Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-25T21:47:06.187Z Has data issue: false hasContentIssue false

9 - Wind

Published online by Cambridge University Press:  05 June 2012

H. Jay Melosh
Affiliation:
Purdue University, Indiana
Get access

Summary

Owing to the development of motor transport, it is possible to study in the further interiors of the great deserts the free interplay of wind and sand, uncomplicated by the effects of moisture, vegetation, or of fauna, and to observe the results of that interplay extended over great periods of time.

Here, instead of finding chaos and disorder, the observer never fails to be amazed at a simplicity of form, an exactitude of repetition and a geometric order unknown in nature on a scale larger than that of crystalline structure.

R. A. Bagnold (1941)

Ralph Bagnold (1896–1990) founded our modern understanding of the interaction between wind and sand and how that interaction produces dune-covered landscapes in the Earth’s great deserts. He lived to see spacecraft images of the sand seas on Mars and contributed to our understanding of how universally important wind-driven (eolian) processes are. He would have been delighted to know about the extensive dune fields of tarry sand on Titan.

Bagnold was a professional soldier and the descendent of a long line of professional soldiers (Bagnold, 1990). After an engineering education at Cambridge, he was posted to Egypt in 1926 and then to other locations in North Africa where he became fascinated by the landscape and decided to devote himself to the study of that region’s most abundant commodity – sand. In addition to unprecedented trips deep into the deserts of Sudan and Libya, he built a wind tunnel out of plywood at Imperial College, London, to further his understanding of the interaction of wind and sand. His classic book was published in 1941.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Wind
  • H. Jay Melosh, Purdue University, Indiana
  • Book: Planetary Surface Processes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977848.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Wind
  • H. Jay Melosh, Purdue University, Indiana
  • Book: Planetary Surface Processes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977848.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Wind
  • H. Jay Melosh, Purdue University, Indiana
  • Book: Planetary Surface Processes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977848.010
Available formats
×