Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-27T03:35:53.181Z Has data issue: false hasContentIssue false

1 - Space Age Studies of Planetary Rings

from I - Introductory Material

Published online by Cambridge University Press:  26 February 2018

L. W. Esposito
Affiliation:
University of Colorado Boulder, Colorado, USA
M. De Stefano
Affiliation:
Queen Mary University of London London, ENGLAND
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access

Summary

INTRODUCTION: THE ALLURE OF THE RINGED PLANETS

One of the most enduring symbols of space exploration is a planet surrounded by a ring. This symbol inspires a celestial context: nothing on Earth is like it. It has been a wonderful surprise that the ringed planets are just as beautiful and scientifically compelling seen close up. Furthermore, the ringed planets are not just objects of beauty, but complicated physical systems that provide a local laboratory and analogy for other cosmic systems like galaxies and planet-forming disks. For a general review, see Esposito (2014). For more details, see the individual chapters that follow in this book.

We now know that planetary rings, once thought unique to the planet Saturn, exist around all the giant planets. These rings are not solid objects, but are composed of countless particles with sizes from specks of dust to small moons. For each planet, the rings are quite different. Jupiter's ring is thin and composed of dust-like small particles. Saturn's rings are broad, bright, and opaque. Uranus has narrow, dark rings among broad lanes of dust that are invisible from Earth. Neptune's rings include incomplete arcs restricted to a small range of their circumference. All rings lie predominantly within their planet's Roche limit, where tidal forces would destroy a self-gravitating fluid body. They are also within the planet's magnetosphere and, in the case of Uranus, they are within the upper reaches of the planetary atmosphere.

The common occurrence of ring material around the outer planets is one of the major scientific findings of the past 40 years. The new ring systems were discovered by both spacecraft and ground-based observers, often surprising us by contradicting our expectations. The rings’ appearance and composition differ among the various planets, and likewise within each ring system. The broadest set of rings and the most identified processes are found around the planet Saturn, which has been scrutinized by the US/European Cassini space mission since 2004.

Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 3 - 29
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, N. and Spahn, F. (2006). The influence of particle adhesion on the stability of agglomerates in Saturn's rings. Icarus, 181, 292-301.CrossRefGoogle Scholar
Andrews, J. P. (1930). Experiments on impact. Proc. Phys. Soc, 43, 8-17.Google Scholar
Baillie, K., Colwell, J. E., Lissauer, J. J., Esposito, L. W., and Srem-cevic M. (2011). Waves in Cassini UVIS stellar occultations 2. Waves in the C ring. Icarus, 216, 1, 292-308.CrossRefGoogle Scholar
Barbara, J. M. and Esposito, L. W. (2002). Moonlet collisions and the effects of tidally modified accretion in Saturn's F ring. Icarus, 160, 161-71.CrossRefGoogle Scholar
Bodrova, A., Schmidt, J., Spahn, E., et al. (2012). Adhesion and col-lisional release of particles in dense planetary rings. Icarus, 218, 60-8.CrossRefGoogle Scholar
Borderies, N. (1989). Ring dynamics. Celestial Mechanics and Dynamical Astronomy, 46, 207-30.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. D. (1982). Sharp edges of planetary rings. Nature, 299, 209-11.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. D. (1984). Unsolved problems in planetary ring dynamics. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 713-34.Google Scholar
Borderies, N., Goldreich, P., and Tremaine, S. D. (1985). A granular flow model for dense planetary rings. Icarus, 63, 406-20.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. (1989). The formation of sharp edges in planetary rings by nearby satellites. Icarus, 80, 344.CrossRefGoogle Scholar
Bradley, E. T., Colwell, J. E., Esposito, L. W., et al. (2010). Far ultraviolet spectral properties of Saturn's Rings from Cassini UVIS. Icarus, 206, 458-66.Google Scholar
Braga-Ribas, E., Sicardy, B., Ortiz, J. L. et al. (2014). A ring system detected around Centaur (10199) Chariklo. Nature, 508, 72-5.CrossRefGoogle ScholarPubMed
Brahic, A. (1975). A numerical study of a gravitating system of colliding particles: applications to the dynamics of Saturn's rings and to the formation of the solar system. Icarus, 25, 452-58.CrossRefGoogle Scholar
Brahic, A. (1977). Systems of colliding bodies in a gravitational field: numerical simulation of the standard model. Astron. Astrophys., 54, 895-907.Google Scholar
Brahic, A. and Ferrari, C. (1992). Planetary rings: Observational constraints and collision dynamics. In Chaos, Resonance and Collective Dynamical Phenomena in the Solar System, ed. S., Ferraz-Mello. International Astronomical Union, 152 Netherlands: Springer Netherlands.Google Scholar
Bridges, F. G., Hatzes, A. P., and Lin, D. N. C. (1984). Structure, stability and evolution of Saturn's rings. Nature, 309, 333—335.CrossRefGoogle Scholar
Brophy, T. G. and Esposito, L. W.(1989). Simulation of collisional transport processes and the stability of planetary rings. Icarus, 78, 181-205.CrossRefGoogle Scholar
Brown, R. H., Baines, K. H., Bellucci, G. et al. (2006). Observations in the Saturn System during approach and orbital insertion, with Cassini's Visual and Infrared Mapping Spectrometer (VIMS). A&A, 446, 707-16.Google Scholar
Burns, J. A. (1999). Planetary rings. In The New Solar System, eds. J. Kelly, Beatty C. Collins, Petersen, and A., Chaikin. Sky Publishing Corporation and Cambridge University Press.Google Scholar
Burns, J. A., Showalter, M. R., and MorfiU, G. E. (1984). The ethereal rings of Jupiter and Saturn. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 200—72.Google Scholar
Burns, J. A., Hamilton, D. P., and Showalter, M. R. (2001). Dusty rings and circumplanetary dust: observations and simple physics. In Interplanetary Dust, eds. E., Griin., B. A. S. G., ustafson., S. F., Dermott., and H., Fechtig.. Berlin: Springer-Verlag, pp. 641-725.Google Scholar
Canup, R. M. (2010). Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite. Nature, 468, 943-6.CrossRefGoogle ScholarPubMed
Canup, R. M. and Esposito, L. W.(1995). Accretion in the Roche zone: Coexistence of rings and ringmoons. Icarus, 113, 331—52.CrossRefGoogle Scholar
Chambers, L. S., Cuzzi, J. N., Asphaug, E., et al. (2008). Hydrody-namical and radiative transfer modeling of meteoroid impacts into Saturn's rings. Icarus, 194, 623—35.CrossRefGoogle Scholar
Charnoz, S., Morbidelli, A., Dones, L. H., et al. (2008). Did Saturn's rings form during the late heavy bombardment? Icarus, 199, 413—28.Google Scholar
Charnoz, S., Dones, L., Esposito, L. W., et al., (2009). Origin and evolution of Saturn's ring system. In Saturn from Cassini-Huygens, eds. M. K., Dougherty L. W., Esposito, and T., Krimigis. Springer Netherlands, pp. 535-73.Google Scholar
Clark, R. N., Swayze, G. A., Carlson, R., et al. (2014). Spectroscopy from Space. In Spectroscopic Methods in Mineralogy and Material Sciences, eds. G., Henderson., D. R., Neuville., and R. T. D., owns.. Chantilly, VA: Mineralogical Society of America, 78, Chapter 10, pp. 399-446.Google Scholar
Colwell, J. E. and Esposito, L. W.(1992). Origins of the rings of Uranus and Neptune. I. Statistics of satellite disruptions. J. Geophys. Res., 97, 10, 227-1.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., and Sremčević, M. (2006). Self-gravity wakes in Saturn's A ring measured by stellar occultations from Cassini. GRL, 33, L07201.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., Sremčević, M., Stewart, G. R., and McClintock, W. E.(2007). Self-gravity wakes and radial structure of Saturn's Bring. Icarus, 190, 127-4.CrossRefGoogle Scholar
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. (2009). The structure of Saturn's rings. In Saturn From Cassini-Huygens, eds. M., Dougherty et al. 13, 375-12. Dordrecht, Netherlands: Springer-Verlag.Google Scholar
Colwell, J. E., Esposito, L. W., Jerousek, R. G., et al. (2010). Cassini UVIS stellar occultation observations of Saturn's rings. The Astronomical Journal, 140, 6.CrossRefGoogle Scholar
Crida, A. and Charnoz, S. (2012). Formation of regular satellites from ancient rings in the solar system, Science, 338, 1196—212.CrossRefGoogle Scholar
Cuzzi, J. N. (1985). Rings of Uranus -Not so thick, not so black. Icarus, 63, 312-16.CrossRefGoogle Scholar
Cuzzi, J. N. and Estrada, P. R. (1998). Compositional evolution of Saturn's rings due to meteoroid bombardment. Icarus, 132, 1-35.CrossRefGoogle Scholar
Cuzzi, J. N., Lissauer, J. J., Esposito, L. W., et al. (1984). Saturn's rings: properties and processes. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 73-199.Google Scholar
Cuzzi, J. N., Colwell, J. E., Esposito, L. W., et al. (2002). Saturn's rings: Pre-Cassini status and mission goals. Space Science Reviews, 118, 209-51.Google Scholar
Cuzzi, J., Clark, R., Filacchione, G., et al. (2009). Ring particle composition and size distribution. In Saturn From Cassini-Huygens, eds. M., Dougherty et al. 15, 459-509. Dordrecht, Netherlands: Springer-Verlag.Google Scholar
Daisaka, H., Tanaka, H., and Ida, S. (2001). Viscosity in a dense planetary ring with self-gravitating particles. Icarus, 154, 296-312.CrossRefGoogle Scholar
Deau, E. (2012). Physical properties of the Saturn's rings with the opposition effect. EGU General Assembly, Geophysical Research Abstracts, 14, 7523-3.Google Scholar
Degiorgio, K., Ferrari, C., Rodriguez, S., and Brahic, A. (2011). Opposition effect of Saturn's rings. Hints of ring physical properties. EPSC-DPS Joint Meeting 2011, 2-7 October, Nantes, France, p. 732.
de Pater, I. and Lissauer, J. J. (2010). Planetary Sciences, 2nd Revised Edition. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Dilley, J. P. and Crawford, D. (1996). Mass dependence of energy loss in collisions of icy spheres: an experimental study. J. Geophys. Res., 101, 9267-70.CrossRefGoogle Scholar
Dones, H. L. (1991). A recent cometary origin for Saturn's rings? Icarus, 92, 194-203.CrossRefGoogle Scholar
Durisen, R. H. (1984). Transport effects due to particle erosion mechanisms. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 416-16.Google Scholar
Durisen, R. H., Bode, P. W., Dyck, S. G., et al. (1996). Ballistic transport in planetary ring systems due to particle erosion mechanisms. III. Torques and mass loading by meteoroid impacts. Icarus, 124, 220-36.CrossRefGoogle Scholar
Elliot, J. L. (1979). Stellar occultation studies of the solar system. Ann. Rev. Astrophys., 17, 445-75.CrossRefGoogle Scholar
Elliott, J. P. and Esposito, L. W. (2011). Regolith depth growth on an icy body orbiting Saturn and evolution of bidirectional reflectance due to surface composition changes. Icarus, 212, 268-74.CrossRefGoogle Scholar
Elliot, J. L., Dunham, E. W., and Mink, D. J. (1977). The rings of Uranus. Nature, 267, 328-30.CrossRefGoogle Scholar
Esposito, L. W. (2010). Composition, structure, dynamics, and evolution of Saturn's rings. Annu. Rev. Earth Planet. Sci., 38, 1—575.CrossRefGoogle Scholar
Esposito, L. W. (2014). Planetary Rings: A Post-Equinox View. Cambridge, UK: Cambridge Planetary Science Series, Cambridge University Press.CrossRefGoogle Scholar
Esposito, L. W. and House, L. L. (1978). Radiative transfer calculated from a Markov-chain formalism. Astrophys. J., 219, 1058—67.CrossRefGoogle Scholar
Esposito, L. W. and Lumme, K. (1977). The tilt effect for Saturn's rings. Icarus, 31, 157-67.CrossRefGoogle Scholar
Esposito, L. W., O'CaUaghan, M., and West, R. A. (1983). The structure of Saturn's rings: implications from the Voyager stellar occultation. Icarus, 56, 439—52.CrossRefGoogle Scholar
Esposito, L. W., Colwell, J. E., and Canup, R. M. (1997). History of Neptune's ring arcs. Bull. Am. Astron. Soc, 29th DPS Meeting Abstracts, 29, 17. 12.Google Scholar
Esposito, L. W., Colwell, J. E., and McClintock, W. E. (1998). Cassini UVIS observations of Saturn's rings. Planet. Space Sci., 46, 1221-35.CrossRefGoogle Scholar
Esposito, L. W., Colwell, J. E., Larsen K., et al. (2005). Ultra-Violet Imaging Spectroscopy shows an active Saturn system. Science, 307, 1251-55.CrossRefGoogle Scholar
Esposito, L. W., Meinke, B. K., Colwell, J. E., Nicholson, P. D., and Hedman, M. M. (2008). Moonlets and clumps in Saturn's F ring. Icarus, 194, 1, 278-89.CrossRefGoogle Scholar
Esposito, L. W., Albers, N., Meinke, B. K., et al. (2012). A predator-prey model for moon-triggered clumping in Saturn's rings. Icarus, 217, 1, 103-14.CrossRefGoogle Scholar
Foryta, D. W. and Sicardy, B. (1996). The dynamics of the Neptunian Adams ring's arcs. Icarus, 123, 129.CrossRefGoogle Scholar
French, R. G. and Nicholson, P. D. (2000). Saturn's rings II. Particle sizes inferred from stellar occultation data. Icarus, 145, 502—23.CrossRefGoogle Scholar
French, R. G., Nicholson, P. D., Porco, C. C., and Marouf, E. A. (1991). Dynamics and structure of the Uranian rings. In Uranus, eds. J. T. B., ergstralh., E. D. M., iner., and M. S., Matthews.. Tucson, AZ: University of Arizona Press, pp. 410-68.Google Scholar
French, R. S., Showalter, M. R., Sfair, R., et al. (2012). The brightening of Saturn's F ring. Icarus, 219, 181-93.CrossRefGoogle Scholar
Gehrels, T., Baker, L. R., Beshore, E., et al. (1980). Imaging photopo-larimeter on Pioneer Saturn. Science, 207, 434-39.CrossRefGoogle ScholarPubMed
Goldreich, P. and Rappaport, N. (2003a). Chaotic motions of Prometheus and Pandora. Icarus, 162, 391—9.CrossRefGoogle Scholar
Goldreich, P. and Rappaport, N. (2003b). Origin of chaos in the Prometheus-Pandora system. Icarus, 166, 320-7.CrossRefGoogle Scholar
Goldreich, P. and Tremaine, S. D. (1978). The velocity dispersion in Saturn's rings. Icarus, 34, 227—39.CrossRefGoogle Scholar
Goldreich, P. and Tremaine, S. D. (1979). Toward a theory for the Uranian rings. Nature, 277, 97-9.CrossRefGoogle Scholar
Gor'kavyi, N. N. and Fridman, A. M. (1990). Reviews of topical problems: The physics of planetary rings. Soviet Physics Uspekhi, 33, 95-133.CrossRefGoogle Scholar
Greenberg, R. and Brahic, A. (eds.) (1984). Planetary Rings. Tucson, AZ: University of Arizona Press.Google Scholar
Gresh, D. L. (1990). Voyager radio occultation by the Uranian rings: structure, dynamics and particle size. Ph. D. thesis, Stanford University, Palo Alto, CA.Google Scholar
Guimaraes, A. H. E., Albers, N., Spahn, F. et al. (2012). Aggregates in the strength and gravity regime: Particles sizes in Saturn's rings. Icarus, 220, 660-78.CrossRefGoogle Scholar
Hahn, J. M., Spitale, J. N. and Porco, C. C. (2009). Dynamics of the sharp edges of broad planetary rings. ApJ, 699, 1, 686—710.CrossRefGoogle Scholar
Hameen-Anttila, K. A. (1978). An improved and generalized theory for the collisional evolution of Keplerian systems. Astrophys. Space Sci., 58, 477-519.CrossRefGoogle Scholar
Hameen-Anttila, K. A. (1981). Quasi-equilibrium in collisional sys-tems. Moon Planets, 25, 477-506.CrossRefGoogle Scholar
Hameen-Anttila, K. A. (1982). Saturn's rings and bimodality of Keplerian systems. Moon Planets, 26, 171-96.CrossRefGoogle Scholar
Hansen, J. E. and Travis, L. D. (1974). Light scattering in planetary atmospheres. Space Sci. Rev, 16, 527-610.CrossRefGoogle Scholar
Hapke, B. W., Nelson, R. M., Brown, R. H., et al. (2006). Cassini observations of the opposition effect of Saturn's rings. 2 Interpretation: Plaster of Paris as an analog of ring particles. Lunar and Planetary Science XXXVII.
Harbison, R. A., Nicholson, P. D., and Hedman, M. W. (2013). The smallest particles in Saturn's A and C rings. Icarus, 226, 1225-40.CrossRefGoogle Scholar
Hatzes, A. P., Bridges, F. G., and Lin, D. N. C. (1988). Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc, 231, 1091-115.Google Scholar
Hedman, M. M. (2013). Planetary ring dynamics. In Celestial Mechanics, in Encyclopedia of Life Support Systems (EOLSS), ed. A., Celletti. Developed under the auspices of UNESCO. Oxford, UK: Eolss Publishers.Google Scholar
Hedman, M. M. and Nicholson, P. D. (2016). The B-ring's surface mass density from hidden density waves: Less than meets the eye? Icarus, in press.
Hedman, M. M., Nicholson, P. D., Salo, H., et al. (2007). Self-gravity wake structures in Saturn's A ring revealed by Cassini VIMS. Astron. J., 133, 2624-29.CrossRefGoogle Scholar
HeiBelmann, D., Blum, J., Fraser, H. J., and Wolling, K. (2010). Micro-gravity experiments on the collisional behavior of Saturnian ring particles. Icarus, 206, 424—30.Google Scholar
Hertz, H. (1881) Ueber die Beriihrung fester elastischer Korper, J. f. reineu. angew. Mathematik, 92, 156.Google Scholar
Hyodo, R. and Ohtsuki, K. (2014). Collisional disruption of gravitational aggregate in the tidal environment. ApJ, 787, 56-69.CrossRefGoogle Scholar
Ip, W. H. (2005). An update on the ring exosphere and plasma disc of Saturn. Geophys. Res. Lett, 32, L13204.CrossRefGoogle Scholar
Irvine, W. M. (1975). Multiples scattering in planetary atmospheres. Icarus, 25, 175.CrossRefGoogle Scholar
Jerousek, R. G., Colwell, J. E., and Esposito, L. W. (2011). Morphology and variability of the Titan ringlet and Huygens ringlet edges. Icarus, 216, 1, 280-91.CrossRefGoogle Scholar
Jerousek, R. G., Colwell, J. E. Esposito, L. W., et al. (2016). Small particles and self-gravity wakes in Saturn's rings from UVIS and VIMS stellar occultations. Icarus, 279, 36-50.CrossRefGoogle Scholar
Johnson, R. E., Luhmann, J. G., Tokar, R. L., et al. (2006). Production, ionization and redistribution of O2 in Saturn's ring atmosphere. Icarus, 180, 393-402.CrossRefGoogle Scholar
Karjalainen, R. (2007). Aggregate impacts in Saturn's rings. Icarus, 189, 523-37.CrossRefGoogle Scholar
Karjalainen, R. and Salo, H. (2004). Gravitational accretion of particles in Saturn's rings. Icarus, 172, 328—48.CrossRefGoogle Scholar
Kemeny, J. and Snell, J. (1960). Finite Markov Chains. Princeton, NJ: Van Nostrand.Google Scholar
Kenworthy, M. (2016). Rings of a super Saturn. Sci. Am., 314, 34-41.Google ScholarPubMed
Landau, L. D. and Lifshitz, E. M. (1969). Statistical Physics, vol. 5. Menlo Park, CA: Addison-Wesley.Google Scholar
Lane, A. L., Hord, C. W., West, R. A., et al. (1982). Photopolarime-try from Voyager 2: preliminary results on Saturn, Titan, and the rings. Science, 215, 537-13.CrossRefGoogle ScholarPubMed
Latter, H. N., Ogilvie, G. I., and Chupeau, M. (2012). The ballistic transport instability in Saturn's rings I. Formalism and linear theory. Mon. Not. R. Astron. Soc, 427, 2336-48.CrossRefGoogle Scholar
Leinhardt, Z. M. and Stewart, S. T. (2011). Collisions between gravity-dominated bodies 1. Outcome regimes and scaling laws. ApJ, 745, 79.CrossRefGoogle Scholar
Lewis, M. C. and Stewart, G. R. (2000). Collisional dynamics of perturbed planetary rings. Astron. J., 120, 3295—310.CrossRefGoogle Scholar
Lewis, M. C. and Stewart, G. R. (2009). Features around embedded moonlets in Saturn's rings: the role of self-gravity and particle size distribution. Icarus, 199, 387-412.CrossRefGoogle Scholar
Lin, D. N. C. and Papaloizou, J. (1979). Tidal torques on accretion disks in binary systems with extreme mass ratios. Mon. Not. Roy. Astron. Soc, 186, 799-812.Google Scholar
Lynden-Bell, D. and Pringle, J. E. (1974). The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc, 168, 603-37.CrossRefGoogle Scholar
Mamajek, E. E., Quillen, A. C., Pecaut, M. J., et al. (2012). Planetary constriction zones in occultation: Discovery of an extrasolar-ring system transiting a young Sun-like star and future prospects for detecting eclipses by circum secondary and circumplanetary disks. Astron. J., 143, 72.CrossRefGoogle Scholar
Meinke, B. K., Esposito, L. W., Albers, N., et al. (2012). Classification of F ring features observed in Cassini UVIS occultations. Icarus, 218, 545.CrossRefGoogle Scholar
Miner, E. D., Wessen, R. R., and Cuzzi, J. N. (2007). Planetary Ring Systems. Chichester, UK: Springer-Praxis Publishing Ltd.Google Scholar
Mishchenko, M. I. (1993). On the nature of the polarization opposition effect exhibited by Saturn's rings. Astrophys. J., 411, 351-61.CrossRefGoogle Scholar
Moore, P. (1995). The Planet Neptune. Hoboken, NJ: John Wiley.Google Scholar
Murray, C. D. and Dermott, S. F. (1999). Solar System Dynamics. Cambridge, UK: Cambridge University Press.Google Scholar
Murray, C. D., Cooper, N. J., Williams, G. A., et al. (2014). The discovery and dynamical evolution of an object at the outer edge of Saturn's A ring. Icarus, 236, 165-8.CrossRefGoogle Scholar
Nicholson, P. D. and Dones, L. R. (1991). Planetary rings. Rev. Geophys., 29 (suppl.), 313-27.CrossRefGoogle Scholar
Nicholson, P. D., Showalter, M. R., Dones, L., et al. (1996). Observations of Saturn's ring-plane crossings in August and November 1995. Science, 272, 509-515.CrossRefGoogle Scholar
Nicholson, P. D., Hedman, M. M., Clark, R. N., et al. (2008). A close look at Saturn's rings with Cassini VIMS. Icarus, 193, 182—212.CrossRefGoogle Scholar
Ockert-BeU, M. E., Burns, J. A., Daubar, I. J., et al. (1999). The structure of Jupiter's ring system as revealed by the Galileo imaging experiment. Icarus, 138, 188-213.Google Scholar
Ortiz, J. L., Duffard, R., Pinila-Alonso, N., et al. (2015). Possible ring material around centaur (2060) Chiron. A&A, 576, A18.Google Scholar
Pollack, J. B. (1975). The rings of Saturn. Space Science Reviews, 18, 3-93.CrossRefGoogle Scholar
Porco, C. C. and Goldreich, P. (1987). Shepherding to the Uranian rings. I. Kinematics. Astron. J., 93, 724-29.CrossRefGoogle Scholar
Porco, C. C. and Hamilton, D. P. (2007). Planetary rings. In Encyclopedia of the Solar System, 2nd Edition, eds. L. -A. M., cFadden., P. W., eissman., and T. J., ohnson.. San Diego, CA: Academic Press, 503-18.Google Scholar
Porco, C. C., Baker, E., Barbara, J., et al. (2005). Cassini Imaging Science: initial results on Saturn's rings and small satellites. Science, 25, 307, 1226-36.Google Scholar
Poulet, F. and Sicardy, B. (2001). Dynamical evolution of the Prometheus—Pandora system. Mon. Not. Roy. Astron. Soc, 322, 343-55.CrossRefGoogle Scholar
Rehnberg, M. E., Esposito, L. W., Brown, Z. L. et al. (2016). A traveling feature in Saturn's rings. Icarus, 279, 100-8.CrossRefGoogle Scholar
Rein, H. and Latter, H. N. (2013). Large scale N-body simulations of the viscous overstability in Saturn's rings, Mon. Not. R. Astron. Soc, 431, 145-58.CrossRefGoogle Scholar
Rieder, S., and Kenworthy, M. A. (2016). Constraints on the size and dynamics of the J14076 ring system. A&A, 596, A9.Google Scholar
Robbins, S. J., Stewart, G. R., Lewis, M. C., et al. (2010). Estimating the masses of Saturn's A and Brings from high-optical depth N-body simulations and stellar occultations. Icarus, 206, 2, 431-5.CrossRefGoogle Scholar
Ropke, G. (1987). Statistische Mechanik fur das Nichtgleichgewicht. Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
Ruprecht, J. D., Bosh, A. S., Person, M. J., et al. (2015). 29 November 2011 stellar occultation by 2060 Chiron: Symmetric jet-like features. Icarus, 252, 271.CrossRefGoogle Scholar
Salmon, J., Charnoz, S., Crida, A., and Brahic, A. (2010). Long-term and large-scale viscous evolution of dense planetary rings. Icarus, 209, 2, 771-85.CrossRefGoogle Scholar
Salo, H. (1995). Simulations of dense planetary rings. III. Self-gravitating identical particles. Icarus, 111, 287-312.Google Scholar
Salo, H. (2001). Numerical simulations of collisional dynamics of planetary rings. In Granular Gases, eds. T., Poschel and S., Luding. Berlin: Springer-Verlag, pp. 330—49.Google Scholar
Salo, H. (2012). Simulating the formation of fine-scale structure in Saturn's rings. Progress of Theoretical Physics, Supplement No. 195.Google Scholar
Salo, H. and Karjalainen, R. (2003). Photometric modeling of Saturn's rings. I. Monte Carlo method and the effect of nonzero volume filling factor. Icarus, 164, 428-60.Google Scholar
Salo, H. and Schmidt, J. (2010). N-body simulations of viscous instability of planetary rings. Icarus, 206, 390-409.CrossRefGoogle Scholar
Salo, H. and Schmidt, J. (2011). Photometric modeling of viscous over-stability in Saturn's rings. European Planetary Science Congress, 6, 1771.Google Scholar
Salo, H., Schmidt, J., and Spahn, F. (2001). Viscous overstability in Saturn's Bring. I. Direct simulations and measurement of transport coefficients. Icarus, 153, 295—315.CrossRefGoogle Scholar
Salo, H., Karjalainen, R., and French, R. G. (2004). Photometric modeling of Saturn's rings. II. Azimuthal asymmetry in reflected and transmitted light. Icarus, 170, 70-90.CrossRefGoogle Scholar
Schlichting, H. E. and Chang, P. (2011). Warm Saturns: On the nature of rings of extrasolar planets that reside inside the Ice Line. Astrophys. J., 734, 117.CrossRefGoogle Scholar
Schmidt, J., Salo, H., Spahn, F., and Petzschmann, O. (2001). Vis-cous overstability in Saturn's B-ring. II. Hydrodynamic theory and comparison to simulations. Icarus, 153, 316-31.CrossRefGoogle Scholar
Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H., Spahn, F. (2009). Dynamics of Saturn's dense rings. In Saturn From Cassini-Huygens, eds. M., Dougherty et al. Dordrecht, Netherlands: Springer-Verlag, 14, 413-58.Google Scholar
Schmit, U. and Tscharnuter, W. M. (1995). A fluid dynamical treatment of the common action of self-gravitation, collisions, and rotation in Saturn's Bring. Icarus, 115, 304—19.CrossRefGoogle Scholar
Schmit, U. and Tscharnuter, W. M. (1999). On the formation of the fine-scale structure in Saturn's Bring. Icarus, 138, 173-87.CrossRefGoogle Scholar
SeiB, M., Schmidt, J., and Spahn, F. (2011). How does Saturn's moons influence the velocity dispersion in the A ring. EPSC-DPS Joint Meeting, 6, 1408-9.Google Scholar
Shepelyansky, D. L., Pikovsky, A. S., Schmidt, J., and Spahn, F. (2009). Synchronization mechanism of sharp edges in rings of Saturn. Mon. Not. R. Astron. Soc, 395, 1934-0.CrossRefGoogle Scholar
Smith, B. A., Soderblom, L. A., Johnson, T. V. et al. (1979). The Jovian system through the eyes of Voyager 1. Science, 204, 915—972.CrossRefGoogle Scholar
Smith, B. A., Soderblom, L. A., Beebe, R. et al. (1981). Encounter with Saturn: Voyager 1 imaging science results. Science, 212, 163—191.Google ScholarPubMed
Smith, B. A., Soderblom, L. A., Batson, L. et al. (1982). A new look at the Saturn system: The Voyager 2 images. Science, 215, 504-537.CrossRefGoogle Scholar
Smith, B. A., Soderblom, L. A., Banfield, D. et al. (1989). Voyager 2 at Neptune: Imaging Science Results. Science, 144-49.CrossRef
Spahn, E., Schmidt, J., Petzschmann, O., Salo, H. (2000). Stability analysis of a Keplerian disk of granular grains: Influence of thermal diffusion. Icarus, 145, 657-60.CrossRefGoogle Scholar
Spitale, J. N. and Porco, C. C. (2010). Detection of free unstable modes and massive bodies in Saturn's outer Bring. Astron. J., 140(6), 1747-57.CrossRefGoogle Scholar
Srama, R., Kempf, S., Moragas-Klostermeyer, G., et al. (2006). In situ dust measurements in the inner Saturnian system. Planet. Space Sci, 54, 967-87.CrossRefGoogle Scholar
Sremčević, M., Krivov, A. V., Kriiger, H., and Spahn, F. (2005). Impact-generated dust clouds around planetary satellites: Model versus Galileo data. Planetary and Space Science, 53, 625—41.CrossRefGoogle Scholar
Stewart, G. R., Lin, D. N. C., and Bodenheimer, P. (1984). Collision-induced transport processes in planetary rings. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 447—512.Google Scholar
Supulver, K. D., Bridges, E. G., and Lin, D. N. C. (1995). The coefficient of restitution of ice particles in glancing collisions: Experimental results forunfrosted surfaces. Icarus, 113, 188—99.CrossRefGoogle Scholar
Thomas, P. C. (1989). The shapes of small satellites. Icarus, 11, 248-74.Google Scholar
Thomas, G. E. and Stamnes, K. (1999). Radiative Transfer in the Atmosphere and Ocean. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Thomson, E. S., Marouf, E. A., Tyler, G. L., French, R. G., and Rappaport, N. J. (2007). Periodic micro structure in Saturn's rings A and B. Geophys. Res. Lett., 34, L24203.CrossRefGoogle Scholar
Tiscareno, M. S. (2013). Planetary rings. In Planets, Stars and Stellar Systems, eds. T. O., swalt., L. F., rench., and P., Kalas.. Dordrecht: Springer Netherlands.Google Scholar
Tiscareno, M. S., Burns, J. A., Nicholson, etal. (2007). Cassini imaging of Saturn's rings: II. A wavelet technique for analysis of density waves and other radial structure in the rings. Icarus, 189, 14-34.CrossRefGoogle Scholar
Tiscereno, M. S., Burns, J. A., Hedman, M. M., et al. (2008). The population of propellers in Saturn's A ring. Astron. J., 135(3), 1083-91.Google Scholar
Toomre, A. (1964). On the gravitational stability of a disk of stars. ApJ, 139, 1217-1238.CrossRefGoogle Scholar
Trulsen, J. (1971). Towards a theory of jet streams. Astrophys. Space Sci., 12, 329-48.CrossRefGoogle Scholar
Trulsen, J. (1972a). Numerical simulation of jet streams. I. The three-dimensional case. Astrophys. Space Sci., 17, 241—62.Google Scholar
Trulsen, J. (1972b). Numerical simulation of jet streams. II. The two-dimensional case. Astrophys. Space Sci., 18, 3-20.Google Scholar
van de Hulst, H. C. (1957). Light Scattering by Small Particles. New York: John Wiley; (1981). Light Scattering by Small Particles, Revised Edition. New York: Dover Publications.Google Scholar
van Helden, A. (1984). Saturn through the Telescope: A Brief Historical Survey. In Saturn, eds. T., Gehrels and M. S., Mathews. Tucson, AZ: University of Arizona Press, 23-43.Google Scholar
Weidenschilling, S. J., Chapman, C. R., Davis, D. R., and Greenberg, R. (1984). Ring particles: collisional interactions and physical nature. In Planetary Rings, eds. R., Greenberg and A., Brahic. Tucson, AZ: University of Arizona Press, pp. 367-415.Google Scholar
Zebker, H. A., Tyler, G. L., and Marouf, E. A. (1983). On obtaining the forward phase functions of Saturn ring features from radio occultation observations. Icarus, 56, 209-28.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×