Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-21T03:42:03.106Z Has data issue: false hasContentIssue false

12 - Surface activities: arms, drills, moles and mobility

Published online by Cambridge University Press:  12 August 2009

Andrew Ball
Affiliation:
The Open University, Milton Keynes
James Garry
Affiliation:
Universiteit Leiden
Ralph Lorenz
Affiliation:
The Johns Hopkins University
Viktor Kerzhanovich
Affiliation:
NASA Jet Propulsion Laboratory
Get access

Summary

While much can be achieved by purely passive observations and measurements of a planetary lander's immediate environment, some key science requires the landed system to interact with the surface mechanically. This may involve the acquisition of samples of material, either to be returned to Earth or delivered to instrumentation internal to the lander. Other instruments, while external, require intimate contact with target rocks – these include alpha-X-ray, X-ray fluorescence or Mössbauer spectrometers, and microscopes. Other interactions may include mechanical-properties investigations using a penetrometer, or current measurements of wheel-drive motors.

Thus a variety of mechanisms have been operated on planetary surfaces, including deployment devices and sampling arms of various types, together with drills, abrasion tools and instrumentation. Soviet/Russian landers have tended to feature simple but robust actuators, usually simple hinged arms, and often actuated by pyro or spring. These include the penetrometers on the Luna and Venera missions. Lunokhods 1 and 2 carried a cone-vane shear penetrometer that was lowered into the lunar regolith and rotated by a motor, to measure bearing strength and shear strength. The rovers made 500 and 740 such measurements, respectively, during their traverses across the lunar surface.

A more sophisticated arm was flown on the Surveyor 3, 4 and 7 lunar landers (Figure 12.1). The Surveyor soil mechanics surface sampler (SMSS) was a tubular aluminium pantograph, five segments long, with a total reach of 1.5 m.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×