230–239.CrossRefGoogle Scholar
Mills, N. J. 1994. Parasitoid guilds: a comparative analysis of the parasitoid communities of tortricids and weevils. In Hawkins, B. A. and Sheehan, W. (eds.) Parasitoid Community Ecology. Oxford, UK: Oxford University Press, pp. 30–46.Google Scholar
Patt, J. M., Hamilton, G. C., and Lashomb, J. H.. 1997a. Foraging success of parasitoid wasps on flowers: interplay of insect morphology, floral architecture and searching behavior. Entomologia Experimentalis et Applicata 83: 21–30.CrossRefGoogle Scholar
Patt, J. M., Hamilton, G. C., and Lashomb, J. H.. 1997b. Impact of strip-insectary intercropping with flowers on conservation biological control of the Colorado potato beetle. Advances in Horticultural Science 11: 175–181.Google Scholar
Peng, R. K., Incoll, L. D., Sutton, S. L., Wright, C., and Chadwick, A.. 1993. Diversity of airborne arthropods in a silvoarable agroforestry system. Journal of Applied Ecology 30: 551–562.CrossRefGoogle Scholar
Pheloung, P. C., Williams, P. A., and Halloy, S. R.. 1999. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. Journal of Environmental Management 57: 239–252.CrossRefGoogle Scholar
Polis, G. A. 1994. Food webs, trophic cascades and community structure. Australian Journal of Ecology 19: 121–136.CrossRefGoogle Scholar
Polis, G. A. and Strong, D. R.. 1996. Food web complexity and community dynamics. American Naturalist 147: 813–846.CrossRefGoogle Scholar
Rands, M. R. W. and Sotherton, N. W.. 1987. The management of field margins for the conservation of gamebirds. British Crop Protection Council Monograph 35: 95–104.Google Scholar
Root, R. B. 1972. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs 43: 95–124.CrossRefGoogle Scholar
Rosenheim, J. A. 1998. Higher-order predators and the regulation of insect herbivore populations. Annual Review of Entomology 43: 421–447.CrossRefGoogle ScholarPubMed
Sagarra, L. A., Vincent, C., and Stewart, R. K.. 2001. Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bulletin of Entomological Research 91: 363–367.CrossRefGoogle Scholar
Secord, D. and Kareiva, P.. 1996. Perils and pitfalls in the host specificity paradigm. BioScience 46: 448–454.CrossRefGoogle Scholar
Sheehan, W. 1994. Parasitoid community structure: effects of host abundance, phylogeny, and ecology. In Hawkins, B. A. and Sheehan, W. (eds.) Parasitoid Community Ecology. Oxford, UK: Oxford University Press, pp. 90–107.Google Scholar
Simberloff, D. and Stiling, P.. 1996. How risky is biological control?Ecology 77: 1965–1974.CrossRefGoogle Scholar
Smith, D. and Papacek, D. F.. 1991. Studies of the predatory mite Amblyseius victoriensis (Acarina: Phytoseiidae) in citrus orchards in southeast Queensland: control of Tegolophus australis and Phyllocoptruta oleivora (Acarina: Eriophyidae), effect of pesticides, alternative host plants and augmentative release. Experimental and Applied Acarology 12: 195–217.CrossRefGoogle Scholar
Smith, J. G. 1969. Some effects of crop background on populations of aphids and their natural enemies on brussels sprouts. Annals of Applied Biology 63: 326–333.CrossRefGoogle Scholar
Sotherton, N. W. and Rands, M. R. W.. 1987. The environmental interest of field margins to game and other wildlife: a game conservancy view. British Crop Protection Council Monograph 35: 67–75.Google Scholar
Stephens, M. J., France, C. M., Wratten, S. D., and Frampton, C.. 1998. Enhancing biological control of leafrollers (Lepidoptera: Tortricidae) by sowing buckwheat (Fagopyrum esculentum) in an orchard. Biocontrol Science and Technology 8: 547–558.CrossRefGoogle Scholar
Strand, M. R. and Obrycki, J. J.. 1996. Host specificity of insect parasitoids and predators. BioScience 46: 422–430.CrossRefGoogle Scholar
Strong, D. R., and R. W. Pemberton. 2001. Food webs, risks of alien enemies and reform of biological control. In Wajnberg, E., Scott, J. K., and Quimby, P. C. (eds.) Evaluating Indirect Ecological Effects of Biological Control. Wallingford UK: CAB International pp. 57–79.Google Scholar
Tallamy, D. W. 1983. Equilibrium biogeography and its application to insect host–parasite systems. American Naturalist 121: 244–254.CrossRefGoogle Scholar
Theunissen, J., Booij, C. J. H., and Lotz, L. A. P.. 1995. Effects of intercropping white cabbage with clovers on pest infestation and yield. Entomologia Experimentalis et Applicata 74: 7–16.CrossRefGoogle Scholar
Thomas, M. B., Sotherton, N. W., Coombes, D. S., and Wratten, S. D.. 1992. Habitat factors influencing the distribution of polyphagous predatory insects between field boundaries. Annals of Applied Biology 120: 197–202.CrossRefGoogle Scholar
Tylianakis, J. M., Didham, R. K., and Wratten, S. D.. 2004. Improved fitness of aphid parasitoids receiving resource subsides. Ecology 85: 658–666.CrossRefGoogle Scholar
Emden, H. F. 1963. Observations on the effects of flowers on the activity of parasitic hymenoptera. Entomologists' Monthly 98: 265–270.Google Scholar
Rijn, P. C. J. and Tanigoshi, L. K.. 1999a. The contribution of extrafloral nectar to survival and reproduction of the predatory mite Iphiseius degenerans on Ricinus communis. Experimental and Applied Acarology 23: 281–296.CrossRefGoogle Scholar
Rijn, P. C. J. and Tanigoshi, L. K.. 1999b. Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Experimental and Applied Acarology 23: 785–802.CrossRefGoogle Scholar
Rijn, P. C. J., Houten, Y. M., and Sabelis, M. W.. 2002. How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83: 2664–2679.CrossRefGoogle Scholar
Veen, F. J. F., Rajkumar, A., Müller, C. B., and Godfray, H. C. J.. 2001. Increased reproduction by pea aphids in the presence of secondary parasitoids. Ecological Entomology 26: 425–429.CrossRefGoogle Scholar
Vidal, S. 1997. Factors influencing the population dynamics of Brevicoryne brassicae in undersown brussels sprouts. Biological Agriculture and Horticulture 15: 285–295.CrossRefGoogle Scholar
Waage, J. K. 1990. Ecological theory and the selection of biological control agents. In Mackauer, M., Ehler, L. E., and Roland, J. (eds.) Critical Issues in Biological Control. Andover, UK: Intercept Press pp. 135–158.Google Scholar
Wäckers, F. L. 2001. A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. Journal of Insect Physiology 47: 1077–1084.CrossRefGoogle ScholarPubMed
Wäckers, F. L., Bjoruson, A., and Doru, S.. 1996. A comparison of flowering herbs with respect to their nectar accessibility for the parasitoid Pimpla turiovellae. Proceedings of the section Experimental and Applied Entomology of the Netherlands Entomological Society 7: 177–182.Google Scholar
Wheeler, D. 1996. The role of nourishment in oogenesis. Annual Review of Entomology 41: 407–431.CrossRefGoogle ScholarPubMed
Wratten, S. D., H. F. Van Emden, and M. B. Thomas. 1998. Within-field and border refugia for the enhancement of natural enemies. In Pickett, C. H. and Bugg, R. L. (eds.) Enhancing Biological Control: Habitat Management to Promote Natural Enemies of Agricultural Pests. Berkeley, CA: University of California Press, pp. 375–404.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×