Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T04:00:35.219Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 May 2020

M. Sajjad Athar
Affiliation:
Aligarh Muslim University, India
S. K. Singh
Affiliation:
Aligarh Muslim University, India
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pauli, W., Letter to Meitner, L. and her colleagues dated 4 December 1930 (letter open to the participants of the conference in Tübingen) (1930), recorded in Pauli, W., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Band 11 (Springer, Berlin, 1985) p. 39. A reference to ‘neutrino’ is seen in a letter from Heisenberg to Pauli on 1 December 1930: ‘Zu Deinen Neutronen möchte ich noch bemerken: …’.Google Scholar
[2] Bohr, N., in Convegno di Fisica Nucleare (R. Accad. d’Italia, Roma 1932), p. 119; J. Chem. Soc. 1932, 349 (Faraday Lectures); earlier reference is seen in a letter from Pauli to Bohr dated 5 March 1929, ‘… Willst Du den armen Energiesatz noch weiter maltraitieren?’ (W. Pauli, Wissenschaftlicher Briefwechs el, op. cit. p. 493).Google Scholar
[3] Pauli, W. 1931. Physical Review 38: 579.Google Scholar
[4] Chadwick, J. 1914. ‘The Intensity Distribution in the Magnetic Spectrum of Beta Particles from Radium (B+ C).Verh. Phys. Gesell. 16: 383391.Google Scholar
[5] Kronig, R. de L. 1928. ‘Der Drehimpuls des Stickstoffkerns.Naturwissenschaften 16 (19): 335335.Google Scholar
[6] Heitler, W., and Herzberg, G.. 1929. Nature 17: 673.Google Scholar
[7] Becquerel, Henri. 1896. ‘On the Rays Emitted by Phosphorescence.Compt. Rend. Hebd. Seances Acad. Sci. 122: 420421.Google Scholar
[8] Curie, Marie, and Gabriel Lippmann. 1898. Rayons émis par les composés de l’uranium et du thorium. Gauthier-Villars.Google Scholar
Ward, F. A. B. 1963. Atomic Physics: Descriptive Catalogue (Science Museum). London: Her Majesty's Stationery Office.Google Scholar
Chadwick, James. 1931. ‘Radioactivity and Radioactive Substances.’Google Scholar
Giesel, F. 1899. Ann. Phys. 69: 834.Google Scholar
Curie, Pierre, and Curie, Marie. 1900. ‘Sur la Charge É lectrique des Rayons Déviables du Radium.CR Acad. Sci. Paris 130: 647650.Google Scholar
Becquerel, H. 1900. Comprend. 130: 809.Google Scholar
Wien, W. 1903. Phys. Zeit. 4: 624.Google Scholar
Rutherford, E., and Soddy, F.. 1902. Phil. Msg. 4: 387.Google Scholar
Kaufmann, W. 1902. Phys. Zeit. 4: 54.Google Scholar
Kaufmann, Walter. 1906. ‘Úber die Konstitution des Elektrons.Annalen der Physik 324 (3): 487553.Google Scholar
Bestelmeyer, Adolf. 1907. ‘Spezifische Ladung und Geschwindigkeit der durch Róntgenstrahlen erzeugten Kathodenstrahlen.Annalen der Physik 327 (3): 429447.Google Scholar
Rutherford, E. 1934. Nature 134: 90.Google Scholar
[9] Rutherford, Ernest. 1914. ‘XXXVII. The Connexion between the β and γ ray Spectra.The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 28 (165): 305319.Google Scholar
[10] Villard, M. M. 1900. ‘Sur le Rayonnement du Radium.CR Acad. Sci. Paris 130: 1178.Google Scholar
[11] Falconer, Isobel. 1987. ‘Corpuscles, Electrons and Cathode rays: JJ Thomson and the ‘Discovery of the Electron’.The British journal for the history of science 20 (3): 241276.Google Scholar
[12] Rutherford, Ernest. 1911. ‘LXXIX. The Scattering of α and β Particles by Matter and the Structure of the Atom.The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 21 (125): 669688.Google Scholar
[13] Bohr, Niels. 1913. ‘XXXVII. On the Constitution of Atoms and Molecules.The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 26 (153): 476502.Google Scholar
[14] Meitner, L. 1922. ‘Über den Zusammenhang zwischen β-und γ-Strahlen.Zeitschrift für Physik 9 (1): 145152.Google Scholar
Meitner, L. 1922. ‘Über dieβ-Strahl-Spektra und ihren Zusammenhang mit der γ-Strahlung.Zeitschrift für Physik 11 (1): 3554.Google Scholar
[15] Ellis, Charles Drummond. 1922. ‘β-ray Spectra and their Meaning.Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 101 (708): 117.Google Scholar
Chadwick, James, and Ellis, Charles D.. 1922. ‘A Preliminary Investigation of the Intensity Distribution in the β-Ray Spectra of Radium B and C.’ In Proceedings of the Cambridge Philosophical Society 21: 274280.Google Scholar
Ellis, Charles Drummond, and Wooster, William A.. 1927. ‘The Average Energy of Disintegration of Radium E.Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 117 (776): 109123.Google Scholar
[16] Meitner, Lise, and Wilhelm Orthmann. 1930. ‘Úber eine Absolute Bestimmung der Energie der Primáren β-Strahlen von Radium E.Zeitschrift für Physik 60 (3-4): 143155.Google Scholar
[17] Pauli, Wolfgang. 1961. Aufsatze und Vortrage uber Physik und Erkenntnistheorie. Vieweg.Google Scholar
[18] Private communication of Goudsmith to L. M. Brown quoted in Phys. Today, Sept. 1978, p. 23.Google Scholar
[19] Chadwick, James. 1932. ‘The Existence of a Neutron.Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 136 (830): 692708.Google Scholar
[20] Rasetti, F., in Fermi, E., Note e Memorie, ed. by Amaldi, E. et al. vol. I. (Academia Naz. dei Lincei, Roma 1962), p. 538.Google Scholar
[21] Heisenberg, Werner. 1932. ‘On the Structure of Atomic Nuclei.Z. Phys. 77: 111.Google Scholar
[22] Iwanenko, D. 1932. ‘The Neutron Hypothesis.Nature 129 (3265): 798798.Google Scholar
[23] Fermi, Enrico. 1934. ‘E. Fermi.Nuovo cimento 11: 157.Google Scholar
[24] F. Perrin, F. 1933. ‘Structure et Proprietes des Noyaux Atomiques, Rapports et Discussions du Septiem e Conseil de Physique, idem.Compt. Rendus 197 (1625): 327.Google Scholar
[25] Pauli, W., in Discussion du Rapport de M. Heisenberg ‘La Structure du Noyau’ in Structure et Propri etes des Noyaux Atomiqu es, Rapports et Dis-cussi ons du Septseme Conseil de Physique, Brussels, October 1933, ed. by Institut International de Physique Solvay (Gaut hier-Villars, Paris 1934), p.324.Google Scholar
[26] Gamow, George, and Teller, Edward. 1936. ‘Selection Rules for the β-Disintegration.Physical Review 49 (12): 895.Google Scholar
[27] Bethe, Hans Albrecht, and Fox Bacher, Robert. 1936. ‘Nuclear Physics A. Stationary States of Nuclei.Reviews of Modern Physics 8 (2): 82.Google Scholar
[28] Dirac, Paul Adrien Maurice. 1928. ‘The Quantum Theory of the Electron.Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 117 (778): 610624.Google Scholar
Dirac, Paul Adrien Maurice. 1928. ‘The Quantum Theory of the Electron. Part II.Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 118 (779): 351361.Google Scholar
Dirac, P. A. M. 1930. Proceedings of Royal Society A 126 (360): 692.Google Scholar
[29] Cook, C. Sharp, and Langer, Lawrence M.. 1948The Beta-Spectra of Cu64 as a Test of the Fermi Theory.Physical Review 73 (6): 601.Google Scholar
Reitz, John R. 1950. ‘The Effect of Screening on Beta-ray Spectra and Internal Conversion.Physical Review 77 (1): 10.Google Scholar
[30] Orear, J., Harris, G. and Taylor, S. 1956. Spin and Parity Analysis of bevatron τ Mesons. Physical Review, 102(6): 1676.Google Scholar
[31] Lee, T. D., and Yang, C. N.. 1956. ‘Mass Degeneracy of the Heavy Mesons.Physical Review 102 (1): 290.Google Scholar
[32] Lee, Tsung-Dao, and Yang, Chen-Ning. 1956. ‘Question of Parity Conservation in Weak Interactions.Physical Review 104 (1): 254.Google Scholar
[33] Wu, Chien-Shiung, Ernest Ambler, Hayward, R. W., Hoppes, D. D., and Percy Hudson, Ralph. 1957. ‘Experimental Test of Parity Conservation in Beta Decay.Physical Review 105 (4): 1413.Google Scholar
[34] Frauenfelder, H., Bobone, R., Von Goeler, E., Levine, N., Lewis, H. R., Peacock, R. N., Rossi, A., and De Pasquali, G.. 1957. ‘Parity and the Polarization of Electrons from Co60.Physical Review 106 (2): 386.CrossRefGoogle Scholar
[35] Page, Lorne A., and Heinberg, Milton. 1957. ‘Measurement of the Longitudinal Polarization of Positrons Emitted by Sodium-22.Physical Review 106 (6): 1220.Google Scholar
[36] Osipowicz, A. et al. [KATRIN Collaboration]. 2001. ‘KATRIN: A next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass.’ arXiv preprint hep-ex/0109033.Google Scholar
[37] Salam, A., Il Nuovo Cim. X299 (1957); Conf. Proc. C 680519, 367 (1968).Google Scholar
[38] Landau, Lev. 1957. ‘On the Conservation laws for Weak Interactions.Nuclear Physics 3 (1): 127131.CrossRefGoogle Scholar
[39] Lee, Tsung D., and Ning Yang, Chen. 1957. ‘Parity Nonconservation and a Two-component Theory of the Neutrino.Physical Review 105 (5): 1671.Google Scholar
[40] Weyl, Hermann. 1929. ‘Elektron Und Gravitation. I.Zeitschrift fúr Physik 56 (5-6): 330352.Google Scholar
[41] Sudarshan, Eo CG, and Marshak, R. E.. 1958. ‘Chirality Invariance and the Universal Fermi Interaction.Physical Review 109 (5): 1860.Google Scholar
[42] Feynman, Richard P., and Gell-Mann, Murray. 1958. ‘Theory of the Fermi Interaction.Physical Review 109 (1): 193.Google Scholar
[43] Sakurai, Jun John. 1958. ‘Mass Reversal and Weak Interactions.Il Nuovo Cimento (1955-1965) 7 (5): 649660.Google Scholar
[44] Gershtein, S. S., and Zeldovich, Ya B.. 1955. ‘Meson Corrections in the Theory of Beta Decay.Zh. Eksp. Teor. Fiz. 2: 698699. [Sov. Phys. JETP 2, 576 (1956)].Google Scholar
[45] Goldberger, M. L., and Treiman, S. B.. 1958. ‘Decay of the π Meson.Physical Review 110 (5): 1178.Google Scholar
[46] Nambu, Yoichiro. 1960. ‘Axial Vector Current Conservation in Weak Interactions.Physical Review Letters 4 (7): 380.Google Scholar
[47] Adler, Stephen L. 1965. ‘Calculation of the Axial-vector Coupling Constant Renormalization in β Decay.Physical Review Letters 14 (25): 1051.Google Scholar
[48] Weisberger, William I. 1965. ‘Renormalization of the Weak Axial-vector Coupling Constant.Physical Review Letters 14 (25): 1047.Google Scholar
[49] Schwinger, Julian. 1957. ‘A Theory of the Fundamental Interactions.Ann. Phys 2 (407): 34.Google Scholar
[50] Bludman, Sidney A. 1958. ‘On the Universal Fermi Interaction.Il Nuovo Cimento (1955-1965) 9 (3): 433445.Google Scholar
[51] Lopes, J. Leite. 1958. ‘A model of the Universal Fermi Interaction.Nuclear Physics 8: 234236.Google Scholar
[52] Heisenberg, W. 1938. ‘Úber die in der Theorie der Elementarteilchen Auftretende Universelle Lánge.Annalen der Physik 424 (1-2): 2033.Google Scholar
[53] Tomonaga, S., Tamaki, H.. 1937. Sei. Papers Inst. Phys.-Chem. Res. (Tokyo) 33: 288.Google Scholar
[54] Leipunski, A. I. 1936. Proc. Cam. Phil. Soc. 32: 301.Google Scholar
[55] Fierz, M. 1936. Helv. Phys. Aeta 9: 245.Google Scholar
[56] Nishijima, Kazuhiko. 1955. ‘Charge Independence Theory of V Particles.Progress of Theoretical Physics 13 (3): 285304.Google Scholar
[57] Gell-Mann, M. 1956. Nuovo Cim. 4 (S2): 848.Google Scholar
[58] Gell-Mann, Murray, and Lévy, Maurice. 1960. ‘The Axial Vector Current in Beta Decay.Il Nuovo Cimento (1955–1965) 16 (4): 705726.Google Scholar
[59] Cabibbo, Nicola. 1963. ‘Unitary Symmetry and Leptonic Decays.Physical Review Letters 10 (12): 531.Google Scholar
[60] Sakata, Shoichi. 1956. ‘On a Composite Model for the New Particles.Progress of theoretical physics 16 (6): 686688.Google Scholar
[61] Gell-Mann, M. and Pais, A.. 1955. Physical Review 97 (5): 1387.Google Scholar
[62] Zweig, G. 1964. CERN Geneva TH-401.Google Scholar
[63] Zweig, G., and An, S. U.. 1980. ‘Model for strong interaction symmetry and its breaking.’ In Developments in the Quark Theory of Hadrons, Volume 1. Edited by Lichtenberg, D. and Rosen, S.. p. 22101.Google Scholar
[64] Glashow, Sheldon L., Iliopoulos, Jean, and Maiani, Luciano. 1970. ‘Weak Interactions with Lepton-hadron Symmetry.Physical review D 2 (7): 1285.Google Scholar
[65] Bjørken, B. J., and Glashow, Sheldon L.. 1964. ‘Elementary Particles and SU (4).Physics Letters 11: 255257.Google Scholar
[66] Aubert, Jean-Jacques, Becker, U., Biggs, P. J., Burger, J., Chen, M., Everhart, G., Goldhagen, P. et al. 1974. ‘Experimental Observation of a Heavy Particle J.Physical Review Letters 33 (23): 1404.Google Scholar
[67] Augustin, J-E., Boyarski, Adam M., Breidenbach, Martin, Bulos, F., Dakin, J. T., Feldman, G. J., Fischer, G. E. et al. 1974. ‘Discovery of a Narrow Resonance in e+ e Annihilation.Physical Review Letters 33 (23): 1406. [Adv. Exp. Phys. 5, 141 (1976)].Google Scholar
[68] Herb, S. W., Hom, D. C., Lederman, L. M., Sens, J. C., Snyder, H. D., Yoh, J. K., Appel, J. A. et al. 1977. ‘Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-nucleus Collisions.Physical Review Letters 39 (5): 252.Google Scholar
[69] Behrends, S., Chadwick, K., Chauveau, J., Ganci, P., Gentile, T., Guida, Jan M., Guida, Joan A. et al. 1983. ‘Observation of Exclusive Decay Modes of b-flavored Mesons.Physical Review Letters 50 (12): 881.Google Scholar
[70] Kobayashi, M., and Maskawa, T.. 1973. Prog. Theor. Phys. 49: 652.Google Scholar
[71] Maki, Ziro, Nakagawa, Masami, and Sakata, Shoichi. 1962. ‘Remarks on the Unified Model of Elementary Particles.Progress of Theoretical Physics 28 (5): 870880.Google Scholar
[72] Budde, R., Chretien, M., Leitner, J., Samios, N. P., Schwartz, M., and Steinberger, J.. 1956. ‘Properties of Heavy Unstable Particles Produced by 1.3-Bev π Mesons.Physical Review 103 (6): 1827.Google Scholar
[73] Christenson, James H., Cronin, James W., Fitch, Val L., and Turlay, René. 1964. ‘Evidence for the 2 π Decay of the K 2 0 Meson.Physical Review Letters 13 (4): 138.Google Scholar
[74] Bethe, Hans, and Peierls, Rudolph. 1934. ‘The “Neutrino”.Nature 133 (3362): 532532.Google Scholar
[75] Rodeback, George W., and Allen, James S.. 1952. ‘Neutrino Recoils Following the Capture of Orbital Electrons in A 37.Physical Review 86 (4): 446.Google Scholar
[76] Snell, Arthur H., and Frances Pleasonton. 1955. ‘Spectrometry of Recoils from Neutrino Emission in Argon-37.Physical Review 97 (1): 246.Google Scholar
[77] Jaeobsen, J. C., Kofoed-Hansen, O., Det. Kgl. Viedensk, Danske. 1945. Selskab. Mat. Fys. Medd. 23 (12): 1.Google Scholar
[78] Sherwin, Chalmers W. 1948. ‘Momentum Conservation in the Beta-decay of P 32 and the Angular Correlation of Neutrinos with Electrons.Physical Review 73 (3): 216.Google Scholar
[79] Crane, H. R., and Halpern, J.. 1938. ‘New Experimental Evidence for the Existence of a Neutrino.Physical Review 53 (10): 789.CrossRefGoogle Scholar
[80] Pontecorvo, B. 1946. Report PD-205. CRL, Canada: Chalk River Laboratory.Google Scholar
[81] Alvarez, L. W. 1949. ‘University of California Radiation Lab.’ Report No UCRL-328.Google Scholar
[82] Fermi, Enrico. 1950 Nuclear physics: A Course given by Enrico Fermi at the University of Chicago. University of Chicago Press.Google Scholar
[83] Reines, F. and Cowan, C. L.. 1953. Physical Review 92: 830.Google Scholar
[84] Cowan Jr, C. L., Reines, F., Harrison, F. B., Anderson, E. C., and Hayes, F. N.. 1953. ‘Large Liquid Scintillation Detectors.Physical Review 90 (3): 493.Google Scholar
[85] Reines, Frederick, and Cowan, Clyde L.. 1956. ‘The Neutrino.Nature 178 (4531): 446449.Google Scholar
[86] Reines, Frederick, and Cowan, Clyde L. Jr. 1959. ‘Free Antineutrino Absorption Cross Section. I. Measurement of the Free Antineutrino Absorption Cross Section by Protons.Physical Review 113 (1): 273.Google Scholar
[87] Davis Jr, Raymond. 1952. ‘Nuclear Recoil Following Neutrino Emission from Beryllium 7.Physical Review 86 (6): 976.Google Scholar
[88] Davis Jr, Raymond. 1955. “Attempt to Detect the Antineutrinos from a Nuclear Reactor by the Cl37(ν, e) A37 Reaction.Physical Review 97 (3): 766.Google Scholar
[89] Neddermeyer, Seth H., and Anderson, Carl D.. 1937. ‘Note on the Nature of Cosmic-ray Particles.Physical Review 51 (10): 884.Google Scholar
[90] Street, J. C., and Stevenson, E. C.. 1937. ‘New Evidence for the Existence of a Particle of Mass Intermediate between the Proton and Electron.Physical Review 52 (9): 1003.Google Scholar
[91] Nishina, Yoshio, Takeuchi, Masa, and Ichimiya, Torao. 1937. ‘On the Nature of Cosmic-ray Particles.Physical Review 52 (11): 1198.Google Scholar
[92] Yukawa, Hideki. 1935. ‘On the Interaction of Elementary Particles. I.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 17: 4857.Google Scholar
[93] Lattes, Cesare Mansueto Giulio, Muirhead, Hugh, Occhialini, Giuseppe P. S., and Frank Powell, Cecil. 1947. ‘Processes involving charged mesons.Nature 159 (4047): 694697.Google Scholar
[94] Perkins, D. H. 1947. ‘Nuclear Disintegration by Meson Capture.Nature 159 (4030): 126127.Google Scholar
[95] Occhialini, G. P. S., and Powell, C. F.. 1947. ‘Nuclear Disintegrations Produced by Slow Charged Particles of Small Mass.Nature 159 (4032): 186190.Google Scholar
[96] Tanikawa, Y. 1947. ‘On the Cosmics-Ray Meson and the Nuclear Meson.Progress of Theoretical Physics 2 (4): 220221.Google Scholar
[97] Marshak, R. E., and Bethe, Hans A.. 1947. ‘On the Two-meson Hypothesis.Physical Review 72 (6): 506.Google Scholar
[98] Conversi, Marcello, Pancini, Ettore, and Piccioni, Oreste. 1947. ‘On the Disintegration of Negative Mesons.Physical Review 71 (3): 209.Google Scholar
[99] Sakata, S., and Inoue, T.. 1946. Progress of Theoretical Physics 1: 143.Google Scholar
[100] Hincks, E. P., and Pontecorvo, B.. 1949. ‘The Penetration of μ-Meson Decay Electrons and Their Bremsstrahlung Radiation.Physical Review 75 (4): 698.Google Scholar
[101] Steinberger, J. 1948. ‘On the Range of the Electrons in Meson Decay.Physical Review 74 (4): 500.Google Scholar
[102] Leighton, Robert B., Anderson, Carl D., and Seriff, Aaron J.. 1949. ‘The Energy Spectrum of the Decay Particles and the Mass and Spin of the Mesotron.Physical Review 75 (9): 1432.Google Scholar
[103] Feinberg, G. 1958. ‘Decays of the μ Meson in the Intermediate-Meson Theory.Physical Review 110 (6): 1482.Google Scholar
[104] Oneda, S., Pati, J. C., and Sakita, B.. 1960. ‘|I| = ½ Rule and the Weak Four-Fermion Interaction.Physical Review 119 (1): 482.Google Scholar
[105] Pontecorvo, B. 1960. Soviet Physics JETP 10: 12361240. [Zh. Eksp. Teor. Fiz. 37, 1751 (1959)].Google Scholar
[106] Schwartz, Melvin. 1960. ‘Feasibility of using High-energy Neutrinos to Study the Weak Interactions.Physical Review Letters 4 (6): 306.Google Scholar
[107] Lee, T. D., and Yang, Chen-Ning. 1960. ‘Theoretical Discussions on Possible High-energy Neutrino Experiments.Physical Review Letters 4 (6): 307.Google Scholar
[108] Cabibbo, Nicola, and Gatto, Raul. 1961. ‘Consequences of Unitary Symmetry for Weak and Electromagnetic Transitions.Il Nuovo Cimento (1955–1965) 21 (5): 872877.CrossRefGoogle Scholar
[109] Yamaguchi, Yoshio. 1960. ‘Interactions Induced by High Energy Neutrinos.Progress of Theoretical Physics 23 (6): 11171137.Google Scholar
[110] Danby, Gaillard, Maurice Gaillard, Jean, Goulianos, Konstantin, Lederman, Leon M., Mistry, N., Schwartz, M., and Steinberger, J.. 1962. ‘Observation of High-energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos.Physical Review Letters 9 (1): 36.Google Scholar
[111] Bienlein, J. K. et al. 1964. Physics Letters 13: 80.Google Scholar
[112] Pontecorvo, Bruno. 1947. ‘Nuclear Capture of Mesons and the Meson Decay.Physical Review 72 (3): 246.Google Scholar
[113] Puppi, G. 1948. ‘Sui Mesoni dei Raggi Cosmici.Il Nuovo Cimento (1943–1954) 5 (6): 587588.Google Scholar
[114] Klein, O. 1948. ‘Mesons and Nucleons.897.Google Scholar
[115] Tiomno, Jayme, and John, A. 1949. Wheeler. ‘Energy Spectrum of Electrons from Meson Decay.Reviews of Modern Physics 21 (1): 144.Google Scholar
[116] Perl, Martin L., Abrams, G. S., Boyarski, A. M., Breidenbach, Martin, Briggs, D. D., Bulos, F., Chinowsky, William et al. 1975. ‘Evidence for Anomalous Lepton Production in e+ − e Annihilation.Physical Review Letters 35 (22): 1489.CrossRefGoogle Scholar
Perl, Martin L., Feldman, G. J., Abrams, G. S., Alam, M. S., Boyarski, A. M., Breidenbach, Martin, Bulos, F. et al. 1976. ‘Properties of anomalous events produced in e+ e annihilation.Physics Letters B 63 (4): 466470.Google Scholar
[117] Tanabashi, Masaharu, Hagiwara, K., Hikasa, K., Nakamura, K., Sumino, Y., Takahashi, F., Tanaka, J. et al. 2018. ‘Review of Particle Physics.Physical Review D 98 (3): 030001.Google Scholar
[118] Kodama, K., Ushida, N., Andreopoulos, C., Saoulidou, N., Tzanakos, G., Yager, P., Baller, B. et al. 2001. ‘Observation of Tau Neutrino Interactions.Physics Letters B 504 (3): 218224.Google Scholar
[119] Agafonova, N., Aleksandrov, A., Altinok, O., Ambrosio, M., Anokhina, A., Aoki, S., Ariga, A. et al. 2010. ‘Observation of a First ντ Candidate Event in the OPERA Experiment in the CNGS Beam.Physics Letters B 691 (3): 138145.Google Scholar
[120] Li, Z., Abe, K., Bronner, C., Hayato, Y., Ikeda, M., Iyogi, K., Kameda, J. et al. 2018. ‘Measurement of the Tau Neutrino Cross Section in Atmospheric Neutrino Oscillations with Super-Kamiokande.Physical Review D 98 (5): 052006.Google Scholar
[121] Majorana, E. 1937. Il Nuovo Cimento 14: 171184.Google Scholar
[122] Bergkvist, Karl-Erik. 1972. ‘A High-luminosity, High-resolution Study of the End-point Behaviour of the Tritium β-Spectrum (I). Basic Experimental Procedure and Analysis with Regard to Neutrino Mass and Neutrino Degeneracy.Nuclear Physics B 39: 317370.Google Scholar
[123] Tretyakov, E. F. 1975. Izv. Akad. Nauk. USSR, Ser. Fiz. 39: 583. Proc. Intern. Nuetrino Conf. (Aachen, 1976) pp. 663–670.Google Scholar
[124] Lubimov, V. A., Novikov, E. G., Nozik, V. Z., Tretyakov, E. F., and Kosik, V. S.. 1980. ‘An Estimate of the νe Mass from the β-spectrum of Tritium in the Valine Molecule.Physics Letters B 94 (2): 266268. Google Scholar
[125] Stueckelberg, E. C. G. 1936. Nature 131: 1070.Google Scholar
Helv. Phys. Acta. 9: 533 (1936).Google Scholar
[126] Moller, C. 1937. Phys. Zeits d. Sowjetunion 11: 9.Google Scholar
[127] Bambynek, W., Behrens, H., Chen, M. H., Crasemann, B., Fitzpatrick, M. L., Ledingham, K. W. D., Genz, H., Mutterer, M., and Intemann, R. L.. 1977. ‘Orbital Electron Capture by the Nucleus.Reviews of Modern Physics 49 (1): 77.Google Scholar
Bambynek, W., Behrens, H., Chen, M. H., Crasemann, B., Fitzpatrick, M. L., Ledingham, K. W. D., Genz, H., Mutterer, M., and Intemann, R. L.. 1977. ‘Erratum: Orbital Electron Capture by the Nucleus.Reviews of Modern Physics 49 (4): 961.Google Scholar
[128] De Rújula, Alvaro. 1981. ‘A New Way to Measure Neutrino Masses.Nuclear Physics B 188 (3): 414458.Google Scholar
[129] Aker, M., Altenmüller, K., Arenz, M., et al., [KATRIN Collaboration]. 2019. ‘Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.Physical Review Letters 123 (22): 221802. [arXiv:1909.06048].Google Scholar
[130] Assamagan, K., Brönnimann, Ch, Daum, M., Forrer, H., Frosch, R., Gheno, P., Horisberger, R. et al. 1996. ‘Upper Limit of the Muon-neutrino Mass and Charged-pion Mass from Momentum Analysis of a Surface Muon Beam.Physical Review D 53 (11): 6065.Google Scholar
[131] Anderhub, H. B., Boecklin, J., Hofer, H., Kottmann, F., Le Coultre, P., Makowiecki, D., Reist, H. W., Sapp, B., and Seiler, P. G.. 1982. ‘Determination of an Upper Limit of the Mass of the Muonic Neutrino from the Pion Decay in Flight.Physics Letters B 114 (1): 7680.Google Scholar
[132] Barate, R., and Collaboration, Aleph. 1998. ‘An Upper Limit on the τ Neutrino Mass from Three-and Five-prong Tau Decays.The European Physical Journal C-Particles and Fields 2 (3): 395406.Google Scholar
[133] Albrecht, H., Binder, U., Böckmann, P., Gláser, R., Harder, G., Krüger, A., Nippe, A. et al. 1988. ‘An Improved Upper Limit on the ντ-mass from the Decay π → π π π π+ π+ ντ.Physics Letters B 202 (1): 149153.Google Scholar
[134] Cinabro, D., Henderson, S., Kinoshita, K., Liu, T., Saulnier, M., Wilson, R., Yamamoto, H. et al. 1993. ‘Limit on the Tau Neutrino Mass.Physical review letters 70 (24): 3700.Google Scholar
[135] Alexander, Gideon, Allison, J., Altekamp, N., Ametewee, K., Anderson, K. J., Anderson, S., Arcelli, S. et al. 1996. ‘Upper Limit on the ντ mass from τ → 3hντ Decays.Zeitschrift für Physik C: Particles and Fields 72 (2): 231.Google Scholar
[136] Dylla, H. Frederick, and King, John G.. 1973. ‘Neutrality of Molecules by a New Method.Physical Review A 7 (4): 1224. Google Scholar
[137] Zorn, Jens C., Chamberlain, George E., and Hughes, Vernon W.. 1963. ‘Experimental Limits for the Electron-Proton Charge Difference and for the Charge of the Neutron.Physical Review 129 (6): 2566.Google Scholar
[138] Barbiellini, Guido, and Cocconi, Giuseppe. 1987. ‘Electric Charge of the Neutrinos from SN1987A.Nature 329 (6134): 2122.Google Scholar
[139] Degrassi, G., Sirlin, A., and Marciano, W. J.. 1989. ‘Effective Electromagnetic form Factor of the Neutrino.Physical Review D 39 (1): 287.Google Scholar
[140] Auerbach, L. B., Burman, R. L., Caldwell, D. O., Church, E. D., Donahue, J. B., Fazely, A., Garvey, G. T. et al. 2001. ‘Measurement of Electron-neutrino Electron Elastic Scattering.Physical Review D 63 (11): 112001.Google Scholar
[141] Deniz, M., Lin, S. T., Singh, V., Li, J., Wong, H. T., L, S. E.. Bilmis, C. U. K., Chang, C. Y. et al. 2010. ‘Measurement of ν e-electron Scattering Cross Section with a CsI (Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor.Physical Review D 81 (7): 072001.Google Scholar
[142] Hirsch, Martin, Nardi, Enrico, and Restrepo, Diego. 2003. ‘Bounds on the Tau and Muon Neutrino Vector and Axial Vector Charge Radius.Physical Review D 67 (3): 033005.Google Scholar
[143] Krakauer, D. A., Talaga, R. L., Allen, R. C., Chen, H. H., Hausammann, R., Lee, W. P., Lu, X-Q. et al. 1990. ‘Limits on the Neutrino Magnetic Moment from a Measurement of Neutrino-electron Elastic Scattering.Physics Letters B 252 (1): 177180.Google Scholar
[144] Dorenbosch, et al. [CHARM Collaboration], Z. Phys. C 41, 567 (1989) Erratum: [Z.Phys. C 51, 142 (1991)].Google Scholar
[145] Ahrens, L. A., Aronson, S. H., Connolly, P. L., Gibbard, B. G., Murtagh, M. J., Murtagh, S. J., Terada, S. et al. 1990. ‘Determination of Electroweak Parameters from the Elastic Scattering of Muon Neutrinos and Antineutrinos on Electrons.Physical Review D 41 (11): 3297.Google Scholar
[146] Derbin, A. V. 1994. ‘Restriction on the Magnetic Dipole Moment of Reactor Neutrinos.Physics of Atomic Nuclei 57 (2): 222225.Google Scholar
[147] Derbin, A. V., Popeko, L. A., Chernyi, A. V., and Shishkina, G. A.. 1986. ‘New Experiment on Elastic Scattering of Reactor Neutrinos by Electrons.JETP Lett 43(4).Google Scholar
Vidyakin, G. S., Vyrodov, V. N., Gurevich, I. I., Kozlov, Yu V., Martemyanov, V. P., Sukhotin, S. V., Tarasenkov, V. G., Turbin, E. V., and Kh Khakhimov, S.. 1992. ‘Limitations on the Magnetic Moment and Charge Radius of the Electron-anti-neutrino.JETP Lett 55 (4).Google Scholar
Popeko, et al. 1993. Pisma Zh. Eksp. Teor. Fiz. 57: 755.Google Scholar
[148] Kyuldjiev, Assen V. 1984. ‘Searching for Effects of Neutrino Magnetic Moments at Reactors and Accelerators.Nuclear Physics B 243 (3): 387397.Google Scholar
[149] Grotch, H., and Wallace Robinett, Richard. 1988. ‘Limits on the τ Neutrino Electromagnetic Properties from Single Photon Searches at e+ e Colliders.Zeitschrift für Physik C Particles and Fields 39 (4): 553556.Google Scholar
[150] Abreu, Paulo, Adam, W., Adye, T., Agasi, E., Ajinenko, I., Aleksan, R., Alekseev, G. D. et al. 1997. ‘Search for New Phenomena Using Single Photon Events at LEP1.Zeitschrift für Physik C Particles and Fields 74: 577586.Google Scholar
[151] Acciarri, M., Aguilar-Benitez, M., Ahlen, S., Alcaraz, J., Alemanni, G., Allaby, J., Aloisio, A. et al. 1997. ‘Search for New Physics in Energetic Single Photon Production in e+ e Annihilation at the Z Resonance.Physics Letters B 412 (1-2): 201209.Google Scholar
[152] Cooper-Sarkar, Amanda M., Sarkar, Subir, Guy, J., Venus, W., Hulth, P. O., and Hultqvist, K.. 1992. ‘Bound on the Tau Neutrino Magnetic Moment from the BEBC Beam Dump Experiment.Physics Letters B 280 (1-2): 153158.Google Scholar
[153] Goldhaber, Maurice, Grodzins, L., and Sunyar, A. W.. 1958. ‘Helicity of Neutrinos.Physical review 109 (3): 1015.Google Scholar
[154] Klein, O. 1939. In Proc. Con. ‘Les Nouvelles Theorische la Physique’, Warsaw (Paris), p. 81.Google Scholar
[155] Burns, R., Goulianos, K., Hyman, E., Lederman, L., Lee, W., Mistry, N., Rettberg, J., Schwartz, M., Sunderland, J., and Danby, G.. 1965. ‘Search for Intermediate Bosons in High-energy Neutrino Interactions.Physical Review Letters 15 (1): 42.Google Scholar
[156] Block, M. M. 1964. ‘Neutrino Interactions and a Unitary Universal Model.Physical Review Letters 12 (10): 262.Google Scholar
[157] Weinberg, Steven. 1967. ‘A Model of Leptons.Physical review letters 19 (21): 1264.Google Scholar
[158] Higgs, Peter W. 1964. ‘Broken Symmetries and the Masses of Gauge Bosons.Physical Review Letters 13 (16): 508.Google Scholar
[159] Englert, Franc¸ois, and Brout, Robert. 1964. ‘Broken Symmetry and the Mass of Gauge Vector Mesons.Physical Review Letters 13 (9): 321.Google Scholar
[160] Guralnik, Gerald S., Hagen, Carl R., and Kibble, Thomas WB. 1964. ‘Global Conservation Laws and Massless Particles.Physical Review Letters 13 (20): 585.Google Scholar
[161] Kibble, Tom WB. 1967. ‘Symmetry Breaking in Non-Abelian Gauge Theories.Physical Review 155 (5): 1554.Google Scholar
[162] Goldstone, Jeffrey. 1961. ‘Field theories with Superconductor Solutions.Il Nuovo Cimento (1955–1965) 19 (1): 154164.Google Scholar
[163] Nambu, Yoichiro, and Jona-Lasinio, Giovanni. 1961. ‘Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. II.Physical Review 124 (1): 246.Google Scholar
[164] Hasert, F. J., Kabe, S., Krenz, W., Von Krogh, J., Lanske, D., Morfin, J., Schultze, K. et al. 1974. ‘Observation of Neutrino-like Interactions without Muon or Electron in the Gargamelle Neutrino Experiment.Nuclear Physics B 73 (1): 122.Google Scholar
[165] Cnops, A. M., Connolly, P. L., Kahn, S. A., Kirk, H. G., Murtagh, M. J., Palmer, R. B., Samios, N. P. et al. 1978. ‘Measurement of the Cross Section for the Process νμ + e → νμ + e at High Energies.Physical Review Letters 41 (6): 357.Google Scholar
Baker, N. J., Connolly, P. L., Kahn, S. A., Murtagh, M. J., Palmer, R. B., Samios, N. P., Tanaka, M. et al. 1989. ‘Measurement of Muon-neutrino—electron Elastic Scattering in the Fermilab 15-foot Bubble Chamber.Physical Review D 40 (9): 2753.Google Scholar
[166] Heisterberg, R. H., Mo, L. W., Nunamaker, T. A., Lefler, K. A., Skuja, A., Abashian, A., Booth, N. E., Chang, C. C., Li, C., and Wang, C. H.. 1980. ‘Measurement of the Cross Section for νμ + e → νμ + e.Physical Review Letters 44 (10): 635.Google Scholar
[167] Faissner, H., Fasold, H. G., Frenzel, E., Hansl, T., Hoffmann, D., Maull, K., Radermacher, E. et al. 1978. ‘Measurement of Muon-neutrino and-antineutrino Scattering off Electrons.Physical Review Letters 41 (4): 213.Google Scholar
[168] Hasert, F. J., et al. [Gargamelle Neutrino Collaboration]. 1973. Physics Letters B 46: 121 [138].Google Scholar
[169] Prescott, C. Y. et al. 1978. Physics Letters B 77: 347.Google Scholar
[170] Arnison, G., Astbury, A., Aubert, B., Bacci, C., Bauer, G., Bezaguet, A., Bóck, R. et al. 1983. 1983. ‘Experimental Observation of Isolated Large Transverse Energy Electrons with associated missing energy at s = 540 GeV.Physics Letters B 122 (1): 103116.Google Scholar
[171] Banner, M., Madsen, B., Chollet, J. C., Siegrist, J. L., Hänni, H., Di Lella, L., Steiner, H. M. et al. 1983. ‘Observation of Single Isolated Electrons of High Transverse Momentum in Events with Missing Transverse Energy at the CERN p p collider.’ Phys. Lett. B 122, no. CERN-EP-83-25: 476485.Google Scholar
[172] Abreu, Paulo, and DELPHI Collaboration. 2000. ‘Measurements of the Z Partial Decay Width into cc and Multiplicity of Charm Quarks per β-decay.The European Physical Journal C-Particles and Fields 12 (2): 225241.Google Scholar
[173] Barate, R., and ALEPH collaboration. 2000. ‘Measurement of the Z Resonance Parameters at LEP.The European Physical Journal C-Particles and Fields 14 (1): 150.CrossRefGoogle Scholar
[174] Acciarri, M., and L3 Collaboration. 2000. ‘Measurements of Cross Sections and Forward-backward Asymmetries at the Z Resonance and Determination of Electroweak Parameters.The European Physical Journal C-Particles and Fields 16 (1): 140.Google Scholar
[175] Tevatron New Physics Higgs Working Group [CDF and D0 Collaborations]. 2012. FERMILAB-CONF-12-318-E; CDF Note 10884; D0 Note 6348. arXiv:1207. 0449 [hep-ex].Google Scholar
[176] Chatrchyan, S. [CMS collaboration]. 2012. Physics Letters B 716 (30).Google Scholar
[177] ATLAS Collaboration, and Collaboration, G.. ‘Aad et al. 2012. ‘Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS detector at the LHC, Phys. Lett. B 716: 1–29.Google Scholar
[178] Aad, G., et al. [ATLAS and CMS Collaborations]. 2016. Journal of High Energy Physics 1608: 45.Google Scholar
[179] B. Pontecorvo, B. 1957. Sov. Phys. JETP 6: 429. [Zh. Eksp. Teor. Fiz. 33: 549 (1957)]Google Scholar
[180] Gribov, V., and Pontecorvo, B.. 1969. ‘Neutrino Astronomy and Lepton Charge.Physics Letters B 28 (7): 493496.Google Scholar
[181] Bahcall, J. N., and Frautschi, S. C.. 1969. Physics Letters. B 29: 623.Google Scholar
[182] Bahcall, John N. 1989. Neutrino astrophysics. Cambridge University Press.Google Scholar
[183] Nakamura, K., Kajita, T., Nakahata, M., Suzuki, A.. 1994. ‘Kamiokande.’ In Fukugita, M. and Suzuki, A., eds. Physics and Astrophysics of Neutrinos. Tokyo: Springer.Google Scholar
[184] Bionta, R. M., Blewitt, G., Bratton, C. B., Cortez, B. G., Errede, S., Forster, G. W., Gajewski, W. et al. 1983. ‘Search for Proton Decay into e+ π0.Physical Review Letters 51 (1): 27.Google Scholar
[185] Ahmad, Q. Retal, Allen, R. C., Andersen, T. C., Anglin, J. D., Bühler, G., Barton, J. C., Beier, E. W. et al. 2001. ‘Measurement of the Rate of νe + d → p + p + e Interactions Produced by B 8 Solar Neutrinos at the Sudbury Neutrino Observatory.Physical Review Letters 87 (7): 071301.Google Scholar
[186] Wolfenstein, Lincoln. 1979. ‘Neutrino Oscillations and Stellar Collapse.Physical Review D 20 (10): 2634.Google Scholar
[187] Mikheev, S. P., and Yu Smirnov, A.. 1985. ‘Resonance Enhancement of Oscillations in Matter and Solar Neutrino Spectroscopy.Soviet Journal of Nuclear Physics 42 (6): 913917.Google Scholar
Mikheev, S. P., and Yu Smirnov, A.. 1985. ‘Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos.Yadernaya Fizika 42 (6): 14411448.Google Scholar
[188] Bethe, Hans Albrecht. 1986. ‘Possible Explanation of the Solar-neutrino Puzzle.Physical Review Letters 56 (12): 1305.Google Scholar
[189] Böser, S., et al. 2019. arXiv:1906.01739 [hep-ex].Google Scholar
[190] Giunti, Carlo, and Lasserre, Thierry. 2019. ‘eV-scale Sterile Neutrinos.Annual Review of Nuclear and Particle Science 69: 163190. doi:10.1146/annurev-nucl-101918-023755, arXiv:1901.08330 [hep-ph].Google Scholar
[191] Diaz, A., Argüelles, C. A., Collin, G. H., Conrad, J. M., and Shaevitz, M. H.. 2019. ‘Where Are We With Light Sterile Neutrinos?.’ arXiv preprint arXiv:1906.00045 [hep-ex].Google Scholar
[192] Klein, O. 1926. ‘Theory of Relativity, Z.Phys 37: 895. [Surveys High Energ. Phys. 5, 241 (1986)].Google Scholar
[193] Gordon, W. 1926. ‘The Compton Effect According to Schrödinger's Theory.’ Z. Phys (40): 117Á–133.Google Scholar
[194] Pauli, W., and Weisskopf, V. F.. 1934. Helv. Phys. Acta 7: 709.Google Scholar
[195] Lorenz, L. 1867. ‘Ueber die Identität der Schwingungen des Lichts mit den elektrischen Strömen.Annalen der Physik 207 (6): 243263. [XXXVIII. On the identity of the vibrations of light with electrical currents, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34: 230, 287–301] doi: 10.1080/ 14786446708639882Google Scholar
[196] Dirac, Paul Adrien Maurice. 1936. ‘Relativistic Wave Equations.Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 155 (886): 447459.Google Scholar
[197] Fierz, Markus, and Pauli, Wolfgang Ernst. 1939. ‘On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field.Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 173 (953): 211232.Google Scholar
[198] Bargmann, V., and Wigner, E. P.. 1948. Proc. Nat. Acad. Sci. 34: 211.Google Scholar
[199] Duffin, R. J. 1938. ‘On the Characteristic Matrices of Covariant Systems.Physical Review 54 (12): 1114.Google Scholar
[200] Kemmer, Nicholas. 1939. ‘The Particle Aspect of Meson Theory.Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 173 (952): 91116.Google Scholar
[201] Proca, A. 1936. Journal de Physique Archives, Radium 7 (8): 347. doi: 10.1051/jphysrad: 0193600708034700Google Scholar
[202] Rarita, William, and Julian Schwinger. 1941. ‘On a Theory of Particles with Half-integral Spin.’ Physical Review 60, no. 1: 61.Google Scholar
[203] Weinberg, S. 1965. In Deser, S. and Ford, K. W., eds. Lectures on Fields and Particles, Vol. 2, p. 405. [Brandeis University Summer Institute in Theoretical Physics]. New Jersey: Prentice-Hall.Google Scholar
[204] Ryder, L. H. 1987. Quantum Field Theory. Cambridge: Cambridge University Press.Google Scholar
[205] Bhabha, H. J. 1945. ‘Relativistic Wave Equations for the Elementary Particles.Reviews of Modern Physics 17 (2-3): 200.Google Scholar
[206] Harish-Chandra, H. C. 1948. ‘Relativistic equations for elementary particles.Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 192 (1029): 195218.Google Scholar
[207] Fermi, Enrico. 1934. ‘An Attempt of a Theory of Beta Radiation. 1.’ Z. Phys. 88, no. UCRL-TRANS-726: 161177.Google Scholar
[208] Yukawa, Hideki. 1950. ‘Quantum Theory of Non-local Fields. Part I. Free Fields.Physical Review 77 (2): 219.Google Scholar
[209] Yukawa, Hideki. 1950. ‘Quantum Theory of Non-local Fields. Part II. Irreducible Fields and their Interaction.Physical Review 80 (6): 1047.Google Scholar
[210] Mandl, F., and Shaw, G.. 2010. Quantum Field Theory, 2nd ed. Hoboken, New Jersey: Wiley-Blackwell.Google Scholar
[211] Bjorken, James D., and Drell, Sidney D.. 1965. Relativistic Quantum Mechanics. New York: McGraw-Hill.Google Scholar
[212] Noether, Emmy. 1918. ‘Invariante Variationsprobleme. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse pp. 235–257 (1918). Translated as ‘Invariant Variation Problems’ by M. A. Tavel.Transp. Theor. Stat. Phys 1: 183207.Google Scholar
[213] Gupta, Suraj N. 1950. ‘Theory of Longitudinal Photons in Quantum Electrodynamics.Proceedings of the Physical Society. Section A 63 (7): 681.Google Scholar
[214] Bleuler, K. 1950. ‘A New Method of Treatment of the Longitudinal and Scalar Photons.Helv. Phys. Acta 23: 567586.Google Scholar
[215] Dyson, Freeman J. 1949. ‘The Radiation Theories of Tomonaga, Schwinger, and Feynman.Physical Review 75 (3): 486.Google Scholar
[216] Wick, Gian-Carlo. 1950. ‘The Evaluation of the Collision Matrix.Physical Review 80 (2): 268.Google Scholar
[217] Bogolyubov, N. N., and Shirkov, D. V.. 1984. Introduction to the Theory of Quantized Fields [in Russian]. Moscow: Nauka.Google Scholar
[218] Greiner, W., and Reinhardt, J.. 2009. Quantum Electrodynamics. Berlin: Springer-Verlag.Google Scholar
[219] Fermi, E. 1933. Ricerca Seient. 4 (2): 491; Z. Phys. 88: 161; Nuovo Cimento 11: 1.Google Scholar
[220] Glashow, Sheldon L. 1961. ‘Partial-symmetries of Weak Interactions.Nuclear Physics 22 (4): 579588.Google Scholar
[221] Fukugita, M., and Yanagida, T.. 2003. Physics of Neutrinos: and Applications to Astrophysics. Berlin: Springer-Verlag.Google Scholar
[222] Winter, K. 2000. Neutrino Physics (Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology) 2nd ed. Cambridge: Cambridge University Press.Google Scholar
[223] Marshak, R. E., Riazuddin, M., and Ryan, C. P.. 1969. Theory of Weak Interactions in Particle Physics. New York: Wiley Interscience.Google Scholar
[224] Behrens, Heinrich, and Búhring, Wolfgang. 1982. Electron Radial Wave Functions and Nuclear Betadecay. No. 67. Oxford University Press, USA.Google Scholar
[225] Hardy, J. C., and Towner, I. S.. 2015. ‘Superallowed 0+ 0+ Nuclear β Decays: 2014 Critical Survey, with Precise Results for Vud and CKM Unitarity.Physical Review C 91 (2): 025501.Google Scholar
[226] Gonzalez-Alonso, M., Naviliat-Cuncic, O., and Severijns, N.. 2019. ‘New Physics Searches in Nuclear and Neutron β Decay.Progress in Particle and Nuclear Physics 104: 165223.Google Scholar
[227] Johnson, C. H., Pleasonton, Frances, and Carlson, T. A.. 1963. ‘Precision Measurement of the Recoil Energy Spectrum from the Decay of He6.Physical Review 132 (3): 1149.Google Scholar
[228] Adelberger, E. G., Ortiz, C., Garcıa, A., Swanson, H. E., Beck, M., Tengblad, O., Borge, M. J. G., Martel, I., and Bichsel, H.. 1999. ‘the “ISOLDE Collaboration”.Physical Review Letters 83: 1299.CrossRefGoogle Scholar
[229] Gorelov, A., Melconian, D., Alford, W. P., Ashery, D., Ball, G., Behr, J. A., Bricault, P. G. et al. 2005. ‘Scalar Interaction Limits from the β − ν Correlation of Trapped Radioactive Atoms.Physical Review Letters 94 (14): 142501.Google Scholar
[230] Wauters, Frederik, Kraev, I., ZákouckÝ, D., Beck, M., Breitenfeldt, M., De Leebeeck, V., Golovko, V. V. et al. 2010. ‘Precision Measurements of the Co 60 β-asymmetry Parameter in Search for Tensor Currents in Weak Interactions.Physical Review C 82 (5): 055502.Google Scholar
[231] Soti, Gergely, Wauters, F., Breitenfeldt, M., Finlay, P., Herzog, P., Knecht, A., Köster, U. et al. 2014. ‘Measurement of the β-asymmetry Parameter of 67Cu in Search for Tensor-type Currents in the Weak Interaction.Physical Review C 90 (3): 035502.Google Scholar
[232] Wauters, F., De Leebeeck, V., Kraev, I., Tandecki, M., Traykov, E., Van Gorp, S., Severijns, Natalis, and ZákouckÝ, D.. 2009. ‘β Asymmetry Parameter in the Decay of In 114.Physical Review C 80 (6): 062501.Google Scholar
[233] Carnoy, A. S., Deutsch, J., Girard, T. A., and Prieels, René. 1991. ‘Limits on Nonstandard Weak Currents from the Polarization of 14O and 10C Decay Positrons.Physical Review C 43 (6): 2825.Google Scholar
[234] Wichers, V. A., Hageman, T. R., Van Klinken, J., Wilschut, H. W., and Atkinson, D.. 1987. ‘Bounds on Right-handed Currents from Nuclear Beta Decay.Physical review letters 58 (18): 1821.Google Scholar
[235] Patrignani, C. P. D. G., Weinberg, D. H., Woody, C. L. et al. 2016. Chin. Phys. 40: 100001.Google Scholar
[236] Garwin, Richard L., Lederman, Leon M., and Weinrich, Marcel. 1957. ‘Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon.Physical Review 105 (4): 1415.Google Scholar
[237] Aron, Walter, and Zuchelli, A. J.. 1957. ‘Contribution to Lamb Shift Due to Finite Proton Size.Physical Review 105 (5): 1681.Google Scholar
[238] Renton, Peter. 1990. Electroweak Interactions: An Introduction to the Physics of Quarks and Leptons. Cambridge University Press.CrossRefGoogle Scholar
[239] Commins, Eugene D., and Bucksbaum, Philip H.. 1983. Weak Interactions of Leptons and Quarks. England: Cambridge University Press.Google Scholar
[240] Jackson, J. D., Treiman, S. B., and Wyld, H. W. Jr. 1957. ‘Coulomb Corrections in Allowed Beta Transitions.Nuclear Physics 4: 206212.Google Scholar
[241] Jackson, J. D., Treiman, S. B., and Wyld, H. W. Jr. 1957. ‘Possible Tests of Time Reversal Invariance in Beta Decay.Physical Review 106 (3): 517.Google Scholar
[242] Schopper, H. F. 1966. Weak Interactions and Nuclear Beta Decay. Amsterdam: North-Holland.Google Scholar
[243] Daniel, H. 1968. ‘Shapes of Beta-ray Spectra.Reviews of Modern Physics 40 (3): 659.Google Scholar
[244] Paul, H. 1970. ‘Least-squares Adjustment of the Coupling Constants in β-decay.Nuclear Physics A 154 (1): 160176.Google Scholar
[245] Brosi, A. R., Ketelle, B. H., Thomas, H. C., and Kerr, R. J.. 1959. ‘Decay Schemes of Sm145 and Pm145.Physical Review 113 (1): 239.Google Scholar
[246] Gerber, G., Newman, D., Rich, A., and Sweetman, E.. 1977. ‘Precision Measurement of Positron Polarization in 68Ga Decay Based on the use of a New Positron Polarimeter.Physical Review D 15 (5): 1189.Google Scholar
[247] Koks, F. W. J., and Van Klinken, J.. 1976. ‘Investigation on β-polarization at Low Velocities with β-particles from the Decay of Tritium.Nuclear Physics A 272 (1): 6181.Google Scholar
[248] Roesch, L. Ph, Telegdi, V. L., Truttmann, P., Zehnder, A., Grenacs, L., and Palffy, L.. 1982. ‘Direct Measurement of the Helicity of the Muonic Neutrino.American Journal of Physics 50 (10): 931935.Google Scholar
[249] Bopp, Peter, Dubbers, D., Hornig, L., Klemt, E., Last, J., Schütze, H., Freedman, S. J., and Schärpf, O.. 1986. ‘Beta-Decay Asymmetry of the Neutron and gA/gv .Physical Review Letters 56 (9): 919.Google Scholar
[250] Liaud, P., Schreckenbach, K., Kossakowski, R., Nastoll, H., Bussiere, A., Guillaud, J. P., and Beck, L.. 1997. ‘The Measurement of the Beta Asymmetry in the Decay of Polarized Neutrons.Nuclear Physics A 612 (1): 5381.Google Scholar
[251] Yerozolimsky, B., Kuznetsov, I., Mostovoy, Yu, and Stepanenko, I.. 1997. ‘Corrigendum: Corrected Value of the Beta-emission Asymmetry in the Decay of Polarized Neutrons Measured in 1990.Physics Letters B 412 (3-4): 240241.Google Scholar
[252] Mund, D., Márkisch, B., Deissenroth, M., Krempel, J., Schumann, Marc, Abele, H., Petoukhov, A., and Soldner, T.. 2013. ‘Determination of the Weak Axial Vector Coupling λ = gA /gV from a Measurement of the β-Asymmetry Parameter A in Neutron Veta Decay.Physical Review Letters 110 (17): 172502.Google Scholar
[253] Valverde, A. A., Brodeur, M., Ahn, T., Allen, J., Bardayan, D. W., Becchetti, F. D., Blankstein, D. et al. 2018. ‘Precision half-life Measurement of 11C: The Most Precise Mirror Transition FU Value.Physical Review C 97 (3): 035503.Google Scholar
[254] Kuznetsov, I. A., Serebrov, A. P., Stepanenko, I. V., Alduschenkov, A. V., Lasakov, M. S., Kokin, A. A., Mostovoi, Yu A., Yerozolimsky, B. G., and Dewey, Maynard S.. 1995. ‘Measurements of the Antineutrino Spin Asymmetry in Beta Decay of the Neutron and Restrictions on the Mass of a Right-handed Gauge Boson.Physical review letters 75 (5): 794.Google Scholar
[255] Serebrov, A. P., Kuznetsov, I. A., Stepanenko, I. V., Aldushchenkov, A. V., Lasakov, M. S., Mostovoi, Yu A., Erozolimskii, B. G. et al. 1998. ‘Measurement of the Antineutrino Escape Asymmetry with Respect to the Spin of the Decaying Neutron.Journal of Experimental and Theoretical Physics 86 (6): 10741082.Google Scholar
[256] Kreuz, Michael, Soldner, T., Baeßler, S., Brand, B., Glúck, F., Mayer, U., Mund, D. et al. 2005. ‘A Measurement of the Antineutrino Asymmetry B in Free Neutron Decay.Physics Letters B 619 (3-4): 263270.Google Scholar
[257] Schumann, Marc, Soldner, T., Deissenroth, M., Glúck, F., Krempel, J., Kreuz, M., Márkisch, B., Mund, D., Petoukhov, A., and Abele, H.. 2007. ‘Measurement of the Neutrino Asymmetry Parameter B in Neutron Decay.Physical Review Letters 99 (19): 191803.Google Scholar
[258] Fierz, Markus. 1937. ‘Zur Fermischen Theorie des β-zerfalls.Zeitschrift Fúr Physik 104 (7-8): 553565.Google Scholar
Fierz, M. 1939. ‘Force-free particles with any spin.Helv. Phys. Acta 12: 337.Google Scholar
[259] Greiner, W., and Múller, B.. 1993. Gauge Theory of Weak Interactions. Berlin: Springer-Verlag.Google Scholar
[260] Behrends, R. E., Finkelstein, R. J., and Sirlin, A.. 1956. ‘Radiative Corrections to Decay Processes.Physical Review 101 (2): 866.Google Scholar
[261] Kinoshita, Toichiro, and Alberto Sirlin. 1959. ‘Radiative Corrections to Fermi Interactions.Physical Review 113 (6): 1652.Google Scholar
[262] Berman, Sam M., and Sirlin, A.. 1962. ‘Some Considerations on the Radiative Corrections to Muon and Neutron Decay.Annals of Physics 20 (1): 2043.Google Scholar
[263] Berman, Sam M. 1958. ‘Radiative Corrections to Muon and Neutron Decay.Physical Review 112 (1): 267.Google Scholar
[264] Sirlin, A. 1978. ‘Current Algebra Formulation of Radiative Corrections in Gauge Theories and the Universality of the Weak Interactions.Reviews of Modern Physics 50 (3): 573.Google Scholar
[265] Jonker, M., Panman, J., Udo, F., Allaby, J. V., Amaldi, U., Barbiellini, G., Baroncelli, A. et al. 1980. ‘Experimental Study of Inverse Muon Decay.Physics Letters B 93 (1-2): 203209.Google Scholar
[266] Mishra, S. R., Bachmann, K. T., Blair, R. E., Foudas, C., King, B. J., Lefmann, W. C., Leung, W. C. et al. 1990. ‘Inverse Muon Decay, νμ + e → μ + νe, at the Fermilab Tevatron.Physics Letters B 252 (1): 170176.Google Scholar
[267] Vilain, Pierre, Wilquet, Gaston, Beyer, R., Flegel, W., Grote, H., Mouthuy, T., Øveras, H. et al. 1995. ‘A Precise Measurement of the Cross Section of the Inverse Muon Decay νμ + e → μ + νe.Physics Letters B 364 (2): 121126.Google Scholar
[268] Heisenberg, W. 1957. Rev. Mod. Phys. 29: 269.Google Scholar
[269] Conversi, M., Pancini, E. and Piccioni, O.. 1945. Physical Review 68 (9-10): 232.Google Scholar
[270] Hildebrand, Roger H. 1962. ‘Observation of μ Capture in Liquid Hydrogen.Physical Review Letters 8 (1): 34.Google Scholar
[271] Fermi, Enrico, Teller, Edward, and Weisskopf, Victor. 1947. ‘The Decay of Negative Mesotrons in Matter.Physical Review 71 (5): 314.Google Scholar
[272] Yukawa, Hideki, and Sakata, Shoichi. 1935. ‘On the Theory of the β-Disintegration and the Allied Phenomenon.Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 17: 467479.Google Scholar
[273] Alvarez, Luis W. 1938. ‘The Capture of Orbital Electrons by Nuclei.Physical Review 54 (7): 486.Google Scholar
[274] Lee, T. D., Rosenbluth, Marshall, and Yang, Chen Ning. 1949. ‘Interaction of Mesons with Nucleons and Light Particles.Physical Review 75 (5): 905.Google Scholar
[275] Goldberger, M. L., and Treiman, S. B.. 1958. ‘Form Factors in β Decay and μ Capture.Physical Review 111 (1): 354.Google Scholar
[276] Lopes, J. Leite. 1958. ‘Capture of Negative Muons by Light Nuclei.Physical Review 109 (2): 509.Google Scholar
[277] Wolfenstein, L. 1958. Nuovo Cim. 8: 382.Google Scholar
[278] Leader, Elliot, and Predazzi, Enrico. 1996. An Introduction to Gauge Theories and Modern Particle Physics. Cambridge University Press.Google Scholar
[279] Aitchison, I. J. R., and Hey, A. J. G.. 2012. Gauge Theories in Particle Physics: A Practical Introduction, Volume 1: From Relativistic Quantum Mechanics to QED, 4th ed., and Volume 2: Non-Abelian Gauge Theories: QCD and The Electroweak Theory, 4th ed. Boca Raton: CRC Press.Google Scholar
[280] Bég, M. A. B., and Sirlin, Alberto. ‘Gauge Theories of Weak Interactions (Circa 1973–74 CE).Annual Review of Nuclear Science 24 (1): 379450.Google Scholar
[281] Tsai, Yung-Su. 1976. ‘Erratum: Decay correlations of heavy leptons in e+ + e-l+ + l+.Physical Review D 13 (3): 771.Google Scholar
[282] Thacker, H. B., and Sakurai, J. J.. Physics Letters B 36: 103.Google Scholar
[283] Burmester, J., Criegee, L., Dehne, H. C., Derikum, K., Devenish, R., Flúgge, G., Fox, J. D. et al. 1977. ‘Anomalous Muon Production in e+ + e- Annihilations as Evidence for Heavy Leptons.Physics Letters B 68 (3): 297300.Google Scholar
[284] Gentile, Simonetta, and Pohl, Martin. 1996. ‘Physics of Tau Leptons.Physics Reports 274 (5-6): 287374.Google Scholar
[285] Bacino, W., Ferguson, T., Nodulman, L., Slater, W., Ticho, H. K., Diamant-Berger, A., Faessler, M. et al. 1978. ‘Measurement of the Threshold Behavior of τ+τ- Production in e+ + e- Annihilation.Physical Review Letters 41 (1): 13.Google Scholar
[286] Albrecht, H., Ehrlichmann, H., Harder, G., Krüger, A., Nau, A., Nilsson, A. W., Nippe, A. et al. 1990. ‘Determination of the Michel Parameter in Tau Decay.Physics Letters B 246 (1-2): 278284.Google Scholar
[287] Shimizu, N. et al. [Belle Collaboration]. 2018. Progress of Theoretical and Experimental Physics 2018 (2): ARTN-023C01.Google Scholar
[288] Olive, Keith A. 2014. ‘Review of Particle Physics.’ Chinese Physics C 38 (9): 090001090001.Google Scholar
[289] Heister, A., and ALEPH Collaboration. 2001. ‘Measurement of the Michel Parameters and the ντ Helicity in τ Lepton Decays.The European Physical Journal C-Particles and Fields 22 (2): 217230.Google Scholar
[290] Alexander, J. P., Bebek, C., Berger, B. E., Berkelman, K., Bloom, K., Cassel, D. G., Cho, H. A. et al. 1997. ‘Determination of the Michel Parameters and the τ Neutrino Helicity in τ Decay.Physical Review D 56 (9): 5320.Google Scholar
[291] Lattes, Cesare Mansueto Giulio, Muirhead, Hugh, Occhialini, Giuseppe PS, and Powell, Cecil Frank. 1947. ‘Processes Involving Charged Mesons.Nature 159 (4047): 694697.Google Scholar
Occhialini, G. P. S., and Powell, C. F.. 1947. ‘Nuclear Disintegrations Produced by Slow Charged Particles of Small Mass.Nature 159 (4032): 186190.Google Scholar
Lattes, C. M. G., Occhialini, G. P. S. and Powell, C. F., Nature 160, 453 (1947).Google Scholar
[292] Britton, D. I., Ahmad, S., Bryman, D. A., Burnham, R. A., Clifford, E. T. H., Kitching, P., Kuno, Y. et al. 1992. ‘Measurement of the π+e+v Branching Ratio.’ Physical Review Letters 68 (20): 3000.CrossRefGoogle Scholar
Czapek, Gerhard, Federspiel, Andrea, Flükiger, Andreas, Frei, Daniel, Hahn, Beat, Hug, Carl, Hugentobler, Edwin et al. 1993. ‘Branching Ratio for the Rare Pion Decay into Positron and Neutrino.Physical Review Letters 70 (1): 17.Google Scholar
[293] Ruderman, M., and Finkelstein, R.. 1949. ‘Note on the Decay of the π-meson.Physical Review 76 (10): 1458.Google Scholar
[294] Llewellyn Smith, C. H. 1972 Phys. Rept. 3: 261.Google Scholar
[295] Wick, G. C., Wightman, A. S. and Wigner, E. P.. 1952. Physical Review 88: 101.Google Scholar
Feinberg, G., and Weinberg, Steven. 1959. ‘On the Phase Factors in Inversions.’ Il Nuovo Cimento (1955–1965) 14 (3): 571592.Google Scholar
[296] Gell-Mann, Murray. 1958. ‘Test of the Nature of the Vector Interaction in β Decay.Physical Review 111 (1): 362.Google Scholar
[297] Goldberger, M. L., and Treiman, S. B.. 1958. ‘Conserved Currents in the Theory of Fermi Interactions.’ Physical Review 110 (6): 1478.Google Scholar
[298] Adler, Stephen L., and Dashen, Roger F.. 1968. Current Algebras and Applications to Particle Physics. Vol. 30. Benjamin.Google Scholar
[299] Fukuda, H., and Miyamoto, Y.. 1949. ‘Selection Rule for Meson Problem.Progress of Theoretical Physics 4 (3): 389391.Google Scholar
van Wyk, C. B. 1950. ‘Selection Rules for Closed Loop Processes.Physical Review 80 (3): 487.Google Scholar
Nishijima, K. 1951. ‘Generalized Furry's Theorem for Closed Loops.’ Progress of Theoretical Physics 6 (4): 614615.Google Scholar
Michel, L. 1952. Program Cosmic Ray Physics -3. New York: Interscience.Google Scholar
Pais, A., and Jost, R.. 1952. ‘Selection Rules Imposed by Charge Conjugation and Charge Symmetry.Physical Review 87 (5): 871.Google Scholar
Lee, T. D., and Yang, C. N.. 1956. Nuovo Cim. 3: 79.Google Scholar
Goebel, Charles. 1956. ‘Selection Rules for NN Annihilation.’ Physical Review 103 (1): 258.Google Scholar
[300] Weinberg, Steven. 1958. ‘Charge Symmetry of Weak Interactions.Physical Review 112 (4): 1375.Google Scholar
[301] Moulson, M. 2007. arXiv:1301.3046 [hep-ex].Google Scholar
[302] Chounet, L-M., Gaillard, J-M., and Gaillard, Mary K.. 1972. ‘Leptonic Decays of Hadrons.Physics Reports 4 (5): 199323.Google Scholar
[303] García, A., Kielanowski, P., Araki, H., and Bohm, A. (ed.). 1985. Lecture Notes in Physics, Volume 222. New York: Springer.Google Scholar
[304] Leutwyler, H., and Roos, M.. 1984. ‘Determination of the Elements Vus and Vud of the Kobayashi-Maskawa Matrix.Zeitschrift fur Physik C Particles and Fields 25 (1): 91101.Google Scholar
[305] Gaillard, Mary Katherin, and Lee, Benjamin W.. 1974. ‘Rare Decay Modes of the K Mesons in Gauge Theories.Physical Review D 10 (3): 897.Google Scholar
[306] Cabibbo, Nicola, Swallow, Earl C., and Roland Winston. 2003. ‘Semileptonic Hyperon Decays.Annual Review of Nuclear and Particle Science 53 (1): 3975.Google Scholar
[307] Hom, D. C., Lederman, L. M., Paar, H. P., Snyder, H. D., Weiss, J. M., Yoh, J. K., Appel, J. A. et al. 1976. ‘Observation of High-mass Dilepton Pairs in Hadron Collisions at 400 GeV.Physical Review Letters 36 (21): 1236.Google Scholar
[308] Basile, M., Bonvicini, G., Cara Romeo, G., Cifarelli, L., Contin, A., D'Alí, G., Di Cesare, P. et al. 1981. ‘A Comparison between Beauty and Charm Production in pp Interactions.’ Il Nuovo Cimento A (1965-1970) 65 (3): 391-399.Google Scholar
[309] Bari, G., Basile, M., Bruni, G., Cara Romeo, G., Casaccia, R., Cifarelli, L., Cindolo, F. et al. 1991. ‘The ∧ob Beauty Baryon Production in Proton-proton Interactions at √S = 62 GeV: A Second Observation.’ Il Nuovo Cimento A (1965-1970) 104 (12): 1787-1800.Google Scholar
[310] Abe, F., Akimoto, H., Akopian, A., Albrow, M. G., Amendolia, S. R., Amidei, D., Antos, J. et al. 1995. ‘Observation of Top Quark Production in pp collisions with the Collider Detector at Fermilab.Physical review letters 74 (14): 2626.Google Scholar
[311] Abachi, S., Abbott, B., Abolins, M., Acharya, B. S., Adam, I., Adams, D. L., Adams, M. et al. 1995. ‘Search for High Mass Top Quark Production in pp Collisions at √S = 1.8 TeV.’ Physical Review Letters 74 (13): 2422.Google Scholar
[312] Wolfenstein, Lincoln. 1983. ‘Parametrization of the Kobayashi-Maskawa Matrix.’ Physical Review Letters 51 (21): 1945.Google Scholar
[313] Goldhaber, G., Pierre, F. M., Abrams, G. S., Alam, M. S., Boyarski, A. M., Breidenbach, Martin, Carithers, W. C. et al. 1976. ‘Observation in e+e Annihilation of a Narrow State at 1865 MeV/c2 Decaying to and Kπππ.’ Physical Review Letters 37 (5): 255.Google Scholar
[314] Peruzzi, I., Piccolo, M., Feldman, G. J., Nguyen, H. K., Wiss, James E., Abrams, G. S., Alam, M. S. et al. 1976. ‘Observation of a Narrow Charged State at 1876 MeV/c2 Decaying to an Exotic Combination of Kππ.’ Physical Review Letters 37 (10): 569.Google Scholar
[315] Cazzoli, E. Go, Cnops, A. M., Connolly, P. L., Louttit, R. I., Murtagh, M. J., Palmer, R. B., Samios, N. P., Tso, T. T., and Williams, H. H.. 1975. ‘Evidence for ΔS = - ΔQ Currents or Charmed-Baryon Production by Neutrinos.Physical Review Letters 34 (17): 1125.Google Scholar
[316] Aaltonen, T., V Abazov, M., Abbott, B., Acharya, B. S., Adams, M., Adams, T., Agnew, J. P. et al. [CDF and D0 Collaborations]. 2014. Physical Review D 89 (7): 072001Google Scholar
[317] Gamow, G., and Teller, E.. 1937. ‘Some Generalizations of the ß Transformation Theory.Physical Review 51 (4): 289.Google Scholar
[318] Kemmer, N. 1937. ‘Field Theory of Nuclear Interaction.Physical Review 52 (9): 906.Google Scholar
[319] Gardner, Susan, Haxton, W. C., and Holstein, Barry R.. 2017. ‘A New Paradigm for Hadronic Parity Nonconservation and Its Experimental Implications.Annual Review of Nuclear and Particle Science 67: 69-95.Google Scholar
[320] Haxton, Wick C., and Holstein, Barry R.. 2013. ‘Hadronic Parity Violation.’ Progress in Particle and Nuclear Physics 71: 185-203.Google Scholar
[321] YndurÄ ain, F. J., and Å. 1983. Quantum Chromodynamics. ‘An Introduction to the Theory of Quarks and Gluons.’Google Scholar
[322] Weyl, Hermann. 1917. ‘The Theory of Gravitation.Annalen Phys 54: 117.Google Scholar
[323] Einstein, Albert. 1948. ‘A Generalized Theory of Gravitation.Reviews of Modern Physics 20 (1): 35.CrossRefGoogle Scholar
[324] Klein, Oskar. 1926. ‘The Atomicity of Electricity as a Quantum Theory Law.’ Nature 118 (2971): 516-516.Google Scholar
[325] Wentzel, G. 1937. Helv. Phys. Acta 10: 108.Google Scholar
[326] Yang, Chen-Ning, and Mills, Robert L.. 1954. ‘Conservation of Isotopic Spin and Isotopic Gauge Invariance.Physical Review 96 (1): 191.Google Scholar
[327] Utiyama, Ryoyu. 1956. ‘Invariant Theoretical Interpretation of Interaction.Physical Review 101 (5): 1597.Google Scholar
[328] Shaw, R. 1955. Unpublished Ph.D. thesis, Cambridge University.Google Scholar
[329] Fermi, Enrico. 1933. ‘Tentativo di Una Teoria Dell'emissione dei Raggi Beta.Ric. Sci. 4: 491-495.Google Scholar
[330] Nambu, Yoichiro. 1960. ‘Quasi-particles and Gauge Invariance in the Theory of Superconductivity.Physical Review 117 (3): 648.Google Scholar
[331] Goldstone, Jeffrey, Salam, Abdus, and Weinberg, Steven. 1962. ‘Broken Symmetries.’ Physical Review 127 (3): 965.Google Scholar
[332] Gilbert, Walter. 1964. ‘Broken Symmetries and Massless Particles.Physical Review Letters 12 (25): 713.Google Scholar
[333] Schwinger, Julian. 1962. ‘Gauge Invariance and Mass.Physical Review 125 (1): 397.Google Scholar
[334] Anderson, Philip W 1963. ‘Plasmons, Gauge Invariance, and Mass.Physical Review 130 (1): 439.Google Scholar
[335] Guralnik, G. S. 1964. ‘Photon as a Symmetry-breaking Solution to Field Theory. II.’ Physical Review 136 (5B): B1417.Google Scholar
[336] Guralnik, Gerald Stanford. 1964. ‘Photon as a Symmetry-breaking Solution to Field Theory. I.’ Physical Review 136 (5B): B1404.Google Scholar
[337] Guralnik, G. S., and Hagen, C. R.. 1965 Nuovo Cimento 43 (1): 1.CrossRefGoogle Scholar
[338] 't Hooft, Gerardus, and Veltman, Martinus. 1972. ‘Regularization and Renormalization of Gauge Fields.Nuclear Physics B 44 (1): 189213.Google Scholar
[339] Lee, Benjamin W., and Zinn-Justin, Jean. 1972. ‘Spontaneously Broken Gauge Symmetries. I. Preliminaries.Physical Review D 5 (12): 3121.Google Scholar
[340] Glashow, Sheldon L. 1959. ‘The Renormalizability of Vector Meson Interactions.’ Nuclear Physics 10: 107-117.Google Scholar
[341] Salam, A., and Ward, J. C.. 1959. Nuovo Cimento 11: 568.Google Scholar
[342] Salam, A., and Ward, J. C.. 1964. Physics Letters 13: 168.Google Scholar
[343] Fabri, Elio, and Picasso, Luigi E.. 1966. ‘Quantum Field Theory and Approximate Symmetries.’ Physical Review Letters 16(10): 408.Google Scholar
[344] Bardeen, J., Cooper, L. N., and Schrieffer, J. R.. 1957. Physical Review 108: 1175.Google Scholar
[345] Landau, L. D. 1937. Zh. Eksp. Teor. Fiz. 7: 19 [Phys. Z. Sowjetunion 11: 26 (1937)] [Ukr. J. Phys. 53: 25 (2008)]Google Scholar
Ginzburg, V. L., and Landau, L. D.. 1960. Zh. Eksp. Teor. Fiz. 20: 1064.Google Scholar
[346] Higgs, Peter Ware. 1964. ‘Broken Symmetries, Massless Particles and Gauge Fields.’ Phys. Lett. 12: 132-133.Google Scholar
[347] Prescott, C. Yi, Atwood, W. B., Cottrell, R. L. A., DeStaebler, H., Garwin, Edward L., Gonidec, A., Miller, Roger H. et al. 1979. ‘Further Measurements of Parity Nonconservation in Inelastic Electron Scattering.Physics Letters B 84 (4): 524528.Google Scholar
[348] Abe, K., Ahrens, L. A., Amako, K., Aronson, S. H., Beier, E. W., Callas, J. L., Cutts, D. et al. 1987. ‘Measurement of the Weak-neutral-current Coupling Constants of the Electron and Limits on the Electromagnetic Properties of the Muon Neutrino.Physical review letters 58 (7): 636.Google Scholar
[349] Abe, K., Ahrens, L. A., Amako, K., Aronson, S. H., Beier, E. W., Callas, J. L., Cutts, D. et al. 1989. ‘Determination of sin2 6W from Measurements of Differential Cross Sections for Muon-neutrino and -antineutrino Scattering by Electrons.Physical review letters 62 (15): 1709.Google Scholar
[350] Baker, N. J., Connolly, P. L., Kahn, S. A., Murtagh, M. J., Palmer, R. B., Samios, N. P., Tanaka, M. et al. 1989. ‘Measurement of Muon-neutrino—Electron Elastic Scattering in the Fermilab 15-foot Bubble Chamber.Physical Review D 40 (9): 2753.Google Scholar
[351] Vilain, Pierre, Capone, A., Roloff, H. E., Ereditato, A., Mouthuy, T., Khovanskii, V. D., Wilquet, G. et al. 1994. ‘Precision Measurement of Electroweak Parameters from the Scattering of Muon-neutrinos on Electrons.’ Phys. Lett. B 335, no. CERN-PPE-94-124: 246-252.Google Scholar
[352] Abe, K., Ahrens, L. A., Amako, K., Aronson, S. H., Beier, E. W., Callas, J. L., Connolly, P. L. et al. 1986. ‘Erratum: Precise determination of sin2 θW from measurements of the differential cross sections for νμp → νμp and ⊽μp → ⊽μ;p [Phys. Rev. Lett. 56, 1107(1986)].Physical Review Letters 56: 1883.Google Scholar
[353] Aguilar-Arevalo, A. A., Anderson, C. E., Bazarko, A. O., Brice, S. J., Brown, B. C., Bugel, L., Cao, J. et al. 2010. ‘Measurement of the Neutrino Neutral-current Elastic Differential Cross Section on Mineral Oil at Ev ∽ 1 GeV.’ Physical Review D 82 (9): 092005.Google Scholar
[354] Reines, F., Gurr, H. S., and Sobel, H. W.. 1976. ‘Detectionof e − e Scattering.Physical Review Letters 37 (6): 315.Google Scholar
[355] Ahmad, Q. R., Allen, R. C., Andersen, T. C., Anglin, J. D., Barton, J. C., Beier, E. W., Bercovitch, M. et al. 2002. ‘Measurement of Day and Night Neutrino Energy Spectra at SNO and Constraints on Neutrino Mixing Parameters.Physical Review Letters 89 (1): 011302.Google Scholar
[356] Alvarez-Ruso, Luis, Hayato, Y., and Nieves, J.. 2014. ‘Progress and Open Questions in the Physics of Neutrino Cross Sections at Intermediate Energies.New Journal of Physics 16 (7): 075015.Google Scholar
[357] Sakumoto, W. K., De Barbaro, P., Bodek, A., Budd, H. S., Kim, B. J., Merritt, F. S., Oregliaetal, M. J.. 1990. ‘Calibration of the CCFR Target Calorimeter.Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 294 (1-2): 179-192.Google Scholar
[358] Allasia, D., Angelini, Carlo, Baldini, A., Baldo-Ceolin, M., Barlag, S., Bertanza, L., Bigi, A. et al. 1983. ‘Measurement of the Neutral Current Coupling Constants in Neutrino and Antineutrino Interactions with Deuterium.Physics Letters B 133 (1-2): 129-134.Google Scholar
[359] Paschos, E. A., and Wolfenstein, L.. 1973. ‘Tests for Neutral Currents in Neutrino Reactions.Physical Review D 7 (1): 91.Google Scholar
[360] Souder, Paul A., Holmes, R., Kim, D-H., Kumar, K. S., Schulze, M. E., Isakovich, K., Dodson, G. W. et al. 1990. ‘Measurement of Parity Violation in the Elastic Scattering of Polarized Electrons from C 12.Physical Review Letters 65 (6): 694.Google Scholar
[361] Spayde, D. T., Averett, T., Barkhuff, D., Beck, D. H., Beise, E. J., Benson, C., Breuer, H. et al. 2000. ‘Parity Violation in Elastic Electron-proton Scattering and the Proton's Strange Magnetic form Factor.Physical Review Letters 84 (6): 1106.Google Scholar
[362] Heil, W., Ahrens, J., Andresen, H. G., Bornheimer, A., Conrath, D., Dietz, K-J., Gasteyer, W. et al. 1989. ‘Improved Limits on the Weak, Neutral, Hadronic Axial Vector Coupling Constants from Quasielastic Scattering of Polarized Electrons.Nuclear Physics B 327 (1): 131.Google Scholar
[363] Baunack, S., Aulenbacher, K., Balaguer, D. Rios, Capozza, L., Diefenbach, J., Glaser, B., Von Harrach, D. et al. 2009. ‘Measurement of Strange Quark Contributions to the Vector form Factors of the Proton at Q2 = 0.22 (GeV/c)2.’ Physical Review Letters 102(15): 151803.Google Scholar
[364] Aniol, K. A., Armstrong, D. S., Averett, Todd, Baylac, Maud, Burtin, Etienne, Calarco, John, Cates, G. D. et al. 2004. ‘Parity-violating Electroweak Asymmetry in (e) Over-right-arrowp Scattering.Physical Review C 69 (6): 065501_1.Google Scholar
[365] Armstrong, D. S., Arvieux, J., Asaturyan, Razmik, Averett, Todd, Bailey, S. L., Batigne, Guillaume, Beck, Douglas H. et al. 2005. ‘Strange-quark Contributions to Parity-violating Asymmetries in the Forward G0 Electron-proton Scattering Experiment.Physical Review Letters 95 (9): 092001.Google Scholar
[366] Acha, A., Aniol, K. A., Armstrong, D. S., Arrington, John, Averett, Todd, Bailey, S. L., Barber, James et al. 2007. ‘Precision Measurements of the Nucleon Strange Form Factors at Q2 ∽ 0.1 GeV2.Physical Review Letters 98 (3): 032301.Google Scholar
[367] Erler, J., and Schott, M.. 2019. Prog. Part. Nucl. Phys. 106: 68.Google Scholar
[368] Abrahamyan, Sea, Ahmed, Z., Albataineh, H., Aniol, K., Armstrong, D. S., Armstrong, W., Averett, T. et al. 2012. ‘Measurement of the Neutron Radius of 208Pb through Parity Violation in Electron Scattering.Physical Review Letters 108 (11): 112502.Google Scholar
[369] Anthony, P. L., Arnold, R. G., Arroyo, C., Bega, K., Biesiada, J., Bosted, P. E., Bower, G. et al. 2005. ‘Precision Measurement of the Weak Mixing Angle in Moeller Scattering.’ Physical Review Letters 95 (8): 081601.Google Scholar
[370] Androic, D., Armstrong, D. S., Arvieux, J., Bailey, S. L., Beck, D. H., Beise, E. J., Benesch, J. et al. 2012. ‘First Measurement of the Neutral Current Excitation of the Delta Resonance on a Proton Target.’ arXiv preprint arXiv: 1212.1637.Google Scholar
[371] Musolf, M. J., Donnelly, T. W., Dubach, J., Pollock, S. J., Kowalski, S., and Beise, E. J.. 1994. ‘Intermediate-energy Semileptonic Probes of the Hadronic Neutral Current.’ Physics Reports 239 (1-2): 1-178.Google Scholar
[372] Nath, L. M., Schilcher, K., and Kretzschmar, M.. 1982. ‘Parity-violating Effects in Electroproduction of the Δ (1232) by Polarized Electrons.Physical Review D 25 (9): 2300.Google Scholar
[373] Zhu, Shi-Lin, Maekawa, Claudio Masumi, Sacco, G., Holstein, Barry R., and Ramsey-Musolf, M. J.. 2001. ‘Electroweak Radiative Corrections to Parity-violating Electroexcitation of the A.Physical Review D 65 (3): 033001.Google Scholar
[374] Wang, D., Pan, K., Subedi, R., Deng, X., Ahmed, Z., Allada, K., Aniol, K. A. et al. 2014. ‘Measurement of Parity Violation in Electron-quark Scattering.’ Nature 506 (7486): 67-70.Google Scholar
[375] Matsui, K., Sato, T., and Lee, T-SH. 2005. ‘Quark-hadron Duality and Parity Violating Asymmetry of Electroweak Reactions in the A Region.Physical Review C 72 (2): 025204.Google Scholar
[376] Gorchtein, Mikhail, Horowitz, C. J., and Ramsey-Musolf, Michael J.. 2011. ‘Model Dependence of the γZ Dispersion Correction to the Parity-violating Asymmetry in Elastic ep Scattering.Physical Review C 84 (1): 015502.Google Scholar
[377] Hall, Nathan Luke, Blunden, Peter Gwithian, Melnitchouk, Wally, Thomas, Anthony W., and Young, Ross D.. 2013. ‘Constrained γZ Interference Corrections to Parity-violating Electron Scattering.Physical Review D 88 (1): 013011.Google Scholar
[378] Owens, J. F., Accardi, Alberto, and Melnitchouk, Wally. 2013. ‘Global Parton Distributions with Nuclear and Finite-Q2 Corrections.Physical Review D 87 (9): 094012.Google Scholar
[379] Bouchiat, M. A., and Bouchiat, C. C.. 1974. ‘I. Parity Violation Induced by Weak Neutral Currents in Atomic Physics.Journal de Physique 35 (12): 899927.Google Scholar
[380] Bouchiat, Marie-Anne, and Claude Bouchiat. 1997. ‘Parity Violation in Atoms.Reports on Progress in Physics 60 (11): 1351.Google Scholar
[381] Barkov, L. M., and Zolotorev, M. S.. 1979. ‘Parity Violation in Atomic Bismuth.Physics Letters B 85 (2-3): 308313.Google Scholar
[382] Safronova, M. S., Budker, D., DeMille, D., Jackson Kimball, Derek F., Derevianko, A., and Clark, Charles W.. 2018. ‘Search for New Physics with Atoms and Molecules.Reviews of Modern Physics 90 (2): 025008.Google Scholar
[383] Ginges, J. S. M., and Flambaum, Victor V.. 2004. ‘Violations of Fundamental Symmetries in Atoms and Tests of Unification Theories of Elementary Particles.Physics Reports 397 (2): 63154.Google Scholar
[384] Roberts, B. M., Dzuba, V. A., and Flambaum, V. V.. 2015. ‘Parity and Time-reversal Violation in Atomic Systems.Annual Review of Nuclear and Particle Science 65: 6386.Google Scholar
[385] Bernardini, G. et al. 1964. Physics Letters 13: 86.Google Scholar
[386] Arnison, G., Astbury, A., Aubert, B., Bacci, C., Bauer, G., Bezaguet, A., Böck, R. et al. 1983. ‘Experimental Observation of Lepton Pairs of Invariant Mass Around 95 GeV/c2 at the CERN SPS Collider.Physics Letters B 126 (5): 398410.Google Scholar
[387] Bagnaia, Po, Madsen, B., Chollet, J. C., Siegrist, J. L., Hänni, H., Di, L. Lella, Steiner, H. M. et al. 1983. ‘Evidence for Z0 → e+ e at the CERN p p Collider.’ Phys. Lett. B 129, no. CERN-EP-83-112: 130140.Google Scholar
[388] Schael, S. et al. [ALEPH and DELPHI and L3 and OPAL and SLD Collaborations and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group]. 2006. Phys. Rept. 427: 257.Google Scholar
[389] Aaltonen, Terhi, González, B. Álvarez, Amerio, Silvia, Amidei, D., Anastassov, A., Annovi, A., Antos, J. et al. 2012. ‘Precise Measurement of the W-boson Mass with the CDF II Detector.Physical Review Letters 108 (15): 151803.Google Scholar
[390] Straessner, Arno. 2004. ‘Measurement of the W Boson Mass at LEP.’ arXiv preprint hep-ex/0405005.Google Scholar
[391] Pich, Antonio. 2011. ‘Flavour Physics and CP Violation.’ arXiv preprint arXiv:1112. 4094. doi:10.5170/CERN-2013-003.119.Google Scholar
[392] Aubert, Bernard, Karyotakis, Y., Lees, J. P., Poireau, V., Prencipe, E., Prudent, X., Tisserand, V. et al. 2010. ‘Measurements of Charged Current Lepton Universality and |Vus| Using Tau Lepton Decays to e νe ντ , μ νμ ντ , π ντ , and K ντ .Physical Review Letters 105 (5): 051602.Google Scholar
[393] Lazzeroni, Cristina, Romano, Angela, Ceccucci, A., Danielsson, H., Falaleev, V., Gatignon, L., Goy Lopez, S. et al. 2011. ‘Test of Lepton Flavour Universality in K+ → ℓ+ ν Decays.Physics Letters B 698 (2): 105114.Google Scholar
[394] Antonelli, M., Cirigliano, V., Isidori, G., Mescia, F., Moulson, M., Neufeld, H., Passemar, E. et al. 2010. ‘An Evaluation of |Vus| and Precise Tests of the Standard Model from World Data on Leptonic and Semileptonic Kaon Decays.The European Physical Journal C 69 (3-4): 399424.Google Scholar
[395] Barate, R., ALEPH collaboration, DELPHI Collaboration, L3 Collaboration, and OPAL Collaboration. 2003. ‘LEP Working Group for Higgs Boson Searches.Phys. Lett. B 565: 61.Google Scholar
[396] Quigg, C. 1983. Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Menlo Park, California: The Benjamin/Cummings Publishing Company, Inc.Google Scholar
[397] Pich, Antonio. 2012. ‘The Standard Model of Electroweak Interactions.’ arXiv preprint arXiv:1201.0537.Google Scholar
[398] Aaboud, Morad, Aad, Georges, Abbott, Brad, Abdinov, O., Abeloos, Baptiste, Abidi, Syed Haider, AbouZeid, O. S. et al. 2018. ‘Measurement of the Higgs Boson Mass in the H → ZZ → 4 and H → γγ Channels with s = 13 TeV pp Collisions using the ATLAS Detector.Physics Letters B 784: 345366.Google Scholar
[399] Aad, Georges, Abbott, B., Abdallah, J., Abdinov, O., Aben, Rosemarie, Abolins, Maris, AbouZeid, O. S. et al. 2015. ‘Combined Measurement of the Higgs Boson Mass in pp Collisions at √s = 7 and 8 TeV with the ATLAS and CMS Experiments.Physical Review Letters 114 (19): 191803.Google Scholar
[400] Halzen, F., and Martin, A. D.. 1984. Quarks And Leptons: An Introductory Course In Modern Particle Physics. New York: Wiley.Google Scholar
[401] Geiregat, D., Wilquet, Gaston, Binder, U., Burkard, H., Dore, U., Flegel, W., Grote, H. et al. 1990. ‘A New Measurement of the Cross Section of the Inverse Muon Decay Reaction νμ+ e → μ + νe.Physics Letters B 247 (1): 131136.Google Scholar
[402] Blietschau, J., Deden, H., Hasert, F. J., Krenz, W., Morfin, J., Schultze, K., Welch, L. et al. 1978. ‘Upper Limit to the Cross-section for the Process νμ+ e → νμ+ e−.Physics Letters B 73 (2): 232234.CrossRefGoogle Scholar
[403] Vilain, Pierre, Wilguet, G., Flegel, W., Grote, H., Mouthuy, T., Øveras, H., Panman, J. et al. 1992. ‘Neutral Current Coupling Constants from Neutrino-and Antineutrino-electron Scattering.Physics Letters B 281 (1-2): 159166.CrossRefGoogle Scholar
[404] Blietschau, J. et al. [Gargamelle Collaboration]. 1976. Nucl. Phys. B 114: 189.Google Scholar
Alibran, P., Armenise, N., Bellotti, E., Blondel, A., Blum, D., Bonetti, S., Bonneaud, G. et al. 1978. ‘Observation and Study of the νμe → νμe Reaction in Gargamelle at High Energy.Physics Letters B 74 (4-5): 422428.Google Scholar
Armenise, N., Erriquez, O., Fogli-Muciaccia, M. T., Natali, S., Nuzzo, S., Romano, F., Bonneaud, G. et al. 1979. ‘High Energy Elastic νμ Scattering off Electrons in Gargamelle.Physics Letters B 86 (2): 225228.Google Scholar
Bertrand, D. et al. 1979. Physics Letters B 84: 354.Google Scholar
[405] Armenise, Nicola, Erriquez, O., Fogli-Muciaccia, M. T., Natali, S., Nuzzo, S., Romano, F., Ruggieri, F. et al. 1979. ‘Upper Limit to the Cross Section for vvν+ e vvν+ e at High Energy.Physics Letters B 81 (3-4): 385388.Google Scholar
[406] Berge, J. P., Bogert, D., Hanft, R., Hamilton, D., Harigel, G., Malko, J. A., Moffatt, G. I. et al. 1979. ‘A Search at High Energies for Antineutrino-electron Elastic Scattering.Physics Letters B 84 (3): 357359. Google Scholar
[407] Allen, R. C., Chen, H. H., Doe, P. J., Hausammann, R., Lee, W. P., Lu, X. Q., Mahler, H. J. et al. 1993. ‘Study of Electron-neutrino—Electron Elastic Scattering at LAMPF.Physical Review D 47 (1): 11.Google Scholar
[408] Avignone III, F. T. 1970. ‘V − A Elastic Scattering of Electrons by Fission Antineutrinos.Physical Review D 2 (11): 2609.Google Scholar
[409] Gurevich, GS Vidyakin VN VyrodovJ I., Kozlov, Yu V., Martem’yanov, V. P., Sukhotin, S. V., Tarasenkov, V. G., Turbin, E. V., and Kh Khakimov, S.. 1989. ‘Study of the Scattering of Fission Antineutrinos by Electrons with an Organofluoric-scintillator Detector.’ JETP Lett 49 (12).Google Scholar
[410] Fujikawa, Kazuo, and Shrock, Robert E.. 1980. ‘Magnetic Moment of a Massive Neutrino and Neutrino-spin Rotation.Physical Review Letters 45 (12): 963.Google Scholar
[411] Barber, D. P., Becker, U., Benda, H., Boehm, A., Branson, J. G., Bron, J., Buikman, D. et al. 1979. ‘Study of Electron-Positron Collisions at Center-of-mass Energies of 27.4 and 27.7 GeV at Petra.Physical Review Letters 43 (13): 901.Google Scholar
[412] Marshall, R. 1985. In Grunhaus, J., ed. Proc. XVI Int. Symp. on Multiparticle Dynamics, Kiryat Anavim, Israel. Singapore: Kim Hup Lee.Google Scholar
[413] Amaldi, Ugo, Bóhm, Albrecht, Durkin, L. S., Langacker, Paul, Mann, Alfred K., Marciano, William J., Sirlin, Alberto, and Williams, H. H.. 1987. ‘Comprehensive Analysis of Data Pertaining to the Weak Neutral Current and the Intermediate-vector-boson Masses.Physical Review D 36 (5): 1385.Google Scholar
[414] Galster, S., Klein, H., Moritz, J., Schmidt, K. H., Wegener, D., and Bleckwenn, J.. 1971. ‘Elastic Electron-deuteron Scattering and the Electric Neutron Form Factor at Four-momentum Transfers 5fm − 2 < q2 < 14 fm − 2.Nuclear physics B 32 (1): 221237.Google Scholar
[415] Budd, Howard, Bodek, A., and Arrington, J.. 2005. ‘Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering.Nuclear Physics B-Proceedings Supplements 139: 9095.Google Scholar
[416] Bradford, R., Bodek, A., Budd, H. S., and Arrington, J.. 2006. ‘NuInt05, Proceedings of the 4th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region, Okayama, Japan, 26–29 September 2005.Nucl. Phys. Proc. Suppl 159: 127.Google Scholar
[417] Kelly, J. J. 2004. ‘Simple Parametrization of Nucleon Form Factors.Physical Review C 70 (6): 068202.Google Scholar
[418] Punjabi, V., Perdrisat, C. F., Jones, M. K., Brash, E. J., and Carlson, C. E.. 2015. ‘The Structure of the Nucleon: Elastic Electromagnetic Form Factors.The European Physical Journal A 51 (7): 79.Google Scholar
[419] Collaboration, Precision Neutron Decay Matrix Elements PNDME, Gupta, Rajan, Jang, Yong-Chull, Lin, Huey-Wen, Yoon, Boram, and Bhattacharya, Tanmoy. 2017. ‘Axial-vector Form Factors of the Nucleon from Lattice QCD.’ Physical Review D 96 (11): 114503.Google Scholar
[420] Meyer, Aaron S., Betancourt, Minerba, Gran, Richard, and Hill, Richard J.. 2016. ‘Deuterium Target Data for Precision Neutrino-nucleus Cross Sections.Physical Review D 93 (11): 113015.Google Scholar
[421] Green, Jeremy, Hasan, Nesreen, Meinel, Stefan, Engelhardt, Michael, Krieg, Stefan, Laeuchli, Jesse, Negele, John, Orginos, Kostas, Pochinsky, Andrew, and Syritsyn, Sergey. 2017. ‘Up, Down, and Strange Nucleon Axial Form Factors from Lattice QCD.Physical Review D 95 (11): 114502.Google Scholar
[422] Alexandrou, Constantia, Constantinou, Martha, Hadjiyiannakou, Kyriakos, Jansen, Karl, Kallidonis, Christos, Koutsou, Giannis, and Vaquero Aviles-Casco, A.. 2017. ‘Nucleon Axial Form Factors using Nf = 2 Twisted Mass Fermions with a Physical Value of the Pion Mass.Physical Review D 96 (5): 054507.Google Scholar
[423] Yao, De-Liang, Alvarez-Ruso, Luis, and Vicente-Vacas, Manuel J.. 2017. ‘Extraction of Nucleon Axial Charge and Radius from Lattice QCD Results using Baryon Chiral Perturbation Theory.Physical Review D 96 (11): 116022.Google Scholar
[424] Capitani, Stefano, Morte, Michele Della, Djukanovic, Dalibor, von Hippel, Georg M., Hua, Jiayu, Jäger, Benjamin, Junnarkar, Parikshit M., Meyer, Harvey B., Rae, Thomas D., and Wittig, Hartmut. 2019. ‘Isovector Axial form Factors of the Nucleon in Two-flavor Lattice QCD.International Journal of Modern Physics A 34 (02): 1950009.Google Scholar
[425] Close, F. E. 1980. An Introduction to Quarks and Partons. London: Academic Press.Google Scholar
[426] Morfin, J. G., Nieves, J., and Sobczyk, J. T.. 2012. Adv. High Energy Phy. 2012: 934597.Google Scholar
[427] Gallagher, H., Garvey, G., and Zeller, G. P.. 2011. ‘Neutrino-nucleus Interactions.Annual Review of Nuclear and Particle Science 61: 355378.Google Scholar
[428] Miller, K. L., Barish, S. J., Engler, A., Kraemer, R. W., Stacey, B. J., Derrick, M., Fernandez, E. et al. 1982. ‘Study of the Reaction νμ d → μ pps.Physical Review D 26 (3): 537.Google Scholar
[429] Baker, N. J., Cnops, A. M., Connolly, P. L., Kahn, S. A., Kirk, H. G., Murtagh, M. J., Palmer, R. B., Samios, N. P., and Tanaka, M.. 1981. ‘Quasielastic Neutrino Scattering: A Measurement of the Weak Nucleon Axial-vector Form Factor.Physical Review D 23 (11): 2499.Google Scholar
[430] Kitagaki, T., Tanaka, S., Yuta, H., Abe, K., Hasegawa, K., Yamaguchi, A., Tamai, K. et al. 1983. ‘High-energy Quasielastic νμ n → μ p Scattering in Deuterium.Physical Review D 28 (3): 436.Google Scholar
[431] Bodek, A., Avvakumov, S., Bradford, R., and Budd, H.. 2008. ‘Vector and Axial Nucleon form Factors: A Duality Constrained Parameterization.The European Physical Journal C 53 (3): 349354.Google Scholar
[432] Lyubushkin, V., Popov, B., Kim, J. J., Camilleri, L., Levy, J-M., Mezzetto, Mauro, Naumov, Dmitry et al. 2009. ‘A Study of Quasi-elastic Muon Neutrino and Antineutrino Scattering in the NOMAD Experiment.The European Physical Journal C 63 (3): 355381.Google Scholar
[433] Fields, L., Chvojka, J., Aliaga, L., Altinok, O., Baldin, B., Baumbaugh, A., Bodek, A. et al. 2013. ‘Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at Eν ∼ 3.5 GeV.Physical Review Letters 111 (2): 022501.Google Scholar
[434] Aguilar-Arevalo, A. A., Bazarko, A. O., Brice, S. J., Brown, B. C., Bugel, L., Cao, J., Coney, L. et al. 2008. ‘Measurement of Muon Neutrino Quasielastic Scattering on Carbon.Physical Review Letters 100 (3): 032301.Google Scholar
[435] Aguilar-Arevalo, A. A., Anderson, C. E., Bazarko, A. O., Brice, S. J., Brown, B. C., Bugel, L., Cao, J. et al. 2010. ‘First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section.Physical Review D 81 (9): 092005.Google Scholar
[436] Dorman, M., and MINOS collaboration. 2009. ‘Preliminary Results for CCQE Scattering with the MINOS near Detector.’ In AIP Conference Proceedings 1189 (1): 133138. American Institute of Physics.Google Scholar
[437] Adamson, P., Anghel, I., Aurisano, A., Barr, G., Bishai, M., Blake, A., Bock, G. J. et al. 2015. ‘Study of Quasielastic Scattering using Charged-current νμ-iron Interactions in the MINOS near Detector.Physical Review D 91 (1): 012005.Google Scholar
[438] Gran, Richard, Jeon, E. J., Aliu, E., Andringa, S., Aoki, S., Argyriades, J., Asakura, K. et al. 2006. ‘Measurement of the Quasielastic Axial Vector Mass in Neutrino Interactions on Oxygen.Physical Review D 74 (5): 052002.Google Scholar
[439] Abe, Ko, Andreopoulos, C., Antonova, M., Aoki, S., Ariga, A., Assylbekov, S., Autiero, D. et al. 2016. ‘Measurement of Muon Antineutrino Oscillations with an Accelerator-produced off-axis Beam.Physical review letters 116 (18): 181801.Google Scholar
Abe, Kou, Adam, J., Aihara, Hiroaki, Akiri, T., Andreopoulos, C., Aoki, Shigeki, Ariga, Akitaka et al. 2015. ‘Measurements of Neutrino Oscillation in Appearance and Disappearance Channels by the t2k Experiment with 6.6 × 1020 Protons on Target.Physical Review D 91 (7): 072010.Google Scholar
Abe, Kou, Adam, J., Aihara, H., Akiri, T., Andreopoulos, C., Aoki, S., Ariga, A. et al. 2015. ‘Measurement of the νμ Charged-current Quasielastic Cross Section on Carbon with the ND280 Detector at T2K.Physical Review D 92 (11): 112003.Google Scholar
[440] Nakajima, Y., Alcaraz-Aunion, J. L., Brice, S. J., Bugel, L., Catala-Perez, J., Cheng, G., Conrad, J. M. et al. 2011. ‘Measurement of Inclusive Charged Current Interactions on Carbon in a Few-GeV Neutrino Beam.Physical Review D 83 (1): 012005.Google Scholar
[441] Cheng, G., Huelsnitz, W., Aguilar-Arevalo, A. A., Alcaraz-Aunion, J. L., Brice, S. J., Brown, B. C., Bugel, L. et al. 2012. ‘Dual Baseline Search for Muon Antineutrino Disappearance at 0.1 eV2 < Δm2 < 100 eV2.Physical Review D 86 (5): 052009.Google Scholar
[442] Fiorentini, G. A., Schmitz, D. W., Rodrigues, P. A., Aliaga, L., Altinok, O., Baldin, B., Baumbaugh, A. et al. 2013. ‘Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at Eν ∼ 3.5 GeV.Physical Review Letters 111 (2): 022502.Google Scholar
[443] Bernard, Veronique, Elouadrhiri, Latifa, and Meissner, Ulf-G.. 2001. Journal of Physics G: Nuclear and Particle Physics 28 (1): R1.Google Scholar
[444] Schindler, M. R., Fuchs, T., Gegelia, J., and Scherer, S.. 2007. ‘Axial, Induced Pseudoscalar, and Pion-nucleon Form Factors in Manifestly Lorentz-invariant Chiral Perturbation Theory.Physical Review C 75 (2): 025202.Google Scholar
[445] Tsapalis, A. 2007. ‘Nucleon and Pion-Nucleon Form-Factors From Lattice QCD.’ eConf 70910 (MENU-2007-168): 168.Google Scholar
[446] Pate, S. F., and Schaub, J. P.. 2011. ‘Strange Quark Contribution to the Nucleon Spin from Electroweak Elastic Scattering Data.’ In Journal of Physics: Conference Series 295 (1): 012037. IOP Publishing.Google Scholar
[447] Formaggio, Joseph A., and Zeller, G. P.. 2012. ‘From eV to EeV: Neutrino Cross Sections Across Energy Scales.Reviews of Modern Physics 84 (3): 1307.Google Scholar
[448] Fearing, Harold W., McNamee, P. C., and Oakes, R. J.. 1969. ‘Weak Electron Scattering: e + p → Λ + v.Il Nuovo Cimento A (1965–1970) 60 (1): 1024.Google Scholar
[449] Veltman, M. J. G., and Berman, S. M.. 1964. ‘Transverse Muon Polarization in Neutrino Induced Interactions as a Test for Time Reversal Violation.Physics letters 12 (3): 275278.Google Scholar
[450] Fujii, A., and Yamaguchi, Y.. 1966. ‘Nucleon Polarization in Elastic Lepton or Antilepton Production by High-energy Neutrino or Antineutrino.Il Nuovo Cimento A (1971–1996) 43 (2): 325333.Google Scholar
[451] Eichten, T., Faissner, H., Kabe, S., Frenz, W., Von Krogh, J., Morfin, J., Schultze, K. et al. 1972. ‘Observation of ‘Elastic’ Hyperon Production by Antineutrinos.Physics Letters B 40 (5): 593596.Google Scholar
[452] Erriquez, O., Muciaccia, MT Fogli, Natali, S., Nuzzo, S., Halsteinslid, A., Jarlskog, C., Myklebost, K. et al. 1978. ‘Production of Strange Particles in Antineutrino Interactions at the CERN PS.Nuclear Physics B 140 (1): 123140.Google Scholar
[453] Enriquez, O. et al. 1977. Physics Letters B 70: 383.Google Scholar
[454] Brunner, J., Grabosch, H-J., Kaufmann, H. H., Nahnhauer, R., Nowak, S., Schlenstedt, S., Ammosov, V. V. et al. 1990. ‘Quasielastic Nucleon and Hyperon Production by Neutrinos and Antineutrinos with Energies below 30 GeV.Zeitschrift für Physik C Particles and Fields 45 (4): 551555.Google Scholar
[455] Fanourakis, G., Resvanis, L. K., Grammatikakis, G., Tsilimigras, P., Vayaki, A., Camerini, U., Fry, W. F., Loveless, R. J., Mapp, J. H., and Reeder, D. D.. 1980. ‘Study of Low-energy Antineutrino Interactions on Protons.Physical Review D 21 (3): 562.Google Scholar
[456] Bilenky, S. M., and Bilen’kij, Samoil M.. Basics of introduction to Feynman diagrams and electroweak interactions physics. Atlantica Séguier Fronti ‘eres, 1994.Google Scholar
[457] Young, E. C. M., CERN-67-12.Google Scholar
[458] Radecky, G. M., Barnes, V. E., Carmony, D. D., Garfinkel, A. F., Derrick, M., Fernandez, E., Hyman, L. et al. 1982. ‘Study of Single-pion Production by Weak Charged Currents in Low-energy νd Interactions.Physical Review D 25 (5): 1161.Google Scholar
Barish, S. J., Campbell, J., Charlton, G., Cho, Y., Derrick, M., Engelmann, R., Hyman, L. G. et al. 1977. ‘Study of Neutrino Interactions in Hydrogen and Deuterium: Description of the Experiment and Study of the Reaction ν+ d → μ + p + ps.’ Physical Review D 16 (11): 3103.Google Scholar
Barish, S. J., Derrick, M., Dombeck, T., Hyman, L. G., Jaeger, K., Musgrave, B., Schreiner, P. et al. 1979. ‘Study of Neutrino Interactions in Hydrogen and Deuterium. II. Inelastic Charged-current Reactions.Physical Review D 19 (9): 2521.Google Scholar
[459] Kitagaki, T., Yuta, H., Tanaka, S., Yamaguchi, A., Abe, K., Hasegawa, K., Tamai, K. et al. 1990. ‘Study of νd → μ pps and νd → μ Δ++ (1232)ns using the BNL 7-foot Deuterium-filled Bubble Chamber.Physical Review D 42 (5): 1331.Google Scholar
[460] Dennery, Philippe. 1962. ‘Pion Production in Neutrino-Nucleon Collisions.Physical Review 127 (2): 664.Google Scholar
[461] Dombey, Norman. 1962. ‘Weak Pion Production.Physical Review 127 (2): 653.Google Scholar
[462] Bell, J. S., and Berman, S. M.. 1962. Nuovo Cimento C 25: 404.Google Scholar
[463] Bell, John Stewart, and CH Llewellyn Smith. 1970. ‘Near-forward Neutrino Reactions on Nuclear Targets.Nuclear Physics B 24 (2): 285304.Google Scholar
[464] Adler, Stephen L. 1968. ‘Photo-, Electro-, and Weak Single-pion Production in the (3, 3) Resonance Region.Annals of Physics 50 (2): 189311.Google Scholar
[465] Albright, C. H., and Liu, L. S.. 1965. ‘Baryon Resonance Production by Neutrinos and the Relativistic Generalizations of SU (6).’ Physical Review 140 (6B): B1611.Google Scholar
[466] Albright, C. H., and Liu, Lu Sun. 1965. ‘Weak N* Production and SU (6).’ Physical Review 140 (3B): B748.Google Scholar
[467] Kim, C. W. 1965. ‘Production of N* in Neutrino Reactionsin Neutrino Reactions.Il Nuovo Cimento (1955–1965) 37 (1): 142148.Google Scholar
[468] Lee, W., Maddry, E., Sokolsky, P., Teig, L., Bross, A., Chapin, T., Holloway, L. et al. 1977. ‘Single-pion Production in Neutrino and Antineutrino Reactions.Physical Review Letters 38 (5): 202.Google Scholar
[469] Bell, J., Berge, J. P., Bogert, D. V., Cence, R. J., Coffin, C. T., Diamond, R. N., DiBianca, F. A. et al. 1978. ‘Cross-Section Measurements for the Reactions νp → ν π+ p and νp → ν K+ p at High Energies.Physical Review Letters 41 (15): 1008.Google Scholar
[470] Allen, P., Cocconi, Vanna T., Kellner, Gottfried, Hulth, P. O., Conforto, Bianca, Pape, L., Lanske, D. et al. 1980. ‘Single π+ Production in Charged Current Neutrino-hydrogen Interactions.’ Nucl. Phys. B 176, no. CERN-EP-80-69: 269284.Google Scholar
[471] Schreiner, Philip A., and Von Hippel, Frank. 1973. ‘Neutrino Production of the Δ (1236).Nuclear Physics B 58 (2): 333362.Google Scholar
[472] Fogli, Gian Luigi, and Nardulli, G.. 1979. ‘A New Approach to the Charged Current Induced Weak One-pion Production.Nuclear Physics B 160 (1): 116150.Google Scholar
[473] Sato, Toru, Uno, D., and Lee, T-SH. 2003. ‘Dynamical Model of Weak Pion Production Reactions.Physical Review C 67 (6): 065201.Google Scholar
[474] Fogli, Gian Luigi, and Nardulli, G.. 1980. ‘Neutral Current Induced One-pion Production: A New Model and Its Comparison with Experiment.Nuclear Physics B 165 (1): 162184.Google Scholar
[475] Kamano, H., Nakamura, S. X., Lee, T-SH, and Sato, T.. 2012. ‘Neutrino-induced Forward Meson-production Reactions in Nucleon Resonance Region.Physical Review D 86 (9): 097503.Google Scholar
[476] Nakamura, S. X., Kamano, H., Lee, T-SH, and Sato, T.. 2015. ‘Neutrino-induced Meson Productions off Nucleon at Forward Limit in Nucleon Resonance Region.’ In AIP Conference Proceedings 1663 (1): 070005. AIP Publishing LLC.Google Scholar
[477] Paschos, Emmanuel A., Yu, Ji–Young, and Sakuda, Makoto. 2004. ‘Neutrino Production of Resonances.Physical Review D 69 (1): 014013.Google Scholar
[478] Lalakulich, Olga, and Paschos, Emmanuel A.. 2005. ‘Resonance Production by Neutrinos: J = 3/2 Resonances.Physical Review D 71 (7): 074003.Google Scholar
[479] Barbero, C., Lopez Castro, G., and Mariano, A.. 2008. ‘Single Pion Production in CCνμ N Scattering within a Consistent Effective Born Approximation.Physics Letters B 664 (1-2): 7077.Google Scholar
[480] Barbero, C., López Castro, G., and Mariano, A.. 2014. ‘One Pion Production in Neutrino–nucleon Scattering and the Different Parameterizations of the Weak N → Δ Vertex.Physics Letters B 728: 282287.Google Scholar
[481] Hernandez, E., Nieves, J., and Valverde, M.. 2007. ‘Weak Pion Production off the Nucleon.Physical Review D 76 (3): 033005.Google Scholar
[482] Leitner, Tina, Alvarez-Ruso, L., and Mosel, U.. 2006. ‘Charged Current Neutrino-nucleus Interactions at Intermediate Energies.Physical Review C 73 (6): 065502.Google Scholar
[483] Leitner, T., Buss, O., Alvarez-Ruso, L., and Mosel, U.. 2009. ‘Electron-and Neutrino-nucleus Scattering from the Quasielastic to the Resonance Region.Physical Review C 79 (3): 034601.Google Scholar
[484] Lalakulich, Olga, Paschos, Emmanuel A., and Piranishvili, Giorgi. 2006. ‘Resonance Production by Neutrinos: The Second Resonance Region.Physical Review D 74 (1): 014009.Google Scholar
[485] Lalakulich, Olga, Leitner, Tina, Buss, Oliver, and Mosel, Ulrich. 2010. ‘One Pion Production in Neutrino Reactions: Including Nonresonant Background.Physical Review D 82 (9): 093001.Google Scholar
[486] González-Jiménez, Raúl, Jachowicz, Natalie, Niewczas, Kajetan, Nys, Jannes, Pandey, V., Van Cuyck, Tom, and Van Dessel, Nils. 2017. ‘Electroweak Single-pion Production off the Nucleon: From Threshold to High Invariant Masses.Physical Review D 95 (11): 113007.Google Scholar
[487] Rafi Alam, M., Sajjad Athar, M., Chauhan, S., and Singh, S. K.. 2016. ‘Weak Charged and Neutral Current Induced One Pion Production off the Nucleon.International Journal of Modern Physics E 25 (2): 1650010.Google Scholar
[488] Alam, M. Rafi, Ruiz Simo, I., Alvarez-Ruso, L., Sajjad Athar, M., and Vacas, MJ Vicente. 2015. ‘Weak Production of Strange Particles and η Mesons off the Nucleon.’ In AIP Conference Proceedings, vol. 1680 (1): 020001. AIP Publishing LLC.Google Scholar
[489] Alam, M. Rafi, Alvarez-Ruso, L., Sajjad Athar, M., and Vacas, MJ Vicente. 2015. ‘Weak η Production off the Nucleon.’ In AIP Conference Proceedings 1663 (1): 120014. AIP Publishing LLC.Google Scholar
[490] Alam, M. Rafi, Ruiz Simo, I., Sajjad Athar, M., and MJ Vicente Vacas. 2010. ‘Weak Kaon Production off the Nucleon.Physical Review D 82 (3): 033001.Google Scholar
[491] Alam, M. Rafi, Ruiz Simo, I., Sajjad Athar, M., and MJ Vicente Vacas. 2012. ‘ν Induced K Production off the Nucleon.Physical Review D 85 (1): 013014.Google Scholar
[492] Rein, Dieter, and Sehgal, Lalit M.. 1981. ‘Neutrino-excitation of Baryon Resonances and Single Pion Production.Annals of Physics 133 (1): 79153.Google Scholar
[493] Tiator, L., Drechsel, D., Kamalov, S. S., and Vanderhaeghen, M.. 2011. ‘Electromagnetic Excitation of Nucleon Resonances.The European Physical Journal Special Topics 198 (1): 141.Google Scholar
[494] Liu, Jun, Mukhopadhyay, Nimai C., and Zhang, Lisheng. 1995. ‘Nucleon to Δ Weak Excitation Amplitudes in the Nonrelativistic Quark Model.Physical Review C 52 (3): 1630.Google Scholar
[495] Hemmert, Thomas R., Holstein, Barry R., and Mukhopadhyay, Nimai C.. 1995. ‘N N, NΔ Couplings and the Quark Model.Physical Review D 51 (1): 158.Google Scholar
[496] Serot, Brian D., and Zhang, Xilin. 2012. ‘Neutrinoproduction of Photons and Pions from Nucleons in a Chiral Effective Field Theory for Nuclei.Physical Review C 86 (1): 015501.Google Scholar
[497] Leitner, Tina, Buss, O., Mosel, U., and Alvarez-Ruso, L.. 2009. ‘Neutrino-induced Pion Production at Energies Relevant for the MiniBooNE and K2K Experiments.Physical Review C 79 (3): 038501.Google Scholar
[498] Sobczyk, Jan T., and Żmuda, Jakub. 2013. ‘Impact of Nuclear Effects on Weak Pion Production at Energies Below 1 GeV.Physical Review C 87 (6): 065503.Google Scholar
[499] Graczyk, Krzysztof M., and Sobczyk, Jan T.. 2008. ‘Lepton Mass Effects in Weak Charged Current Single Pion Production.Physical Review D 77 (5): 053003.Google Scholar
[500] Nambu, Yoichiro, and Jona-Lasinio, Giovanni. 1961. ‘Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. II.Physical Review 124 (1): 246.Google Scholar
[501] Koch, Volker. 1997. ‘Aspects of Chiral Symmetry.’ International Journal of Modern Physics E 6 (2): 203249.Google Scholar
[502] Scherer, Stefan, and Schindler, Matthias R.. 2012. ‘A Primer for Chiral Perturbative Theory.’Google Scholar
[503] Georgi, Howard, and Glashow, Sheldon L.. 1974. ‘Unity of all Elementary-particle Forces.Physical Review Letters 32 (8): 438.Google Scholar
[504] Nath, Pran, and Arnowitt, R.. 2000. ‘Grand Unification and B & L Conservation.Physics of Atomic Nuclei 63 (7): 11511157. [arXiv:hep-ph/9808465]Google Scholar
[505] McGrew, C., Becker-Szendy, R., Bratton, C. B., Breault, J. L., Cady, D. R., Casper, D., Dye, S. T. et al. 1999. ‘Search for Nucleon Decay using the IMB-3 Detector.Physical Review D 59 (5): 052004.Google Scholar
[506] Hirata, K. S., Kajita, T., Kifune, T., Kihara, K., Nakahata, M., Nakamura, K., Ohara, S. et al. 1989. ‘Experimental Limits on nucleon Lifetime for Lepton+ Meson Decay Modes.Physics Letters B 220 (1-2): 308316.Google Scholar
[507] Abe, K., Haga, Y., Hayato, Y., Ikeda, M., Iyogi, K., Kameda, J., Kishimoto, Y. et al. 2017. ‘Search for Proton Decay via p → e+ π0 and p → μ+ π0 in 0.31 Megaton• Years Exposure of the Super-Kamiokande Water Cherenkov Detector.Physical Review D 95 (1): 012004.Google Scholar
[508] Shiozawa, Masato, Viren, B., Fukuda, Y., Hayakawa, T., Ichihara, E., Inoue, K., Ishihara, K. et al. 1998. ‘Search for Proton Decay via p → e+ π0 in a Large Water Cherenkov Detector.Physical Review Letters 81 (16): 3319.Google Scholar
Nishino, Haruki, Clark, S., Abe, Kou, Hayato, Yoshinari, Iida, Takashi, Ikeda, Motoyasu, Kameda, Jun et al. 2009. ‘Search for Proton Decay via p → e+ π0 and p → μ+ π0 in a Large Water Cherenkov Detector.Physical Review Letters 102 (14): 141801.Google Scholar
[509] Abe, K., Hayato, Y., Iyogi, K., Kameda, J., Miura, M., Moriyama, S., Nakahata, M. et al. 2014. ‘Search for Proton Decay via p → νk+ Using 260 Kiloton• Year Data of Super-kamiokande.Physical Review D 90 (7): 072005.Google Scholar
[510] Wall, D., Allison, W. W. M., Alner, G. J., Ayres, D. S., Barrett, W. L., Bode, C., Border, P. M. et al. 2000. ‘Search for Nucleon Decay with Final States l+ η0, νη0, and νπ+,0 using Soudan 2.Physical Review D 62 (9): 092003.Google Scholar
[511] Berman, Sam M., and Veltman, M.. 1965. ‘Baryon-resonance Production by Neutrinos.Il Nuovo Cimento (1955–1965) 38 (2): 9931005.Google Scholar
[512] Altarelli, Guido, Brandt, Richard A., and Preparata, Giuliano. 1971. ‘Light-Cone Analysis of Massive μ-Pair Production.Physical Review Letters 26 (1): 42.Google Scholar
[513] Ravndal, F. 1972. Lett. Nuovo Cim. 3S2: 631. [Lett. Nuovo Cim. 3: 631 (1972)].Google Scholar
[514] Kuzmin, K. S., Lyubushkin, V. V. and Naumov, V. A., Mod. Phys. Lett. A 19, 2815 (2004) [Phys. Part. Nucl. 35, S133 (2004)].Google Scholar
[515] Kuzmin, Konstantin S., Lyubushkin, Vladimir V., and Naumov, Vadim A.. 2005. ‘Extended Rein–Sehgal Model for Tau Lepton Production.Nuclear Physics B-Proceedings Supplements 139: 158161.Google Scholar
[516] Wu, Jia-Jun, and Zou, Bing-Song. 2015. ‘Hyperon Production from Neutrino–nucleon Reaction.Few-Body Systems 56 (4-5): 165183.Google Scholar
[517] Wu, Jia-Jun, Sato, T., and Lee, T-SH. 2015. ‘Incoherent Pion Production in Neutrino-deuteron Interactions.Physical Review C 91 (3): 035203.Google Scholar
[518] Kamano, H., Nakamura, S. X., Lee, T-SH, and Sato, T.. 2013. ‘Nucleon Resonances within a Dynamical Coupled-channels Model of πN and γN Reactions.Physical Review C 88 (3): 035209.Google Scholar
[519] Kitagaki, T., Yuta, H., Tanaka, S., Yamaguchi, A., Abe, K., Hasegawa, K., Tamai, K. et al. 1990. ‘Study of νd → μ pps and νd → μ Δ++ (1232)ns using the BNL 7-foot Deuterium-filled Bubble Chamber.Physical Review D 42 (5): 1331.Google Scholar
[520] Lacombe, M. et al. 1981. Physics Letters B 101: 139.Google Scholar
[521] Graczyk, K. M., Kielczewska, D., Przewlocki, P., and Sobczyk, J. T.. 2009. ‘CA5 Axial form Factor from Bubble Chamber Experiments.Physical Review D 80 (9): 093001.Google Scholar
[522] Graczyk, Krzysztof M., Żmuda, Jakub, and Sobczyk, Jan T.. 2014. ‘Electroweak form Factors of the Δ (1232) Resonance.Physical Review D 90 (9): 093001.Google Scholar
[523] Wilkinson, Callum, Rodrigues, Philip, Cartwright, Susan, Thompson, Lee, and McFarland, Kevin. 2014. ‘Reanalysis of Bubble Chamber Measurements of Muon-neutrino Induced Single Pion Production.Physical Review D 90 (11): 112017.Google Scholar
[524] Derrick, M., Fernandez, E., Hyman, L., Levman, G., Koetke, D., Musgrave, B., Schreiner, P. et al. 1980. ‘Study of the Reaction νn → νpπ.Physics Letters B 92 (3-4): 363366.Google Scholar
[525] Dover, Carl B., and Fishbane, Paul M.. 1990. ‘η and η’scattering: A Probe of the Strange-quark (ss) Content of the Nucleon?.Physical Review Letters 64 (26): 3115.Google Scholar
[526] Solomey, Nickolas. 2005. ‘A Proposed Study of Neutrino-induced Strange-particle Production Reactions at Minerva.Nuclear Physics B-Proceedings Supplements 142: 7478.Google Scholar
[527] Mann, W. A., Kafka, T., Derrick, M., Musgrave, B., Ammar, R., Day, D., and Gress, J.. 1986. ‘K-meson Production by νμ-deuterium Reactions Near Threshold: Implications for Nucleon-decay Searches.Physical Review D 34 (9): 2545.Google Scholar
[528] Baker, N. J., Connolly, P. L., Kahn, S. A., Kirk, H. G., Murtagh, M. J., Palmer, R. B., Samios, N. P., and Tanaka, M.. 1981. ‘Strange-particle Production from Neutrino Interactions in the BNL 7-foot Bubble Chamber.Physical Review D 24 (11): 2779.Google Scholar
[529] Barish, S. J., Derrick, M., Hyman, L. G., Schreiner, P., Singer, R., Smith, R. P., Yuta, H. et al. 1974. ‘Strange-particle Production in Neutrino Interactions.Physical Review Letters 33 (24): 1446.Google Scholar
[530] Deden, H., Hasert, F. J., Krenz, W., Von Krogh, J., Lanske, D., Morfin, J., Pohl, M. et al. 1975. ‘Strange Particle Production and Charmed Particle Search in the Gargamelle Neutrino Experiment.Physics Letters B 58 (3): 361366.Google Scholar
[531] Shrock, Robert E. 1975. ‘Associated Production by Weak Charged and Neutral Currents.Physical Review D 12 (7): 2049.Google Scholar
[532] Mecklenburg, W. 1978. ‘Neutrino-induced Associated Production.Acta Physica Austriaca 48 (4): 293316.Google Scholar
[533] Dewan, H. K. 1981. ‘Strange-particle Production in Neutrino Scattering.Physical Review D 24 (9): 2369.Google Scholar
[534] Amer, A. A. 1978. ‘Production of Strange Particles by Neutrinos and Antineutrinos.Physical Review D 18 (7): 2290.Google Scholar
[535] Casper, D. 2002. Nucl. Phys. Proc. Suppl. 112: 161.Google Scholar
[536] Datchev, K. 2002. APS Meeting Abstracts p. 1037P.Google Scholar
[537] Undagoitia, T. Marrodan, von Feilitzsch, F., Göger-Ne, M., Grieb, C., Hochmuth, K. A., Oberauer, L., Potzel, W., and Wurm, M.. 2006. ‘Proton Decay in the Large Liquid Scintillator Detector LENA: Study of the Background.’ In Journal of Physics: Conference Series, vol. 39 (1): 269. IOP Publishing.Google Scholar
[538] Kobayashi, K., Earl, M., Ashie, Y., Hosaka, J., Ishihara, K., Itow, Y., Kameda, J. et al. 2005. ‘Search for Nucleon Decay via Modes Favored by Supersymmetric Grand Unification Models in Super-Kamiokande-I.Physical Review D 72 (5): 052007.Google Scholar
[539] Marshall, C. M., Aliaga, L., Altinok, O., Bellantoni, L., Bercellie, A., Betancourt, M., Bodek, A. et al. 2016. ‘Measurement of K+ Production in Charged-current νμ Interactions.Physical Review D 94 (1): 012002.Google Scholar
[540] Butler, Malcolm N., Savage, Martin J., and Springer, Roxanne P.. 1993. ‘Strong and Electromagnetic Decays of the Baryon Decuplet.Nuclear Physics B 399 (1): 6985.Google Scholar
[541] Lyman, E. M. 1951. ‘A. 0. Hanson, and MB Scott.Phys. Rev 84 (626): 1.Google Scholar
[542] Chambers, E. E., and Hofstadter, R.. 1956. ‘Structure of the Proton.Physical Review 103 (5): 1454.Google Scholar
[543] Yearian, M. R., and Hofstadter, R.. 1958. Physical Review 110 (2): 552.Google Scholar
[544] Friedman, J. I., Kendall, H. W., and Taylor, R. E.. 1990. SLAC-REPRINT-1991-019.Google Scholar
[545] Bjorken, J. D. 1970. Conf. Proc. C 700612V1: 1. [Acta Phys. Polon. B 2: 5 (1971)].Google Scholar
[546] Bjorken, James D. 1969. ‘Asymptotic Sum Rules at Infinite Momentum.Physical Review 179 (5): 1547.Google Scholar
[547] Bartel, W., Dudelzak, B., Krehbiel, H., McElroy, J., Meyer-Berkhout, U., Schmidt, W., Walther, V., and Weber, G.. ‘Electroproduction of Pions near the Δ (1236) Isobar and the Form Factor G * M (q2) of the (γNΔ)-vertex.Physics Letters B 28 (2): 148151.Google Scholar
[548] Whitlow, L. W., Riordan, E. M., Dasu, S., Rock, Stephen, and Bodek, Arie. 1990. ‘A Precise Extraction of R = sigma-L/sigma-T from a Global Analysis of the SLAC Deep Inelastic ep and ed Scattering Cross-sections.’ Phys. Lett. 250, no. SLAC-PUB-5284: 193198.Google Scholar
Whitlow, L. W., Riordan, E. M., Dasu, S., Rock, Stephen, and Bodek, A.. 1991. ‘Precise Measurements of the Proton and Deuteron Structure Functions from a Global Analysis of the SLAC Deep Inelastic Electron Scattering Cross-sections.’ Phys. Lett. 282, no. SLAC-PUB-5442: 475482.Google Scholar
[549] Glück, M., Jimenez-Delgado, P., and Reya, E.. 2008. ‘Dynamical Parton Distributions of the Nucleon and Very Small-x Physics.The European Physical Journal C 53 (3): 355366.Google Scholar
[550] Martin, Alan D., James Stirling, W., Thorne, Robert S., and Watt, G.. 2009. ‘Parton Distributions for the LHC.The European Physical Journal C 63 (2): 189285.Google Scholar
[551] Nadolsky, Pavel M., Lai, Hung-Liang, Cao, Qing-Hong, Huston, Joey, Pumplin, Jon, Stump, Daniel, Tung, Wu-Ki, and Yuan, C-P.. 2008. ‘Implications of CTEQ Global Analysis for Collider Observables.Physical Review D 78 (1): 013004.Google Scholar
[552] Harland-Lang, Lucian A., Martin, A. D., Motylinski, P., and Thorne, R. S.. 2015. ‘Parton Distributions in the LHC Era: MMHT 2014 PDFs.The European Physical Journal C 75 (5): 204.Google Scholar
[553] Aubert, Jean-Jacques, Peroni, C., Bassompierre, Gabriel, Moser, K., Sloan, Terence, Korbel, V., Gibson, V. et al. 1987. ‘Measurements of the Nucleon Structure Functions F2N in Deep Inelastic Muon Scattering from Deuterium and Comparison with those from Hydrogen and Iron.’ Nucl. Phys. B 293, no. CERN-EP-87-66: 740786.Google Scholar
[554] Benvenuti, Alberto C., Bollini, D., Bruni, G., Navarria, F. L., Lohmann, W., Voss, R., Genchev, V. I. et al. 1990. ‘A Comparison of the Structure Functions F2 of the Proton and the Neutron from Deep Inelastic Muon Scattering at High Q2.Physics Letters B 237 (3-4): 599604.Google Scholar
[555] Allasia, D., Amaudruz, P., Arneodo, M., Arvidson, A., Badelek, B., Baum, Guenter, Beaufays, J. et al. 1990. ‘Measurement of the Neutron and the Proton F2 Structure Function Ratio.Physics Letters B 249 (2): 366372.Google Scholar
[556] Arneodo, M., Arvidson, A., Badelek, B., Ballintijn, M., Baum, Guenter, Beaufays, J., Bird, I. G. et al. 1994. ‘Reevaluation of the Gottfried Sum.’ Physical Review D 50 (1): R1.Google Scholar
[557] Benvenuti, Alberto C., Bollini, D., Bruni, G., Monari, L., Navarria, F. L., Argento, A., Cvach, J. et al. 1989. ‘Test of QCD and a Measurement of Λ from Scaling Violations in the Proton Structure Function F2(x, Q2) at High Q2.Physics Letters B 223 (3-4): 490496.Google Scholar
Benvenutti, A. C., Bollini, D., Bruni, G., Camporesi, T., Heiman, G., Monari, L., Navarria, F. L. et al. 1987. ‘A high statistics Measurement of the Nucleon Structure Function F2(x, Q2) from Deep Inelastic Muon-carbon Scattering at High Q2.Physics Letters B 195 (1): 9196.Google Scholar
[558] Arneodo, M., Arvidson, A., Badelek, B., Ballintijn, M., Baum, Guenter, Beaufays, J., Bird, I. G. et al. 1996. ‘The A Dependence of the Nuclear Structure Function Ratios.Nuclear Physics B 481 (1-2): 322.Google Scholar
Arneodo, M., Arvidson, A., Badelek, B., Ballintijn, M., Baum, Guenter, Beaufays, J., Bird, I. G. et al. 1997. ‘Measurement of the Proton and Deuteron Structure Functions, F2p and F2d, and of the Ratio σLσT.Nuclear Physics B 483 (1-2): 343.Google Scholar
[559] Aubert, Jean-Jacques, Peroni, C., Bassompierre, Gabriel, Moser, K., Sloan, Terence, Edwards, A. W., Korbel, V. et al. 1985. ‘A detailed Study of the Proton Structure Functions in Deep Inelastic Muon-proton Scattering.’ Nucl. Phys. B 259, no. CERN-EP-85-34: 189265.Google Scholar
[560] Arneodo, M., Arvidson, A., Bade’ek,, B. Ballintijn, M., Baum, Guenter, Beaufays, J., Bird, I. G. et al. 1995. ‘Measurement of the Proton and the Deuteron Structure Functions, F2p and F2d.Physics Letters B 364 (2): 107115.Google Scholar
[561] Berge, P., Burkhardt, H., Dydak, F., Hagelberg, R., Krasny, M. W., Meyer, H. J., Palazzi, P. et al. 1991. ‘A Measurement of Differential Cross-sections and Nucleon Structure Functions in Charged-current Neutrino Interactions on Iron.Zeitschrift für Physik C Particles and Fields 49 (2): 187223.Google Scholar
[562] Oltman, E., Auchincloss, P., Blair, R. E., Haber, C., Mishra, S. R., Ruiz, M., Sciulli, F. J. et al. 1992. ‘Nucleon Structure Functions from High Energy Neutrino Interactions.Zeitschrift für Physik C Particles and Fields 53 (1): 5171.Google Scholar
[563] Bodek, A., Breidenbach, Martin, Dubin, D. L., Elias, J. E., Friedman, Jerome I., Kendall, Henry W., Poucher, J. S. et al. 1979. ‘Experimental Studies of the Neutron and Proton Electromagnetic Structure Functions.Physical Review D 20 (7): 1471.Google Scholar
[564] MacFarlane, D. B., Purohit, M. V., Messner, R. L., Novikoff, D. B., Blair, R. E., Sciulli, F. J., Shaevitz, M. H. et al. 1984. ‘Nucleon Structure Functions from High Energy Neutrino Interactions with Iron and QCD Results.Zeitschrift fŘr Physik C Particles and Fields 26 (1): 112.Google Scholar
[565] Aubert, Jean-Jacques, Bassompierre, G., Becks, K. H., Best, C., Boehm, E., De Bouard, X., Brasse, F. W. et al. 1986. ‘A Detailed Study of the Nucleon Structure Functions in Deep Inelastic Muon Scattering in Iron.Nuclear Physics B 272 (1): 158192.Google Scholar
[566] Tzanov, M., Naples, D., Boyd, S., McDonald, J., Radescu, V., Johnson, R. A., Suwonjandee, N. et al. 2006. ‘Precise Measurement of Neutrino and Antineutrino Differential Cross Sections.Physical Review D 74 (1): 012008.Google Scholar
[567] Auchincloss, Priscilla S., Blair, R., Haber, C., Oltman, E., Leung, W. C., Ruiz, M., Mishra, S. R. et al. 1990. ‘Measurement of the Inclusive Charged-current Cross Section for Neutrino and Antineutrino Scattering on Isoscalar Nucleons.Zeitschrift für Physik C Particles and Fields 48 (3): 411431.Google Scholar
[568] Seligman, W. G. 1997. ‘A Next-to-Leading Order QCD Analysis of Neutrino -Iron Structure Functions at the Tevatron.’ PhD thesis, Nevis Labs, Columbia University.Google Scholar
[569] Berge, P., Blondel, A., Böckmann, P., Burkhardt, H., Dydak, F., De Groot, J. G. H., Grant, A. L. et al. 1987. ‘Total Neutrino and Antineutrino Charged Current Cross Section Measurements in 100, 160, and 200 GeV Narrow Band Beams.Zeitschrift für Physik C Particles and Fields 35 (4): 443452.Google Scholar
[570] Colley, D. C., Jones, G. T., O’Neale, S., Sewell, S. J., Bertrand-Coremans, G., Mulkens, H., Sacton, J. et al. 1979. ‘Cross Sections for Charged Current ν and v Interactions in the Energy Range 10 to 50 GeV.Zeitschrift für Physik C Particles and Fields 2 (3): 187190.Google Scholar
[571] Barish, S. J., Derrick, M., Dombeck, T., Hyman, L. G., Jaeger, K., Musgrave, B., Schreiner, P. et al. 1979. ‘Study of Neutrino Interactions in Hydrogen and Deuterium. II. Inelastic Charged-current Reactions.Physical Review D 19 (9): 2521.Google Scholar
[572] Allaby, James V., Amaldi, Ugo, Barbiellini, Guido, Baubillier, M., Bergsma, F., Capone, A., Flegel, W. et al. 1988. ‘Total Cross Sections of Charged-current Neutrino and Antineutrino Interactions on Isoscalar Nuclei.Zeitschrift für Physik C Particles and Fields 38 (3): 403410.Google Scholar
[573] Nakamura, S. X., Sato, T., Lee, T-SH, Szczerbinska, B., and Kubodera, K.. 2010. ‘Dynamical Model of Coherent Pion Production in Neutrino-nucleus Scattering.Physical Review C 81 (3): 035502.Google Scholar
[574] Collab, C. H. A. R. M., Jonker, M., Panman, J., Udo, F., Allaby, J. V., Amaldi, U., Barbiellini, G. et al. 1981. ‘Experimental Study of Differential Cross Sections dσdy in Neutral Current Neutrino and Antineutrino Interactions.Physics Letters B 102 (1): 6772.Google Scholar
[575] Abramowicz, H., Belusevic, R., Blondel, A., Blümer, H., Böckmann, P., Brummel, H. D., Buchholz, P. et al. 1986. ‘Precision Measurement of sin2 θW from Semileptonic Neutrino Scattering.Physical Review Letters 57 (3): 298.Google Scholar
[576] Allaby, James V., Amaldi, Ugo, Barbiellini, Guido, Baubillier, M., Bergsma, F., Capone, A., Flegel, W. et al. 1986. ‘A Precise Determination of the Electroweak Mixing Angle from Semi-leptonic Neutrino Scattering.Physics Letters B 177 (3-4): 446452.Google Scholar
[577] Abramowicz, H., de Groot, J. G. H., Hansl-Kozanecka, T., Knobloch, J., May, J., Navarria, E. L., Palazzi, P. et al. 1985. ‘Measurement of the Neutral to Charged Current Cross Section Ratios in Neutrino and Antineutrino Nucleon Interactions and Determination of the Weinberg Angle.Zeitschrift für Physik C Particles and Fields 28 (1): 5156.Google Scholar
[578] Aaltonen, T., Amerio, S., Amidei, D., Anastassov, A., Annovi, A., Antos, J., Apollinari, G. et al. [CDF Collaboration]. 2014. Physical Review D 89 (7): 072005.Google Scholar
[579] Tanabashi, M. et al. (Particle Data Group). 2018. ‘Particle Physics Booklet.Physical Review D 98: 030001. http://pdg.lbl.gov/2019/download/db2018.pdf.Google Scholar
[580] Altarelli, Guido, and Parisi, Giorgio. 1977. ‘Asymptotic Freedom in Parton Language.Nuclear Physics B 126 (2): 298318.Google Scholar
Gribov, V. N., and Lipatov, L. N.. 1972. Sov. J. Nucl. Phys. 15: 438. [Yad. Fiz. 15: 781 (1972)].Google Scholar
Lipatov, L. N. 1975. Sov. J. Nucl. Phys. 20: 94. [Yad. Fiz. 20: 181 (1974)].Google Scholar
Dokshitzer, Y. L. 1977. Sov. Phys. JETP 46: 641. [Zh. Eksp. Teor. Fiz. 73: 1216 (1977)].Google Scholar
[581] Vermaseren, Jos AM, Vogt, Andreas, and Moch, S.. 2005. ‘The Third-order QCD Corrections to Deep-inelastic Scattering by Photon Exchange.Nuclear Physics B 724 (1-2): 3182.Google Scholar
[582] Van Neerven, W. L., and Vogt, A.. 2000. ‘NNLO Evolution of Deep-inelastic Structure Functions: The Non-singlet Case.Nuclear Physics B 568 (1-2): 263286.Google Scholar
[583] Furmanski, W., and Petronzio, Roberto. 1982. ‘Lepton-hadron Processes Beyond Leading Order in Quantum Chromodynamics.Zeitschrift für Physik C Particles and Fields 11 (4): 293314.Google Scholar
[584] Hirai, M., Kumano, S., and Miyama, M.. 1998. ‘Numerical Solution of Q2 Evolution Equations for Polarized Structure Functions.Computer Physics Communications 108 (1): 3855.Google Scholar
[585] Kumano, S., and Londergan, J. T.. 1992. ‘A FORTRAN Program for Numerical Solution of the Altarelli-Parisi Equations by the Laguerre method.Computer physics communications 69 (2-3): 373396.Google Scholar
[586] Coriano, Claudio, and Şavkli, Çetin. 1999. ‘QCD Evolution Equations: Numerical Algorithms from the Laguerre Expansion.Computer physics communications 118 (2-3): 236258.Google Scholar
[587] Ratcliffe, Philip G. 2001. ‘Matrix Approach to a Numerical Solution of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi Evolution Equations.Physical Review D 63 (11): 116004.Google Scholar
[588] Moch, S., Vermaseren, Jos AM, and Vogt, Andreas. 2009. ‘Third-order QCD Corrections to the Charged-current Structure Function F3.Nuclear Physics B 813 (1-2): 220258.Google Scholar
[589] Moch, S., Vermaseren, Jos AM, and Vogt, Andreas. 2005. ‘The Longitudinal Structure Function at the Third Order.Physics Letters B 606 (1-2): 123129.Google Scholar
[590] Georgi, Howard, and David Politzer, H.. 1976. ‘Freedom at Moderate Energies: Masses in Color Dynamics.Physical Review D 14 (7): 1829.Google Scholar
[591] Schienbein, Ingo, Radescu, Voica A., Zeller, G. P., Christy, M. Eric, Keppel, C. E., McFarland, Kevin S., Melnitchouk, W. et al. 2008. ‘Target Mass Corrections.Journal of Physics G: Nuclear and Particle Physics 35 (5): 053101.Google Scholar
[592] Ellis, R. Keith, W. Furmanski, and Petronzio, Roberto. 1983. ‘Unravelling Higher Twists.Nuclear Physics B 212 (1): 2998.Google Scholar
[593] Aivazis, M. A. G., Olness, Fredrick I., and Tung, Wu-Ki. 1994. ‘Leptoproduction of Heavy Quarks. I. General Formalism and Kinematics of Charged Current and Neutral Current Production Processes.Physical Review D 50 (5): 3085.Google Scholar
[594] Kretzer, S., and Reno, M. H.. 2002. ‘Tau Neutrino Deep Inelastic Charged Current Interactions.Physical Review D 66 (11): 113007.Google Scholar
[595] Dasgupta, M., and Webber, B. R.. 1996. ‘Power Corrections and Renormalons in Deep Inelastic Structure Functions.Physics Letters B 382 (3): 273281.Google Scholar
[596] Virchaux, Marc, and Milsztajn, Alain. 1992. ‘A Measurement of αs and of Higher Twists from a QCD Analysis of High Statistics F2 Data on Hydrogen and Deuterium Targets.’ Physics Letters B 274 (2): 221229.Google Scholar
[597] Adler, Stephen L. 1966. ‘Sum Rules Giving Tests of Local Current Commutation Relations in High-energy Neutrino Reactions.Physical Review 143 (4): 1144.Google Scholar
[598] Allasia, D., Angelini, Carlo, Baldini, A., Barlag, S., Bertanza, L., Bigi, A., Bisi, V. et al. 1984. ‘Measurement of the Neutron and Proton Structure Functions from Neutrino and Antineutrino Scattering in Deuterium.Physics Letters B 135 (1-3): 231236.Google Scholar
[599] Allasia, D., Angelini, Carlo, Baldini, A., Bertanza, L., Bigi, A., Bisi, V., Bobisut, F. et al. 1985. ‘Q2 Dependence of the proton and Neutron Structure Functions from Neutrino and Antineutrino Scattering in Deuterium.Zeitschrift für Physik C Particles and Fields 28 (3): 321333.Google Scholar
[600] Gross, David J., and Llewellyn, CH Smith. 1969. ‘High-energy Neutrino-nucleon Scattering, Current Algebra and Partons.Nuclear Physics b 14 (2): 337347.Google Scholar
[601] Larin, S. A., and Vermaseren, Jos AM. 1991. ‘The αs3 corrections to the Bjorken Sum Rule for Polarized Electroproduction and to the Gross-Llewellyn Smith sum rule.Physics Letters B 259 (3): 345352.Google Scholar
[602] Poggio, E. C., Quinn, Helen R., and Weinberg, Steven. 1976. ‘Smearing Method in the Quark Model.Physical Review D 13 (7): 1958.Google Scholar
[603] Bloom, Elliott D., and Gilman, Frederick J.. 1970. ‘Scaling, Duality, and the Behavior of Resonances in Inelastic Electron-proton Scattering.Physical Review Letters 25 (16): 1140.Google Scholar
[604] Melnitchouk, Wolodymyr, Ent, Rolf, and Keppel, C. E.. 2005. ‘Quark–hadron Duality in Electron Scattering.Physics Reports 406 (3-4): 127301.Google Scholar
[605] Lalakulich, Olga, Praet, Ch, Jachowicz, Natalie, Ryckebusch, Jan, Leitner, T., Buss, O., and Mosel, U.. 2009. ‘Neutrinos and Duality.’ In AIP Conference Proceedings 1189 (1): 276282. American Institute of Physics.Google Scholar
[606] Andreopoulos, Costas, Bell, A., Bhattacharya, D., Cavanna, F., Dobson, J., Dytman, S., Gallagher, H. et al. 2010. ‘The GENIE Neutrino Monte Carlo Generator.Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 614 (1): 87104.Google Scholar
[607] Hayato, Yoshinari. 2009. ‘A Neutrino Interaction Simulation Program Library NEUT.Acta Phys. Polon. 40: 24772489.Google Scholar
[608] Athar, M. S. and Morfin, J. G.. Jour. Phys. G. (forthcoming).Google Scholar
[609] Katori, T., Lasorak, P., Mandalia, S. and Terri, R., JPS Conf. Proc. 12, 010033 (2016).Google Scholar
[610] Yang, T., Andreopoulos, C., Gallagher, H., Hofmann, K., and Kehayias, P.. 2009. ‘A Hadronization Model for Few-GeV Neutrino Interactions.The European Physical Journal C 63 (1): 110.Google Scholar
[611] Mamyan, Vahe. 2012. ‘Measurements of F2 and R = σL /σT on Nuclear Targets in the Nucleon Resonance Region.’ arXiv preprint arXiv:1202.1457.Google Scholar
[612] Malace, S. P. 2009. ‘Jefferson Lab E00-115 Collab.Phys. Rev. C 80: 035207.Google Scholar
Malace, S. P., Melnitchouk, W., and Psaker, A.. 2011. ‘Evidence for quark-hadron duality in γ* p helicity cross sections.Physical Review C 83 (3): 035203.Google Scholar
[613] https://www.jlab.org.Google Scholar
[614] Wang, Diancheng, Pan, Kai, Subedi, R., Deng, Xiaoyan, Ahmed, Z., Allada, K., Aniol, K. A. et al. 2013. ‘Measurements of Parity-Violating Asymmetries in Electron-Deuteron Scattering in the Nucleon Resonance Region.Physical Review Letters 111 (8): 082501.Google Scholar
[615] Lalakulich, O., Melnitchouk, W., and Paschos, E. A.. 2007. ‘Quark-hadron Duality in Neutrino Scattering.Physical Review C 75 (1): 015202.Google Scholar
Lalakulich, Olga, Melnitchouk, W., Paschos, E. A., Praet, Christophe, Jachowicz, Natalie, and Ryckebusch, Jan. 2007. ‘Duality in Neutrino Reactions.’ In AIP Conference Proceedings, vol. 967 (1): 243248. American Institute of Physics.Google Scholar
Lalakulich, Olga, Jachowicz, Natalie, Praet, Christophe, and Ryckebusch, Jan. 2009. ‘Quark-hadron Duality in Lepton Scattering off Nuclei.Physical Review C 79 (1): 015206.Google Scholar
[616] Graczyk, Krzysztof M., Juszczak, Cezary, and Sobczyk, Jan T.. 2007. ‘Quark–hadron Duality in the Rein–Sehgal Model.Nuclear Physics A 781 (1-2): 227246.Google Scholar
[617] Paschos, E. A., and Schalla, D.. 2013. Adv. High Energy Phys. 2013: 270792.Google Scholar
[618] Paschos, E. A. 1996. ‘A Non-perturbative Effect in Deep Inelastic Scattering.Physics Letters B 389 (2): 383387.Google Scholar
[619] https://j-parc.jpGoogle Scholar
[620] http://www.fnal.gov/Google Scholar
[621] http://ep-news.web.cern.ch/content/cerns-strategy-neutrino-physics-0Google Scholar
[622] http://hepdata.cedar.ac.uk/Google Scholar
[623] Nachtmann, Otto. 1973. ‘Positivity Constraints for Anomalous Dimensions.Nuclear Physics B 63: 237247.Google Scholar
[624] Glúck, M., Reya, E., and Vogt, A.. 1998. ‘Dynamical Parton Distributions Revisited.The European Physical Journal C-Particles and Fields 5 (3): 461470.Google Scholar
[625] Pumplin, Jon, Belyaev, Alexander, Huston, Joey, Stump, Daniel, and Tung, Wu-Ki. 2006. ‘Parton Distributions and the Strong Coupling: CTEQ6AB PDFs.Journal of High Energy Physics 2006 (02): 032.Google Scholar
[626] Martin, A. D., Roberts, R. G., Stirling, William James, and Thorne, R. S.. 2004. ‘Physical Gluons and High-ET jets.’ Physics Letters B 604 (1-2): 6168.Google Scholar
[627] Mousseau, J., Wospakrik, M., Aliaga, L., Altinok, O., Bellantoni, L., Bercellie, A., Betancourt, M. et al. 2016. ‘Measurement of Partonic Nuclear Effects in Deep-inelastic Neutrino Scattering using MINERvA.Physical Review D 93 (7): 071101.Google Scholar
[628] Adamson, P., Ader, C., Andrews, M., Anfimov, N., Anghel, I., Arms, K., Arrieta-Diaz, E. et al. 2016. ‘First Measurement of Electron Neutrino Appearance in NOvA.Physical Review Letters 116 (15): 151806.Google Scholar
Adamson, Ph, Ader, C., Andrews, M., Anfimov, N., Anghel, I., Arms, K., Arrieta-Diaz, E. et al. 2016. ‘First measurement of muon-neutrino disappearance in NOvA.Physical Review D 93 (5): 051104.Google Scholar
[629] Strait, J. et al. [DUNE Collaboration]. 2015. arXiv:1601.05823 [physics.ins-det].Google Scholar
[630] Lipari, Paolo, Lusignoli, Maurizio, and Sartogo, Francesca. 1995. ‘The Neutrino Cross Section and Upward Going Muons.Physical Review Letters 74 (22): 4384.Google Scholar
[631] Markov, M. A. 1964. Neutrino preprint JINR-D577 (1960). Moscow: Nauka.Google Scholar
[632] Berman, S. M. 1961. Lectures on Weak Interactions. CERN-62–20Google Scholar
[633] Bell, John Stewart, and Veltman, Martinus JG. 1963. ‘Polarisation of Vector Bosons Produced by Neutrinos.’ Phys. Lett. 5, no. CERN-TH-348: 151152.Google Scholar
Veltman, M. J. G., and Bell, J. S.. 1963. ‘Intermediate Boson Production by Neutrinos.Physics Letters: A 5 (1): 9496.Google Scholar
[634] Úberall, H. 1964. ‘Polarization Effects in the Production of Intermediate Bosons.’ Physical Review 133 (2B): B444.Google Scholar
[635] Løvseth, J. 1963. ‘On the Angular Distribution of the Brookhaven 1962 Neutrino Experiment.’ Phys. Letters 5.Google Scholar
[636] Hasert, F. J., Faissner, Helmut, Krenz, Wulf Dieter, Von Krogh, J., Lanske, D., Morfin, J., Schultze, K. et al. 1973. ‘Search for Elastic Muon-neutrino Electron Scattering.Physics letters. Section B 46 (1): 121124.Google Scholar
[637] Donnelly, Thomas Wallace, and Peccei, Roberto D.. 1979. ‘Neutral Current Effects in Nuclei.Physics Reports 50 (1): 185.Google Scholar
[638] Auerbach, N., Van Giai, Nguyen, and Vorov, O. K.. 1997. ‘Neutrino Scattering from 12 C and 16 O.’ Physical Review C 56 (5): R2368.Google Scholar
[639] Singh, S. K., and Oset, E.. 1993. ‘Inclusive Quasielastic Neutrino Reactions in 12C and 16O at Intermediate Energies.Physical Review C 48 (3): 1246.Google Scholar
[640] Kosmas, T. S., and Oset, E.. 1996. ‘Charged Current Neutrino-nucleus Reaction Cross Sections at Intermediate Energies.Physical Review C 53 (3): 1409.Google Scholar
[641] Singh, Shri Krishna, Mukhopadhyay, Nimai C., and Oset, E.. 1998. ‘Inclusive Neutrino Scattering in 12C: Implications for νμ to νe oscillations.Physical Review C 57 (5): 2687.Google Scholar
[642] Volpe, C., Auerbach, N., Colo, G., Suzuki, T., and Van Giai, Nguyen. 2000. ‘Microscopic Theories of Neutrino-12C Reactions.Physical Review C 62 (1): 015501.Google Scholar
[643] Volpe, C., Auerbach, N., Colo, G., and N. Van Giai. 2002. ‘Charged-current Neutrino-208Pb Reactions.Physical Review C 65 (4): 044603.Google Scholar
[644] Kolbe, E., Langanke, K., Krewald, S., and Thielemann, F-K.. 1992. ‘Inelastic Neutrino Scattering on 12C and 16O Above the Particle Emission Threshold.Nuclear Physics A 540 (3-4): 599620.Google Scholar
[645] Kolbe, E., Langanke, K., Thielemann, F-K., and Vogel, P.. 1995. ‘Inclusive 12C (νμ, μ) 12N Reaction in the Continuum Random Phase Approximation.Physical Review C 52 (6): 3437.Google Scholar
[646] Jachowicz, Natalie, Rombouts, Stefan, Heyde, Kristiaan, and Ryckebusch, Jan. 1999. ‘Cross Sections for Neutral-Current Neutrino-nucleus Interactions: Applications for 12C and 16O.Physical Review C 59 (6): 3246.Google Scholar
[647] Jachowicz, Natalie, Heyde, Kristiaan, Ryckebusch, Jan, and Rombouts, Stefan. 2002. ‘Continuum Random Phase Approximation Approach to Charged-current Neutrino-nucleus Scattering.Physical Review C 65 (2): 025501.Google Scholar
[648] Botrugno, Antonio. 2005. ‘Excitation of Nuclear Giant Resonances in Neutrino Scattering off Nuclei.Nuclear Physics A 761 (3-4): 200231.Google Scholar
[649] Lazauskas, R., and Volpe, C.. 2007. ‘Neutrino Beams as a Probe of the Nuclear Isospin and Spin–isospin Excitations.Nuclear Physics A 792 (3-4): 219228.Google Scholar
[650] Cheoun, Myung-Ki, Ha, Eunja, Kim, K. S., and Kajino, Toshitaka. 2010. ‘Neutrino– nucleus Reactions via Neutral and Charged Currents by the Quasi-particle Random Phase Approximation (QRPA).Journal of Physics G: Nuclear and Particle Physics 37 (5): 055101.Google Scholar
[651] Chasioti, V. Ch, and Kosmas, T. S.. 2009. ‘A Unified Formalism for the Basic Nuclear Matrix Elements in Semi-leptonic Processes.Nuclear Physics A 829 (3-4): 234252.Google Scholar
[652] Tsakstara, V., and Kosmas, T. S.. 2011. ‘Analyzing Astrophysical Neutrino Signals using Realistic Nuclear Structure Calculations and the Convolution Procedure.Physical Review C 84 (6): 064620.Google Scholar
[653] Tsakstara, V., and Kosmas, T. S.. 2012. ‘Nuclear Responses of 64,66Zn Isotopes to Supernova Neutrinos.Physical Review C 86 (4): 044618.Google Scholar
[654] Samana, A. R., Krmpotić, Francesco, Paar, Nils, and Bertulani, C. A.. 2011. ‘Neutrino and Antineutrino Charge-Exchange Reactions on 12C.Physical Review C 83 (2): 024303.Google Scholar
[655] Paar, Nils, Vretenar, Dario, Marketin, Tomislav, and Ring, Peter. 2008. ‘Inclusive Charged-current Neutrino-nucleus Reactions Calculated with the Relativistic Quasiparticle Random-phase Approximation.Physical Review C 77 (2): 024608.Google Scholar
[656] Paar, Nils, Tutman, Hrvoje, Marketin, Tomislav, and Fischer, Tobias. 2013. ‘Large-scale Calculations of Supernova Neutrino-induced Reactions in Z = 8 82 Target Nuclei.’ Physical Review C 87 (2): 025801.Google Scholar
[657] Smith, R. A., and Moniz, Ernest J.. 1972. ‘Neutrino Reactions on Nuclear Targets.Nuclear Physics B 43: 605622.Google Scholar
[658] Gaisser, T. K., and O’Connell, J. S.. 1986. ‘Interactions of Atmospheric Neutrinos in Nuclei at Low Energy.Physical Review D 34 (3): 822.Google Scholar
[659] Singh, S. K., and Oset, E.. 1992. ‘Quasielastic Neutrino (antineutrino) Reactions in Nuclei and the Axial-vector form Factor of the Nucleon.Nuclear Physics A 542 (4): 587615.Google Scholar
[660] Nieves, J., Amaro, Jose Enrique, and Valverde, M.. 2004. ‘Inclusive Quasielastic Charged-current Neutrino-nucleus Reactions.Physical Review C 70 (5): 055503.Google Scholar
[661] Nieves, J., Simo, I. Ruiz, and Vacas, MJ Vicente. 2013. ‘Two Particle–hole Excitations in Charged Current Quasielastic Antineutrino-nucleus Scattering.Physics Letters B 721 (1-3): 9093.Google Scholar
[662] Athar, M. Sajjad, Ahmad, Shakeb, and Singh, S. K.. 2005. ‘Supernova Neutrino Induced Inclusive Reactions on Fe 56 in Terrestrial Detectors.Physical Review C 71 (4): 045501.Google Scholar
[663] Athar, M. Sajjad, Ahmad, S., and Singh, S. K.. 2005. ‘Charged Lepton Production from iron Induced by Atmospheric Neutrinos.The European Physical Journal A-Hadrons and Nuclei 24 (3): 459474.Google Scholar
[664] Athar, M. Sajjad, Ahmad, Shakeb, and Singh, S. K.. 2007. ‘Charged Current Antineutrino Reactions from 12C at MiniBooNE energies.Physical Review D 75 (9): 093003.Google Scholar
[665] Akbar, F., Alam, M. Rafi, Athar, M. Sajjad, Chauhan, S., Singh, S. K., and Zaidi, F.. 2015. ‘Electron and Muon Production Cross-sections in Quasielastic ν(ν)-Nucleus Scattering for Eν < 1 GeV.International Journal of Modern Physics E 24 (11): 1550079.Google Scholar
[666] Athar, M. Sajjad, and Singh, S. K.. 2004. ‘νe(νe)–40Ar Absorption Cross Sections for Supernova Neutrinos.’ Physics Letters B 591 (1-2): 69-75.Google Scholar
[667] Athar, M. Sajjad, Ahmad, Shakeb, and Singh, S. K.. 2006. ‘Neutrino Nucleus Cross Sections for Low Energy Neutrinos at SNS Facilities.Nuclear Physics A 764: 551568.Google Scholar
[668] Athar, M. Sajjad, Chauhan, S., and Singh, S. K.. 2010. ‘Theoretical Study of Lepton Events in the Atmospheric Neutrino Experiments at SuperK.The European Physical Journal A 43 (2): 209227.Google Scholar
[669] Kim, Hungchong, Piekarewicz, J., and Horowitz, C. J.. 1995. ‘Relativistic Nuclear Structure Effects in Quasielastic Neutrino Scattering.Physical Review C 51 (5): 2739.Google Scholar
[670] Meucci, Andrea, Giusti, Carlotta, and Pacati, Franco Davide. 2004. ‘Neutral-current Neutrino-nucleus Quasielastic Scattering.’ arXiv preprint nucl-th/0405004.Google Scholar
[671] Meucci, Andrea, Barbaro, Maria Benedetta, Caballero, J. A., Giusti, Carlotta, and Udias, J. M.. 2011. ‘Relativistic Descriptions of Final-state Interactions in Charged-current Quasielastic Neutrino-nucleus Scattering at MiniBooNE Kinematics.’ Physical Review Letters 107 17): 172501.Google Scholar
[672] González-Jiménez, Raúl, Caballero, J. A., Meucci, Andrea, Giusti, Carlotta, Barbaro, Maria Benedetta, Ivanov, M. V., and Udĺas, J. M.. 2013. ‘Relativistic Description of Final-state Interactions in Neutral-current Neutrino and Antineutrino Cross Sections.Physical Review C 88 (2): 025502.Google Scholar
[673] Caballero, J. A., Amaro, Jose Enrique, Barbaro, Maria Benedetta, Donnelly, T. W., and Udias, J. M.. 2007. ‘Scaling and Isospin Effects in Quasielastic Lepton–nucleus Scattering in the Relativistic Mean Field Approach.Physics Letters B 653 (2-4): 366372.Google Scholar
[674] Meucci, Andrea, and Carlotta Giusti. 2014. ‘Final-state Interaction Effects in Neutral-current Neutrino and Antineutrino Cross Sections at MiniBooNE kinematics.Physical Review D 89 (5): 057302.Google Scholar
[675] Donnelly, T. W., and Walecka, J. D.. 1976. ‘Semi-leptonic Weak and Electromagnetic Interactions with Nuclei: Isoelastic Processes.Nuclear Physics A 274 (3-4): 368412.Google Scholar
[676] Walecka, J. D., Hughes, V. M., and Wu, C. S.. 1975. ‘Muon Physics.’ Academis, New York USA.Google Scholar
[677] Haxton, Wick, and Lunardini, Cecilia. 2008. ‘Seven Operators, a Mathematica Script for Harmonic Oscillator Nuclear Matrix Elements Arising in Semileptonic Electroweak Interactions.Computer Physics Communications 179 (5): 345358.Google Scholar
[678] Katori, T., and Martini, M.. 2018. J. Phys. G 45: 013001.Google Scholar
[679] Garvey, G. T., Harris, D. A., Tanaka, H. A., Tayloe, R., and Zeller, G. P.. 2015. ‘Recent Advances and Open Questions in Neutrino-induced Quasi-elastic Scattering and Single Photon Production.Physics Reports 580: 145.Google Scholar
[680] Yao, York-Peng. 1968. ‘Nuclear Effects on the Quasi-Elastic Neutrino Scattering ν+ n → μ + p.Physical Review 176 (5): 1680.Google Scholar
[681] Gatto, R. 1953. ‘On the Scattering of π-mesons by Nuclei.Il Nuovo Cimento (1943–1954) 10 (11): 15591581.Google Scholar
Nuovo Cimento 2: 670 (1955).Google Scholar
[682] De Jager, C. W., De Vries, H., and De Vries, C.. 1974. ‘Nuclear Charge-and Magnetization-density-distribution Parameters from Elastic Electron Scattering.Atomic data and nuclear data tables 14 (5-6): 479508.Google Scholar
[683] De Vries, H., De Jager, C. W., and De Vries, C.. 1987. ‘Nuclear charge-density-distribution Parameters from Elastic Electron Scattering.Atomic data and nuclear data tables 36 (3): 495536.Google Scholar
[684] Fetter, A. L., and Walecka, J. D.. 1971. ‘Quantum Theory of Many Particle Systems New York.’Google Scholar
[685] Engel, Jonathan. 1998. ‘Approximate Treatment of Lepton Distortion in Charged-current Neutrino Scattering from Nuclei.Physical Review C 57 (4): 2004.Google Scholar
[686] Preston, Melvin Alexander. 1962. ‘Physics of the Nucleus.’.Google Scholar
[687] Gil, A., Nieves, J., and Oset, E.. 1997. ‘Many Body Approach to the Inclusive (e, e’) Reaction from the Quasielastic to the ∆ Excitation Region.’ arXiv preprint nucl-th/ 9711009.Google Scholar
[688] Carrasco, R. C., and Oset, E.. 1992. ‘Interaction of Real Photons with Nuclei from 100 to 500 MeV.Nuclear Physics A 536 (3-4): 445508.Google Scholar
[689] Oset, E., Strottman, D., Toki, H., and Navarro, J.. 1993. ‘Core Polarization Phenomena in Pion-nucleus Charge-exchange Reactions above the Delta Resonance.Physical Review C 48 (5): 2395.Google Scholar
Oset, E., de Cordoba, P. Fernandez, Salcedo, L. L., and Brockmann, R.. 1990. ‘Decay Modes of Sigma and Lambda Hypernuclei.Physics Reports 188 (2): 79145..Google Scholar
[690] Martini, M., Ericson, M., and Chanfray, G.. 2011. ‘Neutrino Quasielastic Interaction and Nuclear Dynamics.Physical Review C 84 (5): 055502.Google Scholar
[691] Martini, Marco, and Ericson, Magda. 2013. ‘Quasielastic and Multinucleon Excitations in Antineutrino-nucleus Interactions.Physical Review C 87 (6): 065501.Google Scholar
[692] Nieves, J., Simo, I. Ruiz, and Vacas, MJ Vicente. 2011. ‘Inclusive Charged-current Neutrino-nucleus Reactions.Physical Review C 83 (4): 045501.Google Scholar
[693] Simo, I. Ruiz, Albertus, C., Amaro, J. E., Barbaro, Maria Benedetta, Caballero, J. A., and Donnelly, T. W.. 2014. ‘Relativistic Effects in Two-particle Emission for Electron and Neutrino Reactions.Physical Review D 90 (3): 033012.Google Scholar
[694] Lovato, Alessandro, Gandolfi, Stefano, Carlson, Joseph, Pieper, Steven C., and Schiavilla, Rocco. 2014. ‘Neutral Weak Current Two-Body Contributions in Inclusive Scattering from 12C.Physical Review Letters 112 (18): 182502.Google Scholar
[695] Aguilar-Arevalo, A. A., Brown, B. C., Bugel, L., Cheng, G., Church, E. D., Conrad, J. M., Dharmapalan, R. et al. 2013. ‘First Measurement of the Muon Antineutrino Double-differential Charged-current Quasielastic Cross Section.Physical Review D 88 (3): 032001.Google Scholar
[696] Lerche, Wolfgang, Pohl, Martin, Dewitt, M., Velde-Wilquet, C. Vander, Vilain, P., Haidt, D., Matteuzzi, C. et al. 1978. ‘Experimental Study of the Reaction vp → μ+: Gargamelle Neutrino Propane Experiment.Physics Letters B 78 (4): 510514.Google Scholar
[697] Bolognes¸e, T., Engel, J. P., Guyonnet, J. L., and Riester, J. L.. 1979. ‘Single Pion Production in Antineutrino Induced Charged Current Interactions.Physics Letters B 81 (3-4): 393396.Google Scholar
[698] Isiksal, Engin, Rein, Dieter, and Morfĺn, Jorge G.. 1984. ‘Evidence for Neutrino-and Antineutrino-induced Coherent π0 Production.Physical Review Letters 52 (13): 1096.Google Scholar
[699] Marage, Pierre, Aderholz, M., Armenise, N., Azemoon, T., Barnham, K. W. J., Bartley, J. H., Baton, J. P. et al. 1984. ‘Observation of Coherent Diffractive Charged Current Interactions of Antineutrinos on Neon Nuclei.Physics Letters B 140 (1-2): 137141.Google Scholar
[700] Marage, Pierre, Aderholz, M., Allport, P., Armenise, N., Baton, J. P., Berggren, M., Bertrand, D. et al. 1986. ‘Coherent Single Pion Production by Antineutrino Charged Current Interactions and Test of PCAC.Zeitschrift für Physik C Particles and Fields 31 (2): 191197.Google Scholar
[701] Ammosov, V. V., V. V. et al. 1989. Sov. J. Nucl. Phys. 50: 67. [Yad. Fiz. 50: 106 (1989)].Google Scholar
[702] Grabosch, H. J., Kaufmann, H. H., Nahnhauer, R., Nowak, S., Schlenstedt, S., Ammosov, V. V., Baranov, D. S. et al. 1989. ‘Cross-section Measurements of Single Pion Production in Charged Current Neutrino and Antineutrino Interactions.Zeitschrift für Physik C Particles and Fields 41 (4): 527531.Google Scholar
[703] Grabosch, H-J., Kaufmann, H. H., Krecker, U., Nahnhauer, R., Nowak, S., Schlenstedt, S., Vogt, H. et al. 1986. ‘Coherent Pion Production in Neutrino and Antineutrino Interactions on Nuclei of Heavy Freon Molecules.Zeitschrift fŘr Physik C Particles and Fields 31 (2): 203211.Google Scholar
[704] Faissner, Helmut, Frenzel, E., Grimm, M., Hansl-Kozanecka, T., Hoffmann, D., Radermacher, E., Rein, D. et al. 1983. ‘Observation of Neutrino and Antineutrino Induced Coherent Neutral Pion Production off Al27.Physics Letters B 125 (2-3): 230236.Google Scholar
[705] Aderholz, Michael, Aggarwal, M. M., Akbari, Homaira, Allport, P. P., Baba, P. V. K. S., Badyal, S. K., Marie Barth et al. 1989. ‘Coherent Production of π+ and π Mesons by Charged-current Interactions of Neutrinos and Antineutrinos on Neon Nuclei at the Fermilab Tevatron.Physical Review Letters 63 (21): 2349.Google Scholar
[706] Willocq, Stephane, Aderholz, M., Akbari, H., Allport, P. P., Badyal, S. K., Ballagh, H. C., Barth, M. et al. 1993. ‘Coherent Production of Single Pions and ρ Mesons in Charged-current Interactions of Neutrinos and Antineutrinos on Neon Nuclei at the Fermilab Tevatron.Physical Review D 47 (7): 2661.Google Scholar
[707] Bergsma, F., Dorenbosch, J., Allaby, J. V., Amaldi, U., Barbiellini, G., Flegel, W., Livio Lanceri et al. 1985. ‘Measurement of the Cross Section of Coherent π0 Production by Muon-neutrino and Antineutrino Neutral-current Interactions on Nuclei.Physics Letters B 157 (5-6): 469474.Google Scholar
[708] Marage, Pierre, Allport, P. P., Armenise, N., Baton, J. P., Berggren, M., Burkot, W., Calicchio, M. et al. 1989. ‘Coherent Production of π+ Mesons in ν-neon Interactions.Zeitschrift fŘr Physik C Particles and Fields 43 (4): 523526.Google Scholar
[709] Vilain, Pierre, Wilquet, Gaston, Beyer, R., Flegel, W., Grote, H., Mouthuy, T., H. Øveras et al. 1993. ‘Coherent Single Charged Pion Production by Neutrinos.Physics Letters B 313 (1-2): 267275.Google Scholar
[710] Campbell, J., Charlton, G., Cho, Y., Derrick, M., Engelmann, R., Fetkovich, J., Hymah, L. et al. 1973. ‘Study of the Reaction νp → μ π+ p.Physical Review Letters 30 (8): 335.Google Scholar
[711] Barish, S. J., Campbell, J., Charlton, G., Cho, Y., Derrick, M., Engelmann, R., Hyman, L. G. et al. 1977. ‘Study of Neutrino Interactions in Hydrogen and Deuterium: Description of the Experiment and Study of the Reaction ν + d → μ + p + ps.Physical Review D 16 (11): 3103.Google Scholar
[712] Allen, P., Grässler, H., Schulte, R., Jones, G. T., Kennedy, B. W., O’Neale, S. W., Gebel, W. et al. 1986. ‘A Study of Single-meson Production in Neutrino and Antineutrino Charged-current Interactions on Protons.Nuclear Physics B 264: 221242.Google Scholar
[713] Allasia, D., Angelini, C., van Apeldoorn, G. W., Baldini, A., Barlag, S. M., Bertanza, L., Bobisut, F. et al. 1990. ‘Investigation of Exclusive Channels in ν/ν-deuteron Charged Current Interactions.Nuclear Physics B 343 (2): 285309.Google Scholar
[714] Hayato, Y. 2002. Nucl. Phys. Proc. Suppl. 112: 171.Google Scholar
[715] Rein, Dieter, and Sehgal, Lalit M.. 1983. ‘Coherent π0 Production in Neutrino Reactions.Nuclear Physics B 223 (1): 2944.Google Scholar
[716] Aguilar-Arevalo, A., et al., Phys. Rev. D64, 112007 (2011).Google Scholar
[717] Kim, Hungchong, Schramm, S., and Horowitz, C. J.. 1996. ‘Delta Excitations in Neutrino-nucleus Scattering.’ Physical Review C 53 (5): 2468.Google Scholar
[718] Singh, S. K., Vicente-Vacas, M. J., and Oset, E.. 1998. ‘Nuclear Effects in Neutrino Production of ∆ at Intermediate Energies.Physics Letters B 416 (1-2): 2328.Google Scholar
[719] Kim, Hungchong, Schramm, S., and Horowitz, C. J.. 1996. ‘Detection of Atmospheric Neutrinos and Relativistic Nuclear Structure Effects.Physical Review C 53 (6): 3131.Google Scholar
[720] Kelkar, N. G., Oset, E., and Fernández De Córdoba, P.. 1997. ‘Coherent Pion Production in Neutrino Nucleus Collision in the 1 GeV Region.Physical Review C 55 (4): 1964.Google Scholar
[721] Benhar, Omar, Farina, Nicola, Nakamura, Hiroki, Sakuda, Makoto, and Seki, Ryoichi. 2005. ‘Electron-and Neutrino-nucleus Scattering in the Impulse Approximation Regime.Physical Review D 72 (5): 053005.Google Scholar
[722] Benhar, Omar, and Meloni, Davide. 2007. ‘Total Neutrino and Antineutrino Nuclear Cross Sections Around 1 GeV.Nuclear Physics A 789 (1-4): 379402.Google Scholar
[723] Ahmad, Shakeb, Athar, M. Sajjad, and Singh, S. K.. 2006. ‘Neutrino Induced Charged Current 1 π+ Production at Intermediate Energies.Physical Review D 74 (7): 073008.Google Scholar
[724] Singh, S. K., Athar, M. Sajjad, and Ahmad, Shakeb. 2006. ‘Nuclear Cross Sections in 16O for β Beam Neutrinos at Intermediate Energies.Physics Letters B 641 (2): 159163.Google Scholar
[725] Praet, Christophe, Lalakulich, Olga, Jachowicz, Natalie, and Ryckebusch, Jan. 2009. ‘∆-mediated Pion Production in Nuclei.Physical Review C 79 (4): 044603.Google Scholar
[726] Leitner, Tina, Mosel, Ulrich, and Winkelmann, Stefan. 2009. ‘Neutrino-induced Coherent Pion Production off Nuclei Reexamined.Physical Review C 79 (5): 057601.Google Scholar
[727] Athar, M. S., Chauhan, S. and Singh, S. K.. 2010. J. Phys. G 37: 015005.Google Scholar
[728] Golan, Tomasz, Juszczak, Cezary, and Sobczyk, Jan T.. 2012. ‘Effects of Final-state Interactions in Neutrino-nucleus Interactions.Physical Review C 86 (1): 015505.Google Scholar
[729] Hernandez, E., Nieves, J., and Valverde, M.. 2010. ‘Coherent Pion Production off Nuclei at T2K and MiniBooNE Energies Revisited.Physical Review D 82 (7): 077303.Google Scholar
[730] Ivanov, Martin V., Megias, Guillermo D., González-Jiménez, Raúl, Moreno, Oscar, Barbaro, Maria Benedetta, Caballero, Juan A., and Donnelly, T. William. 2016. ‘Charged-current Inclusive Neutrino Cross Sections in the SuperScaling Model Including Quasielastic, Pion Production and Meson-exchange Contributions.Journal of Physics G: Nuclear and Particle Physics 43 (4): 045101.Google Scholar
[731] Nakamura, S. X., Kamano, H., Hayato, Y., Hirai, M., Horiuchi, W., Kumano, S., Murata, T. et al. 2017. ‘Towards a Unified Model of Neutrino-nucleus Reactions for Neutrino Oscillation Experiments.Reports on Progress in Physics 80 (5): 056301.Google Scholar
[732] Nikolakopoulos, Alexis, González-Jiménez, Raúl, Niewczas, Kajetan, Sobczyk, Jan, and Jachowicz, Natalie. 2018. ‘Modeling Neutrino-induced Charged Pion Production on Water at T2K Kinematics.Physical Review D 97 (9): 093008.Google Scholar
[733] González-Jiménez, R., Nikolakopoulos, A., Jachowicz, N., and Udĺas, J. M.. 2019. ‘Nuclear Effects in Electron-Nucleus and Neutrino-nucleus Scattering within a Relativistic Quantum Mechanical Framework.Physical Review C 100 (4): 045501.Google Scholar
[734] Nakamura, S. X., Kamano, H., and Sato, T.. 2019. ‘Impact of Final State Interactions on Neutrino-nucleon Pion Production Cross Sections Extracted from Neutrino-deuteron Reaction Data.Physical Review D 99 (3): 031301.Google Scholar
[735] Mariani, C., and K2K collaboration. 2007. ‘Neutral Pion Cross Section Measurement at K2K.’ In AIP Conference Proceedings, vol. 967 (1): 174178. American Institute of Physics.Google Scholar
[736] Rodriguez, A., Whitehead, L., Alcaraz, J. L., Andringa, S., Aoki, S., Argyriades, J., Asakura, K. et al. 2008. ‘Measurement of Single Charged Pion Production in the Charged-current Interactions of Neutrinos in a 1.3 GeV Wide Band Beam.’ Physical Review D 78 (3): 032003.Google Scholar
[737] Wascko, M. O. [MiniBooNE Collaboration]. 2006. Nucl. Phys. Proc. Suppl. 159: 50.Google Scholar
[738] Aguilar-Arevalo, A. A., Anderson, C. E., Bazarko, A. O., Brice, S. J., Brown, B. C., Bugel, L., Cao, J. et al. ‘Measurement of νμ-induced Charged-current Neutral Pion Production Cross Sections on Mineral Oil at Eν 0.5 2.0 GeV.Physical Review D 83 (5): 052009.Google Scholar
[739] Hiraide, K. 2008. ‘Measurement of Charged Current Charged Single Pion Production in SciBooNE.’ arXiv preprint arXiv:0810.3903.Google Scholar
[740] Kullenberg, Christopher Thomas, Mishra, S. R., Seaton, M. B., Kim, J. J., Tian, X. C., Scott, A. M., Kirsanov, M. et al. 2009. ‘A Measurement of Coherent Neutral Pion Production in Neutrino Neutral Current Interactions in the NOMAD Experiment.Physics Letters B 682 (2): 177184.Google Scholar
[741] Acciarri, R., Adams, C., Asaadi, J., Baller, B., Bolton, T., Bromberg, C., Cavanna, F. et al. 2018. ‘First Measurement of the Cross Section for νμ and νμ Induced Single Charged Pion Production on Argon using ArgoNeuT.Physical Review D 98 (5): 052002.Google Scholar
[742] Eberly, B., and MINERνA collaboration. 2015. ‘Muon Neutrino Charged Current Inclusive Charged Pion (CCπ±) Production in MINERνA.’ In AIP Conference Proceedings 1663 (1): 070006. AIP Publishing LLC.Google Scholar
[743] Eberly, B., Aliaga, L., Altinok, O., Sazo, MG Barrios, Bellantoni, L., Betancourt, M., Bodek, A. et al. 2015. ‘Charged Pion Production in νμ Interactions on Hydrocarbon at (Eν ) = 4.0 GeV.Physical Review D 92 (9): 092008.Google Scholar
[744] Le, T., Palomino, J. L., Aliaga, L., Altinok, O., Bercellie, A., Bodek, A., Bravar, A. et al. 2015. ‘Single Neutral Pion Production by Charged-current νμ Interactions on Hydrocarbon at (Eν )3.6 GeV.Physics Letters B 749: 130136.Google Scholar
[745] Abe, Ko, Andreopoulos, C., Antonova, M., Aoki, S., Ariga, A., Assylbekov, S., Autiero, D. et al. 2017. ‘First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector.Physical Review D 95 (1): 012010.Google Scholar
[746] Hasegawa, M., Aliu, E., Andringa, S., Aoki, S., Argyriades, J., Asakura, K., Ashie, R. et al. 2005. ‘Search for Coherent Charged Pion Production in Neutrino-carbon Interactions.Physical Review Letters 95 (25): 252301.Google Scholar
[747] Aguilar-Arevalo, A. A., Anderson, C. E., Bazarko, A. O., Brice, S. J., Brown, B. C., Bugel, L., Cao, J. et al. 2008. ‘First Observation of Coherent π0 Production in Neutrino– nucleus Interactions with Eν < 2 GeV.Physics Letters B 664 (1-2): 4146.Google Scholar
[748] Hiraide, K., Alcaraz-Aunion, J. L., Brice, S. J., Bugel, L., Catala-Perez, J., Cheng, G., Conrad, J. M. et al. 2008. ‘Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam.Physical Review D 78 (11): 112004.Google Scholar
[749] Kurimoto, Y., Alcaraz-Aunion, J. L., Brice, S. J., Bugel, L., Catala-Perez, J., Cheng, G., Conrad, J. M. et al. 2010. ‘Improved Measurement of Neutral Current Coherent π0 Production on Carbon in a Few-GeV Neutrino Beam.Physical Review D 81 (11): 111102.Google Scholar
[750] Acciarri, R., Adams, C., Asaadi, J., Baller, B., Bolton, T., Bromberg, C., Cavanna, F. et al. 2014. ‘First Measurement of Neutrino and Antineutrino Coherent Charged Pion Production on Argon.Physical Review Letters 113 (26): 261801.Google Scholar
[751] Higuera, A., Mislivec, A., Aliaga, L., Altinok, O., Bercellie, A., Betancourt, M., Bodek, A. et al. 2014. ‘Measurement of Coherent Production of π± in Neutrino and Antineutrino Beams on Carbon from Eν of 1.5 to 20 GeV.Physical Review Letters 113 (26): 261802.Google Scholar
[752] Abe, K., Andreopoulos, C., Antonova, M., Aoki, S., Ariga, A., Assylbekov, S., Autiero, D. et al. 2016. ‘Measurement of Coherent π+ Production in Low Energy Neutrino-Carbon Scattering.Physical Review Letters 117 (19): 192501.Google Scholar
[753] Adler, Stephen L. 1964. ‘Tests of the Conserved Vector Current and Partially Conserved Axial-vector Current Hypotheses in High-energy Neutrino Reactions.’ Physical Review 135 (4B): B963.Google Scholar
[754] Hernández, E., Nieves, J., and Vacas, MJ Vicente. 2013. ‘Single π Production in Neutrino-nucleus Scattering.’ Physical Review D 87 (11): 113009.Google Scholar
[755] Oset, E., and Salcedo, L. L.. 1987. ‘Delta Self-energy in Nuclear Matter.Nuclear Physics A 468 (3-4): 631652.Google Scholar
[756] Hirenzaki, S., Nieves, J., Oset, E., and Vicente-Vacas, M. J.. 1993. ‘Coherent π0 Electroproduction.Physics Letters B 304 (3-4): 198202.Google Scholar
[757] Carrasco, R. C., Nieves, J., and Oset, E.. 1993. ‘Coherent (γ, π0) Photoproduction in a Local Approximation to the Delta-hole Model.Nuclear Physics A 565 (4): 797817.Google Scholar
[758] Oset, E., and Weise, W.. 1978. ‘Microscopic Calculation of Medium Corrections to Pion-nuclear Elastic Scattering.Physics Letters B 77 (2): 159164.Google Scholar
[759] Hofmann, Hartmut M. 1979. ‘Effects of Pion-absorption in Pion-helium Scattering.Zeitschrift für Physik A Atoms and Nuclei 289 (3): 273282.Google Scholar
[760] Garcia-Recio, C. et al. 1991. Nucl. Phys. A 526: 685.Google Scholar
[761] Alvarez-Ruso, L. 2011. ‘Review of Weak Coherent Pion Production.’ In AIP Conference Proceedings 1405 (1): 140145. American Institute of Physics.Google Scholar
[762] Alvarez-Ruso, Luis, Geng, Li Sheng, Hirenzaki, Satoru, and Vacas, MJ Vicente. 2007. ‘Charged Current Neutrino-induced Coherent Pion Production.Physical Review C 75 (5): 055501.Google Scholar
[763] Singh, S. K., Athar, M. Sajjad, and Ahmad, Shakeb. 2006. ‘Nuclear Effects in Neutrino Induced Coherent Pion Production at K2K and MiniBooNE.Physical Review Letters 96 (24): 241801.Google Scholar
[764] Glauber, R. J. 1959. ‘Lectures in Theoretical Physics, ed. WE Brittin and LG Dunham.Interscience, New York 1: 315.Google Scholar
[765] Vicente-Vacas, M. J., Khankhasayev, M. Kh, and Mashnik, S. G.. 1994. ‘Inclusive Pion Double Charge Exchange above 0.5 GeV.’ arXiv preprint nucl-th/9412023.Google Scholar
[766] Sajjad Athar, Mohammad, Chauhan, Shikha, Singh, Shri Krishna, and Vicente Vacas, Manuel José. 2009. ‘Neutrino Nucleus Cross-sections.International Journal of Modern Physics E 18 (07): 14691481.Google Scholar
[767] Aguilar-Arevalo, A. A., Anderson, C. E., Bazarko, A. O., Brice, S. J., Brown, B. C., Bugel, L., Cao, J. et al. 2011. ‘Measurement of Neutrino-induced Charged-current Charged Pion Production Cross Sections on Mineral Oil at Eν ∼ 1 GeV.Physical Review D 83 (5): 052007.Google Scholar
[768] Rodrigues, P. A. 2015. ‘Comparing Pion Production Models to MiniBooNE Data.’ In AIP Conference Proceedings 1663 (1): 030006. AIP Publishing LLC.Google Scholar
[769] Buss, O., Gaitanos, T., Gallmeister, K., Van Hees, H., Kaskulov, M., Lalakulich, O., Larionov, A. B., Leitner, T., Weil, J., and Mosel, U.. 2012. ‘Transport-theoretical Description of Nuclear Reactions.Physics Reports 512 (1-2): 1124.Google Scholar
[770] Alvarez-Ruso, L., Geng, L. S., Hirenzaki, S., and Vacas, M. J.. 2007. ‘Coherent Pion Production in Neutrino-nucleus Collisions.’ arXiv preprint arXiv:0709.0728.Google Scholar
[771] Singh, Shri Krishna, and Vacas, MJ Vicente. 2006. ‘Weak Quasielastic Production of Hyperons.Physical Review D 74 (5): 053009.Google Scholar
[772] Oset, E., Fernandez de Cordoba, P., Salcedo, L. L., and Brockmann, R.. Phys. Rep. 188: 79.Google Scholar
[773] Alam, M. Rafi, Chauhan, S., Athar, M. Sajjad, and Singh, S. K.. 2013νl Induced Pion Production from Nuclei at ∼ 1 GeV.Physical Review D 88 (7): 077301.Google Scholar
[774] Alam, M. Rafi, Athar, M. Sajjad, Chauhan, S., and Singh, S. K.. 2015. ‘Quasielastic Hyperon Production In-nucleus Interactions.Journal of Physics G: Nuclear and Particle Physics 42 (5): 055107.Google Scholar
[775] Fatima, Atika, Sajjad Athar, Mohammad, and Singh, S. K.. 2019. ‘Weak Quasielastic Hyperon Production Leading to Pions in the Antineutrino-nucleus Reactions.Frontiers in Physics 7: 13.Google Scholar
[776] Alvarez-Ruso, Luis, Nieves, J., Simo, I. Ruiz, Valverde, M., and Vacas, MJ Vicente. 2013. ‘Charged Kaon Production by Coherent Scattering of Neutrinos and Antineutrinos on Nuclei.Physical Review C 87 (1): 015503.Google Scholar
[777] Wang, Z., Marshall, C. M., Aliaga, L., Altinok, O., Bellantoni, L., Bercellie, A., Betancourt, M. et al. 2016. ‘Evidence of Coherent K+ Meson Production in Neutrino-Nucleus Scattering.Physical review letters 117 (6): 061802.Google Scholar
[778] Gershtein, S. S. 1980. ‘Yu. Y. Komachenko and MY Khlopov.Sov. J. Nucl. Phys 32: 861.Google Scholar
[779] Rein, Dieter, and Sehgal, Lalit M.. 1981. ‘Coherent Production of Photons by Neutrinos.Physics Letters B 104 (5): 394398.Google Scholar
[780] Wang, En, Alvarez-Ruso, Luis, and Nieves, J.. 2014. ‘Photon Emission in Neutral-current Interactions at Intermediate Energies.Physical Review C 89 (1): 015503.Google Scholar
[781] Aguilar-Arevalo, A. A., Anderson, C. E., Bazarko, A. O., Brice, S. J., Brown, B. C., Bugel, L., Cao, J. et al. 2009. ‘Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam.Physical Review Letters 102 (10): 101802.Google Scholar
[782] Kullenberg, C. T., Mishra, Sanjib R., Dimmery, D., Tian, X. C., Autiero, Dario, Gninenko, S., Rubbia, André et al. 2012. ‘A Search for Single Photon Events in Neutrino Interactions.Physics Letters B 706 (4-5): 268275.Google Scholar
[783] Gomez, J., Arnold, R. G., Bosted, Peter E., Chang, C. C., Katramatou, A. T., Petratos, G. G., Rahbar, A. A. et al. 1994. ‘Measurement of the A Dependence of Deep-inelastic Electron Scattering.’ Physical Review D 49(9): 4348.Google Scholar
[784] Ackerstaff, K., Airapetian, A., Akopov, N., Akushevich, I., Amarian, M., Aschenauer, E. C., Avakian, H. et al. 2000. ‘Nuclear Effects on R = σL/σT in Deep-inelastic Scattering.Physics Letters B 475 (3-4): 386394. [Phys. Lett. B 567: 339 (2003)].Google Scholar
[785] Bari, G., Benvenuti, A. C., Bollini, D., Bruni, G., Camporesi, T., Heiman, G., Monari, L. et al. 1985. ‘A measurement of Nuclear Effects in Deep Inelastic Muon Scattering on Deuterium, Nitrogen and Iron Targets.Physics Letters B 163 (1-4): 282286.Google Scholar
[786] Benvenuti, Alberto C., Bollini, D., Bruni, G., Navarria, F. L., Argento, A., Cvach, J., Dieters, K. et al. 1987. ‘Nuclear Effects in Deep Inelastic Muon Scattering on Deuterium and Iron Targets.Physics Letters B 189 (4): 483487.Google Scholar
[787] Amaudruz, P., Arneodo, M., Arvidson, A., Badelek, B., Ballintijn, M., Baum, Guenter, Beaufays, J. et al. 1995. ‘A Re-evaluation of the Nuclear Structure Function Ratios for D, He, 6Li, C and Ca.Nuclear Physics B 441 (1-2): 311.Google Scholar
[788] Seely, J., Daniel, A., Gaskell, D., Arrington, J., Fomin, N., Solvignon, P., Asaturyan, R. et al. 2009. ‘New Measurements of the European Muon Collaboration Effect in Very Light Nuclei.Physical review letters 103 (20): 202301.Google Scholar
[789] Ammosov, V. V., and Asratyan, A. E.. 1984. ‘Observation of the EMC Effect in Nu-barNe Interactions.JETP Letters 39 (7): 393397.Google Scholar
[790] Cooper, A. M., Derkaoui, J., Faccini-Turluer, M. L., Parker, Michael Andrew, Petridis, A., Sansum, R. A., Vallee, C. et al. 1984. ‘An Investigation of the EMC Effect using Antineutrino Interactions in Deuterium and Neon.Physics Letters B 141 (1-2): 133139.Google Scholar
[791] Asratian, A. E. et al. 1986. Sov. J. Nucl. Phys. 43: 380.Google Scholar
[792] Guy, J., Saitta, Biagio, , G. Van Apeldoorn, Allport, P., Angelini, Carlo, Armenise, N., Baldini, A. et al. 1987. ‘A Study of the EMC Effect using Neutrino and Antineutrino Interactions in Neon and Deuterium.’ Zeitschrift für Physik C Particles and Fields 36(3): 337348.Google Scholar
[793] Lassila, K. E., and Sukhatme, U. P.. 1991. ‘Analog of the “Emc Effect” in Neutrino-nucleus Interactions.International Journal of Modern Physics A 6 (04): 613623.Google Scholar
[794] Mousseau, J.A., 2016. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nuclear Deep Inelastic Scattering at MINERvA. Springer. doi:10.1007/978-3-319-44841-1.Google Scholar
[795] Stirling, William James, and Whalley, M. R.. 1993. ‘A compilation of Drell-Yan cross sections.’ Journal of Physics G: Nuclear and Particle Physics 19 (D): D1.Google Scholar
[796] http://durpdg.dur.ac.uk/review/dy/Google Scholar
[797] Ashman, J., Badelek, B., Baum, Guenter, Beaufays, J., Bee, C. P., Benchouk, C., Bird, I. G. et al. 1993. ‘A Measurement of the Ratio of the Nucleon Structure Function in Copper and Deuterium.Zeitschrift für Physik C Particles and Fields 57 (2): 211218.Google Scholar
[798] Aubert, Jean-Jacques, Bassompierre, G., Becks, K. H., Best, C., Bóhm, E., de Bouard, X., Brasse, F. W. et al. 1983. ‘The Ratio of the Nucleon Structure Functions F2n for Iron and Deuterium.Physics Letters B 123 (3-4): 275278.Google Scholar
[799] Kulagin, Sergey A., and Petti, R.. 2006. ‘Global study of Nuclear Structure Functions.Nuclear Physics A 765 (1-2): 126187.Google Scholar
[800] Kulagin, Sergey A., and Petti, R.. 2007. ‘Neutrino Inclusive Inelastic Scattering off Nuclei.Physical Review D 76 (9): 094023.Google Scholar
[801] de Cordoba, P. Fernandez, and Oset, E.. 1992. ‘Semiphenomenological Approach to Nucleon Properties in Nuclear Matter.Physical Review C 46 (5): 1697.Google Scholar
[802] Atti, Degli, Ciofi, C., and Liuti, S.. 1989. ‘On the Effects of Nucleon Binding and Correlations in Deep Inelastic Electron Scattering by Nuclei.Physics Letters B 225 (3): 215221.Google Scholar
[803] Vagnoni, Erica, Benhar, Omar, and Meloni, Davide. 2017. ‘Inelastic Neutrino-Nucleus Interactions within the Spectral Function Formalism.Physical review letters 118 (14): 142502.Google Scholar
[804] Ankowski, Artur M., and Sobczyk, Jan T.. 2008. ‘Construction of Spectral Functions for Medium-mass Nuclei.Physical Review C 77 (4): 044311.Google Scholar
[805] Sargsian, M. M., Simula, S., and Strikman, M. I.. 2002. ‘Neutron Structure Function and inclusive Deep Inelastic Scattering from 3H and 3He at large Bjorken x.Physical Review C 66 (2): 024001.Google Scholar
[806] Katori, Teppei. 2015. ‘Meson Exchange Current (MEC) Models in Neutrino Interaction Generators.’ In AIP Conference Proceedings 1663(1): 030001. AIP Publishing LLC.Google Scholar
[807] Mathiot, J-F. 1989. ‘Electromagnetic Meson-exchange Currents at the Nucleon Mass Scale.Physics Reports 173 (2-3): 63172.Google Scholar
[808] Barbaro, M. B. et al. 2016. ‘The Role of Meson Exchange Currents in Charged Current (Anti)neutrino-nucleus Scattering.Nuclear Theory 35: 6071. arXiv:1610. 02924 [nucl-th].Google Scholar
[809] Marco, E., Oset, E., and De Córdoba, P. Fernández. 1996. ‘Mesonic and Binding Contributions to the EMC Effect in a Relativistic Many-body Approach.Nuclear Physics A 611 (4): 484513.Google Scholar
[810] Whitlow, L. W., Riordan, E. M., Dasu, S., Rock, Stephen, and , Arie. 1990. ‘A Precise Extraction of R= sigma-L/sigma-T from a Global Analysis of the SLAC Deep Inelastic Ep and Ed Scattering Cross-sections.’ Phys. Lett. 250, no. SLAC-PUB-5284: 193-198.Google Scholar
[811] Dasu, S., De Barbaro, P., Bodek, A., Harada, H., Krasny, M. W., Lang, Karol, Riordan, E. M. et al. 1994. ‘Measurement of Kinematic and Nuclear Dependence of R = σL/ σT in Deep Inelastic Electron Scattering.Physical Review D 49 (11): 5641.Google Scholar
[812] Rosenbluth, M. N. 1950. ‘High Energy Elastic Scattering of Electrons on Protons.Physical Review 79 (4): 615.Google Scholar
[813] https://www.jlab.org/expprog/proposals/14/PR12 – 14 – 002.pdfGoogle Scholar
[814] De Florian, D., and Sassot, R.. 2004. ‘Nuclear Parton Distributions at Next to Leading Order.Physical Review D 69 (7): 074028.Google Scholar
[815] Hirai, M., Kumano, S., and Nagai, T-H.. 2007. ‘Determination of Nuclear Parton Distribution Functions and their Uncertainties at Next-to-leading Order.Physical Review C 76 (6): 065207.Google Scholar
[816] Eskola, K. J., Paukkunen, Hannu, and Salgado, C. A.. 2009. ‘EPS09—a New Generation of NLO and LO Nuclear Parton Distribution Functions.Journal of High Energy Physics 2009 (04): 065.Google Scholar
[817] de Florian, Daniel, Sassot, Rodolfo, Zurita, Pia, and Stratmann, Marco. 2012. ‘Global Analysis of Nuclear Parton Distributions.Physical Review D 85 (7): 074028.Google Scholar
[818] Kovařĺk, K., Schienbein, I., Olness, F. I., Yu, J. Y., Keppel, C., Morfĺn, J. G., Owens, J. F., and Stavreva, T.. 2012. ‘Nuclear Corrections in ν A DIS and Their Compatibility with Global NPDF Analyses.Few-Body Systems 52 (3-4): 271277.Google Scholar
[819] Kovařĺĺk, K., Kusina, A., Ježo, T., Clark, D. B., Keppel, C., Lyonnet, F., Morfĺn, J. G. et al. 2016. ‘nCTEQ15: Global Analysis of Nuclear Parton Distributions with Uncertainties in the CTEQ framework.Physical Review D 93 (8): 085037.Google Scholar
[820] Eskola, Kari J., Paakkinen, Petja, Paukkunen, Hannu, and Salgado, Carlos A.. 2017. ‘EPPS16: Nuclear Parton Distributions with LHC Data.The European Physical Journal C 77 (3): 163.Google Scholar
[821] Khanpour, Hamzeh, and Atashbar Tehrani, S.. 2016. ‘Global Analysis of Nuclear Parton Distribution Functions and their Uncertainties at Next-to-next-to-leading Order.Physical Review D 93 (1): 014026.Google Scholar
[822] Haider, H., Zaidi, F., Athar, M. Sajjad, Singh, S. K., and Simo, I. Ruiz. 2016. ‘Nuclear Medium Effects in F2AEM (x, Q2) and F2AWeak (x, Q2) Structure Functions.Nuclear Physics A 955: 5878.Google Scholar
[823] Collins, John C., Soper, Davison E., and Sterman, George. 1985. ‘Factorization for Short Distance Hadron-hadron Scattering.Nuclear Physics B 261: 104142.Google Scholar
[824] Bodwin, Geoffrey T. 1985. ‘Factorization of the Drell-Yan Cross Section in Perturbation Theory.Physical Review D 31 (10): 2616.Google Scholar
[825] Jimenez-Delgado, Pedro, and Reya, Ewald. 2014. ‘Delineating Parton Distributions and the Strong Coupling.Physical Review D 89 (7): 074049.Google Scholar
[826] Schienbein, I., Yu, J. Y., Kovařík, K., Keppel, C., Morfin, J. G., Olness, F. I., and Owens, J. F.. 2009. ‘Parton Distribution Function Nuclear Corrections for Charged Lepton and Neutrino Deep Inelastic Scattering Processes.Physical Review D 80 (9): 094004.Google Scholar
[827] Bodek, Arie, and Yang, Un-ki. 2010. ‘Axial and Vector Structure Functions for Electron-and Neutrino-Nucleon Scattering Cross Sections at all Q2 using Effective Leading order Parton Distribution Functions.’ arXiv preprint arXiv:1011.6592.Google Scholar
[828] Eskola, Kari J., Kolhinen, V. J., and Salgado, C. A.. 1999. ‘The Scale Dependent Nuclear Effects in Parton Distributions for Practical Applications.The European Physical Journal C-Particles and Fields 9 (1): 6168.Google Scholar
[829] Eskola, Kari J., Kolhinen, V. J., and Ruuskanen, P. V.. 1998. ‘Scale Evolution of Nuclear Parton Distributions.Nuclear Physics B 535 (1-2): 351371.Google Scholar
[830] Hirai, M., Kumano, S., and Miyama, M.. 2001. ‘Determination of Nuclear Parton Distributions.Physical Review D 64 (3): 034003.Google Scholar
[831] Hirai, M., Kumano, S., and Nagai, T-H.. 2004. ‘Nuclear Parton Distribution Functions and their Uncertainties.Physical Review C 70 (4): 044905.Google Scholar
[832] Eskola, Kari J., Kolhinen, Vesa J., Paukkunen, Hannu, and Salgado, Carlos A.. 2007. ‘A Global Reanalysis of Nuclear Parton Distribution Functions.Journal of High Energy Physics 2007 (05): 002.Google Scholar
[833] Eskola, Kari J., Paukkunen, Hannu, and Salgado, Carlos A.. 2008. ‘An Improved Global Analysis of Nuclear Parton Distribution Functions Including RHIC data.Journal of High Energy Physics 2008 (07): 102.Google Scholar
[834] Stavreva, T., schienbein, I., Arleo, F., Kovařík, K., Olness, F., Yu, J. Y., and Owens, J. F.. 2011. ‘Probing Gluon and Heavy-Quark Nuclear PDFs with γ + Q Production in pA Collisions.Journal of High Energy Physics 2011 (1): 152.Google Scholar
[835] Kovařík, K., Schienbein, I., Olness, F. I., Yu, J. Y., Keppel, C., Morfín, J. G., Owens, J. F., and Stavreva, T.. 2011. ‘Nuclear Corrections in Neutrino-Nucleus Deep Inelastic Scattering and their Compatibility with Global Nuclear Parton-Distribution-Function Analyses.Physical Review Letters 106 (12): 122301.Google Scholar
[836] Owens, J. F., Huston, J., Keppel, C. E., Kuhlmann, S., Morfin, J. G., Olness, F., Pumplin, J., and Stump, D.. 2007. ‘Impact of New Neutrino Deep Inelastic Scattering and Drell-Yan Data on Large-x Parton Distributions.Physical Review D 75 (5): 054030.Google Scholar
[837] Kopeliovich, B. Z., Morfin, J. G., and Schmidt, I.. 2013. ‘Nuclear Shadowing in Electro-Weak Interactions.Prog. Part. Nucl. Phys. 68: 314372. doi: 10.1016/j.ppnp.2012.09. 004.Google Scholar
[838] Cloet, I. C., Bentz, Wolfgang, and Thomas, Anthony William. 2006. ‘EMC and Polarized EMC Effects in Nuclei.Physics Letters B 642 (3): 210217.Google Scholar
[839] Haider, H., private communication.Google Scholar
[840] Akulinichev, S. V., Kulagin, S. A., and Vagradov, G. M.. 1985. ‘The Role of Nuclear Binding in Deep Inelastic Lepton-Nucleon Scattering.Physics Letters B 158 (6): 485488.Google Scholar
Akulinichev, S. V., Shlomo, S., Kulagin, S. A., and Vagradov, G. M.. 1985. ‘Lepton-nucleus Deep-inelastic Scattering.Physical Review Letters 55 (21): 2239.Google Scholar
Akulinichev, S. V., and Shlomo, S.. 1990. ‘Nuclear Binding Effect in Deep-inelastic Lepton Scattering.Physics Letters B 234 (1-2): 170174.Google Scholar
[841] Dunne, Gerald V., and Thomas, Anthony W.. 1986. ‘On the Interpretation of the European Muon Collaboration effect.Physical Review D 33 (7): 2061.Google Scholar
[842] Bickerstaff, R. P., and Anthony William Thomas. 1989. ‘The EMC Effect-with Emphasis on Conventional Nuclear Corrections.Journal of Physics G: Nuclear and Particle Physics 15 (10): 1523.Google Scholar
[843] Kulagin, Sergey A. 1989. ‘Deep-inelastic Scattering on Nuclei: Impulse Approximation and Mesonic Corrections.Nuclear Physics A 500 (3): 653668.Google Scholar
[844] Arneodo, M. 1994. ‘Nuclear Effects in Structure Functions.Phys. Rept. 240: 301393. doi: 10.1016/0370-1573(94)90048-5.Google Scholar
[845] Hen, Or, Higinbotham, Douglas W., Miller, Gerald A., Piasetzky, Eli, and Weinstein, Lawrence B.. 2013. ‘The EMC Effect and High Momentum Nucleons in Nuclei.International Journal of Modern Physics E 22 (07): 1330017.Google Scholar
[846] Piller, Gunther, and Weise, Wolfram. 2000. ‘Nuclear Deep-inelastic Lepton Scattering and Coherence Phenomena.Physics Reports 330 (1): 194.Google Scholar
[847] Benhar, O., Pandharipande, V. R., and Sick, I.. 1999. ‘Density Dependence of the EMC Effect.Physics Letters B 469 (1-4): 1924.Google Scholar
Benhar, O., Pandharipande, V. R., and Sick, I.. 1997. ‘Nuclear Binding and Deep Inelastic Scattering.Physics Letters B 410 (2-4): 7985.Google Scholar
[848] Smith, Jason R., and Miller, Gerald A.. 2003. ‘Chiral Solitons in Nuclei: Saturation, EMC Effect, and Drell-Yan Experiments.Physical Review Letters 91 (21): 212301.Google Scholar
Smith, Jason R., and Miller, Gerald A.. 2007. ‘Erratum: Chiral Solitons in Nuclei: Saturation, EMC Effect, and Drell-Yan Experiments.Physical Review Letters 98 (9): 099902.Google Scholar
[849] degli Atti, C. Ciofi, Frankfurt, L. L., Kaptari, L. P., and Strikman, M. I.. 2007. ‘Dependence of the Wave Function of a Bound Nucleon on its Momentum and the EMC Effect.Physical Review C 76 (5): 055206.Google Scholar
[850] Athar, M. Sajjad, Singh, Shri Krishna, and Vacas, MJ Vicente. 2008. ‘Nuclear effects in F3 structure function of nucleon.Physics Letters B 668 (2): 133142.Google Scholar
[851] Athar, M. Sajjad, Simo, I. Ruiz, and Vacas, MJ Vicente. 2011. ‘Nuclear Medium Modification of the F2(x, Q2) Structure Function.Nuclear Physics A 857 (1): 2941.Google Scholar
[852] Haider, Huma, Simo, I. Ruiz, Athar, M. Sajjad, and Vacas, MJ Vicente. 2011. ‘Nuclear Medium Effects in ν(ν)-nucleus Deep Inelastic Scattering.Physical Review C 84 (5): 054610.Google Scholar
[853] Frankfurt, Leonid, and Strikman, Mark. 2012. ‘QCD and QED Dynamics in the EMC Effect.International Journal of Modern Physics E 21 (04): 1230002.Google Scholar
[854] Haider, H., Simo, I. Ruiz, and Athar, M. Sajjad. 2012. ‘ν(ν)− 208Pb Deep-inelastic Scattering.Physical Review C 85 (5): 055201.Google Scholar
[855] Haider, H., Simo, I. Ruiz, and Athar, M. Sajjad. 2013. ‘Effects of the Nuclear Medium and Non-isoscalarity in Extracting sin2 θW using the Paschos-Wolfenstein Relation.Physical Review C 87 (3): 035502.Google Scholar
[856] Haider, H., Athar, M. Sajjad, Singh, S. K., and Simo, I. Ruiz. 2015. ‘Parity Violating aSymmetry with Nuclear Medium Effects in Deep Inelastic e → scattering.Nuclear Physics A 940: 138157.Google Scholar
[857] Malace, Simona, Gaskell, David, Higinbotham, Douglas W., and Clo, Ian C.ét. 2014. ‘The Challenge of the EMC Effect: Existing Data and Future Directions.International Journal of Modern Physics E 23 (08): 1430013.Google Scholar
[858] Ericson, Magda, and Thomas, Anthony W.. 1983. ‘Pionic Corrections and the EMC Enhancement of the Sea in Iron.Physics Letters B 128 (1-2): 112116.Google Scholar
[859] Bickerstaff, R. P., and Miller, G. A.. 1986. ‘Origins of the EMC Effect.Physics Letters B 168 (4): 409414.Google Scholar
[860] Berger, Edmond L., and Coester, F.. 1987. ‘Nuclear Effects in Deep Inelastic Lepton Scattering.Annual Review of Nuclear and Particle Science 37 (1): 463491.Google Scholar
[861] Jaffe, Robert L. 1983. ‘Quark Distributions in Nuclei.Physical Review Letters 50 (4): 228.Google Scholar
[862] Mineo, H., Bentz, Wolfgang, Ishii, N., Thomas, Anthony William, and Yazaki, K.. 2004. ‘Quark Distributions in Nuclear Matter and the EMC Effect.Nuclear Physics A 735 (3-4): 482514.Google Scholar
[863] Cloet, I. C., Bentz, Wolfgang, and Thomas, Anthony William. 2005. ‘Spin-dependent Structure Functions in Nuclear Matter and the Polarized EMC Effect.Physical Review Letters 95 (5): 052302.Google Scholar
[864] Nachtmann, O., and Pirner, H. J.. 1984. ‘Color-conductivity in Nuclei and the EMC-effect.Zeitschrift für Physik C Particles and Fields 21 (3): 277280.Google Scholar
[865] Close, Francis Edwin, Roberts, Robert Gwilym, and Ross, Graham G.. 1983. ‘The Effect of Confinement Size on Nuclear Structure Functions.Physics Letters B 129 (5): 346350.Google Scholar
[866] Frankfurt, Leonid, and Strikman, Mark. 1988. ‘Hard Nuclear Processes and Microscopic Nuclear Structure.Physics Reports 160 (5-6): 235427.Google Scholar
[867] Armesto, Nestor. 2006. ‘Nuclear Shadowing.’ Journal of Physics G: Nuclear and Particle Physics 32 (11): R367.Google Scholar
[868] Geesaman, Donald F., Saito, Koichi, and Thomas, Anthony W.. 1995. ‘The Nuclear EMC Effect.Annual Review of Nuclear and Particle Science 45 (1): 337390.Google Scholar
[869] Haider, H., Zaidi, F., Athar, M. Sajjad, Singh, S. K., and Simo, I. Ruiz. 2015. ‘Nuclear Medium Effects in Structure Functions of Nucleon at Moderate Q2.Nuclear Physics A 943: 5882.Google Scholar
[870] Zaidi, F., Haider, H., Athar, M. Sajjad, Singh, S. K., and Simo, I. Ruiz. 2019. ‘Nucleon and Nuclear Structure Functions with Nonperturbative and Higher Order Perturbative QCD Effects.Physical Review D 99 (9): 093011.Google Scholar
[871] Zaidi, F., Haider, H., Athar, M. Sajjad, Singh, S. K., and Simo, I. Ruiz. 2020. Phys. Rev. D 101: 033001.Google Scholar
[872] Itzykson, C., and Zuber, J. B.. 1986. Quantum Field Theory. New York: McGRAW-HILL Publication.Google Scholar
[873] Glúck, M., Reya, E., and Vogt, A.. 1992. ‘Pionic Parton Distributions.Zeitschrift für Physik C Particles and Fields 53 (4): 651655.Google Scholar
[874] Wijesooriya, K., Reimer, P. E., and Holt, R. J.. 2005. ‘Pion Parton Distribution Function in the Valence Region.Physical Review C 72 (6): 065203.Google Scholar
[875] Sutton, P. J., Martin, Alan D., Roberts, R. G., and Stirling, WJames. 1992. ‘Parton Distributions for the Pion Extracted from Drell-Yan and Prompt Photon Experiments.Physical Review D 45 (7): 2349.Google Scholar
[876] Conway, J. S., Adolphsen, C. E., Alexander, J. P., Anderson, K. J., Heinrich, J. G., Pilcher, J. E., Possoz, A. et al. 1989. ‘Experimental Study of Muon Pairs Produced by 252-GeV Pions on Tungsten.Physical Review D 39 (1): 92.Google Scholar
[877] Martin, Alan D., Roberts, R. G., Stirling, WJames, and Thorne, R. S.. 1998. ‘Parton Distributions: A New Global Analysis.The European Physical Journal C-Particles and Fields 4 (3): 463496.Google Scholar
[878] Badier, J., Boucrot, J., Bourotte, J., Burgun, G., Callot, O., Charpentier, Ph, Crozon, M. et al. 1983. ‘Experimental Determination of the π Meson Structure Functions by the Drell-Yan Mechanism.Zeitschrift für Physik C Particles and Fields 18 (4): 281287.Google Scholar
[879] Betev, B., Blaising, J. J., Bordalo, P., Boumediene, A., Cerrito, L., Degre, A., Ereditato, A. et al. 1985. ‘Differential Cross-section of High-mass Muon Pairs Produced by a 194 GeV/c π Beam on a Tungsten Target.Zeitschrift für Physik C Particles and Fields 28 (1): 914.Google Scholar
[880] Kulagin, S. A., and Petti, R.. 2010. ‘Structure Functions for Light Nuclei.Physical Review C 82 (5): 054614.Google Scholar
[881] Múther, H., and Polls, A.. 2000. ‘Two-body Correlations in Nuclear Systems.Progress in Particle and Nuclear Physics 45 (1): 243334.Google Scholar
[882] , Ónengút G., Van Dantzig, R., De Jong, M., Oldeman, RUDOLF GERHARD CHRISTIAAN, Güler, M., Kama, S., Köse, U. et al. 2006. ‘Measurement of Nucleon Structure Functions in Neutrino Scattering.Physics Letters B 632 (1): 6575.Google Scholar
[883] Katz, Ulrich F., and Ch Spiering. 2012. ‘High-energy Neutrino Astrophysics: Status and Perspectives.Progress in Particle and Nuclear Physics 67 (3): 651704.Google Scholar
[884] Eddington, A. S. 1920. ‘The Internal Constitution of the Stars.The Scientific Monthly 11 (4): 297303.Google Scholar
[885] Bethe, Hans Albrecht. 1939. ‘Energy Production in Stars.Physical Review 55 (5): 434.Google Scholar
[886] Maurin, D., Melot, F., and Richard Taillet. 2014. ‘A Database of Charged Cosmic Rays.’ Astronomy & Astrophysics 569: A32. https://lpsc.in2p3.fr/cosmic-rays-db/.Google Scholar
[887] Abe, Koh, Fuke, Hideyuki, Haino, Sadakazu, Hams, T., Hasegawa, M., Horikoshi, A., Itazaki, A. et al. 2016. ‘Measurements of Cosmic-ray Proton and Helium Spectra from the BESS-Polar Long-duration Balloon Flights Over Antarctica.The Astrophysical Journal 822 (2): 65.Google Scholar
[888] Abe, K., Fuke, H., Haino, S., Hams, T., Hasegawa, M., Horikoshi, A., Itazaki, A. et al. 2014. ‘Time Variations of Cosmic-ray Helium Isotopes with BESS-Polar I.Advances in Space Research 53 (10): 14261431.Google Scholar
[889] Incagli, Marco. 2015. ‘Results from the AMS02 Experiment on the International Space Station.’ In EPJ Web of Conferences 95: 03017. EDP Sciences.Google Scholar
Aguilar, M., Aisa, D., Alpat, B., Alvino, A., Ambrosi, G., Andeen, K., Arruda, L. et al. 2015. ‘Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station.Physical Review Letters 114 (17): 171103.Google Scholar
Haino, S. 2015. The Helium Spectrum from AMS. AMS Days at CERN: The Future of Cosmic Ray Physics and Latest Results. (Geneva, Switzerland, 2015).Google Scholar
[890] Haino, Sadakazu, Sanuki, T., Abe, K., Anraku, K., Asaoka, Y., Fuke, H., Imori, M. et al. 2004. ‘Measurements of Primary and Atmospheric Cosmic-ray Spectra with the BESS-TeV Spectrometer.Physics Letters B 594 (1-2): 3546.Google Scholar
[891] Derbina, V. A., Galkin, V. I., Hareyama, M., Hirakawa, Y., Horiuchi, Y., Ichimura, M., Inoue, N. et al. 2005. ‘Cosmic-ray Spectra and Composition in the Energy Range of 10-1000 TeV per Particle Obtained by the RUNJOB Experiment.’ The Astrophysical Journal Letters 628 (1): L41.Google Scholar
[892] Wilczynski, H. [JACEE Collaboration]. 1997. ‘JACEE Results on Very High Energy Interactions.Nucl. Phys. Proc. Suppl. B 52: 81. doi: 6/S0920-5632(96)00851-1.Google Scholar
[893] Yamamoto for the BESS Collaboration, Akira. 2008. ‘BESS-Polar: Search for Cosmic-ray Antiparticles of Primary Origins.’ Journal of the Physical Society of Japan 77, no. Suppl. B: 4548.Google Scholar
[894] Gaisser, T.K., and Honda, M.. 2002. ‘Flux of Atmospheric Neutrinos.Annual Review of Nuclear and Particle Science 52 (1): 153199.Google Scholar
[895] Achar, C. V., Menon, M. G. K., Narasimham, V. S., Murthy, P. V., Sreekantan, B. V., Hinotani, K., Miyake, S. et al. 1965. ‘Detection of Muons Produced by Cosmic Ray Neutrinos Deep Underground.Physics Letters 18: 196199.Google Scholar
[896] Reines, F., Crouch, M. F., Jenkins, T. L., Kropp, W. R., Gurr, H. S., Smith, G. R., Sellschop, J. P. F., and Meyer, B.. 1965. ‘Evidence for High-energy Cosmic-ray Neutrino Interactions.Physical Review Letters 15 (9): 429.Google Scholar
[897] Athar, M. Sajjad, Honda, M., Kajita, T., Kasahara, K., and Midorikawa, S.. 2013. ‘Atmospheric Neutrino Flux at INO, South Pole and Pyhäsalmi.Physics Letters B 718 (4-5): 13751380.Google Scholar
[898] Hirata, K. S., Mann, A. K., Takita, M., Frati, W., Takahashi, K., Kajita, T., Suzuki, A. et al. 1988. ‘Experimental Study of the Atmospheric Neutrino Flux.’ Phys. Lett. 205, no. UPR-0149E: 416.Google Scholar
[899] Casper, D., Becker-Szendy, R., Bratton, C. B., Cady, D. R., Claus, R., Dye, S. T., Gajewski, W. et al. 1991. ‘Measurement of Atmospheric Neutrino Composition with the IMB-3 Detector.Physical Review Letters 66 (20): 2561.Google Scholar
[900] Allison, W. W. M., Alner, G. J., Ayres, D. S., Barrett, W. L., Bode, C., Border, P. M., Brooks, C. B. et al. 1997. ‘Measurement of the Atmospheric Neutrino Flavour Composition in Soudan 2.’ Physics Letters B 391 (3-4): 491500.Google Scholar
[901] Hirata, K. S., Inoue, K., Ishida, T., Kajita, T., Kihara, K., Nakahata, M., Nakamura, K. et al. 1992. ‘Observation of a Small Atmospheric /ve Ratio in Kamiokande.Physics Letters B 280 (1-2): 146152.Google Scholar
[902] Fukuda, Y., Nishikawa, K., Koga, M., Suzuki, J., Suzuki, Y., Mann, A. K., Miyata, H. et al. 1994. ‘Atmospheric νμ/νe Ratio in the Multi-GeV Energy Range.’ Phys. Lett. B 335, no. NGTHEP-94-1: 237245.Google Scholar
[903] Fukuda, Y., Hayakawa, T., Ichihara, E., Inoue, K., Ishihara, K., Ishino, Hirokazu, Itow, Y. et al. 1998. ‘Evidence for Oscillation of Atmospheric Neutrinos.Physical Review Letters 81 (8): 1562.Google Scholar
[904] Mueller, Th A., Lhuillier, D., Fallot, Muriel, Letourneau, A., Cormon, S., Fechner, M., Giot, Lydie et al. 2011. ‘Improved Predictions of Reactor Antineutrino Spectra.Physical Review C 83 (5): 054615.Google Scholar
Le, Trung. 2009. ‘Overview of the T2K Long Baseline Neutrino Oscillation Experiment.’ arXiv preprint arXiv:0910.4211.Google Scholar
[905] Apollonio, Marco, Baldini, A., Bemporad, C., Caffau, E., Cei, Fabrizio, Declais, Y., De Kerret, H. et al. 1999. ‘Limits on Neutrino Oscillations from the CHOOZ Experiment.Physics Letters B 466 (2-4): 415430.Google Scholar
[906] Boehm, F. 2000. ‘Palo Verde Experiment.Physical Review Letters 84: 3764.Google Scholar
[907] Colgate, Stirling A., and White, Richard H.. 1966. ‘The Hydrodynamic Behavior of Supernovae Explosions.The Astrophysical Journal 143: 626.Google Scholar
[908] Arnett, W. David. 1966. ‘Gravitational Collapse and Weak Interactions.Canadian Journal of Physics 44 (11): 25532594.Google Scholar
[909] Raffelt, Georg G. 1996. Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and other Weakly Interacting Particles. Chicago: University of Chicago Press.Google Scholar
[910] Haxton, W. C. 2012. ‘Neutrino Astrophysics.’ arXiv:nucl-th/1209.3743.Google Scholar
[911] Hirata, K. et al. [KAMIOKANDE-II Collaboration]. 1987. Physical Review Letters 58: 1490.Google Scholar
[912] Bionta, R. M. et al. 1987. Physical Review Letters 58: 1494.Google Scholar
[913] Bays, Kirk, Iida, T., Abe, K., Hayato, Y., Iyogi, K., Kameda, J., Koshio, Yusuke et al. 2012. ‘Supernova Relic Neutrino Search at Super-kamiokande.Physical Review D 85 (5): 052007.Google Scholar
[914] Agafonova, N. Yu, Aglietta, M., Antonioli, P., Bari, G., Bonardi, A., Boyarkin, V. V., Bruno, G. et al. 2008. ‘On-line Recognition of Supernova Neutrino Bursts in the LVD.’ Astroparticle Physics 28 (6): 516522.Google Scholar
[915] Ahrens, Jens, Andrés, E., Bai, X., Barouch, G., Barwick, S. W., Bay, R. C., Becka, T. et al. 2002. ‘Observation of High Energy Atmospheric Neutrinos with the Antarctic Muon and Neutrino Detector Array.Physical Review D 66 (1): 012005.Google Scholar
[916] Cadonati, L., Calaprice, F. P., and Chen, M. C.. 2002. ‘Supernova Neutrino Detection in Borexino.Astroparticle Physics 16 (4): 361372.Google Scholar
[917] Boyd, R. N., and Murphy, A. S. J.. 2001. ‘The Observatory for Multiflavor NeutrInos from Supernovae.Nuclear Physics A 688: 386389. doi: 10.1016/S0375-9474(01) 00732-1.Google Scholar
Smith, P. F. 2001. ‘Astroparticle Phys., 8, 27 (1997).Astroparticle Phys 16: 75.Google Scholar
[918] Hargrove, C. K., Batkin, I., Sundaresan, M. K., and Dubeau, J.. 1996. ‘A Lead Astronomical Neutrino Detector: LAND.Astroparticle Physics 5 (2): 183196.Google Scholar
[919] Duba, C. A., Duncan, F., Farine, J., Habig, A., Hime, A., Robertson, R. G. H., Scholberg, K. et al. 2008. ‘HALO–the Helium and Lead Observatory for Supernova Neutrinos.’ In Journal of Physics: Conference Series, vol. 136, no. 4, p. 042077. IOP Publishing.Google Scholar
[920] Bueno, A. 2005. ‘The ICARUS project.Nuclear Physics B-Proceedings Supplements 143: 262265.Google Scholar
[921] Schumaker, M.A. [SNO+ Collaboration], Nucl. Phys. B – Proc. Supp. 00, 1 (2010).Google Scholar
[922] Abe, K., Abe, T., Aihara, H., Fukuda, Y., Hayato, Y., Huang, K., Ichikawa, A. K. et al. 2011. ‘Letter of Intent: The Hyper-Kamiokande Experiment—Detector Design and Physics Potential—.’ arXiv preprint arXiv:1109.3262.Google Scholar
[923] Djurcic, Z. et al. [JUNO Collaboration]. 2015. ‘JUNO Conceptual Design Report.’ arXiv:1508.07166 [physics.ins-det].Google Scholar
[924] An, Fengpeng, An, Guangpeng, An, Qi, Antonelli, Vito, Baussan, Eric, Beacom, John, Bezrukov, Leonid et al. 2016. ‘Neutrino Physics with JUNO.Journal of Physics G: Nuclear and Particle Physics 43 (3): 030401.Google Scholar
[925] Totani, T., Sato, K., Dalhed, H. E., and Wilson, J. R.. 1998. ‘Future Detection of Supernova Neutrino Burst and Explosion Mechanism.The Astrophysical Journal 496 (1): 216.Google Scholar
[926] Mezzacappa, Anthony. 2005. ‘Ascertaining the Core Collapse Supernova Mechanism: The State of the Art and the Road Ahead.’ Annu. Rev. Nucl. Part. Sci. (55): 467515.Google Scholar
[927] Janka, H-Th, Langanke, K., Marek, Andreas, Mart, G.ínez-Pinedo, and Múller, B.. 2007. ‘Theory of Core-collapse Supernovae.Physics Reports 442 (1-6): 3874.Google Scholar
[928] Dasgupta, B., and Dighe, A., J. 2008. J. Phys. Conf. Ser. 136: 042072. doi: 10.1088/1742-6596/136/4/042072.Google Scholar
[929] Keil, Mathias Th. 2003. ‘Supernova Neutrino Spectra and Applications to Flavor Oscillations.’ ArXiv Preprint Astro-Ph/0308228.Google Scholar
[930] Fischer, T., Whitehouse, S. C., Mezzacappa, Anthony, Thielemann, F-K., and Liebendoerfer, Matthias. 2009. ‘The Neutrino Signal from Protoneutron Star Accretion and Black Hole Formation.Astronomy & Astrophysics 499 (1): 115.Google Scholar
[931] Keil, Mathias Th, Raffelt, Georg G., and Janka, Hans-Thomas. 2003. ‘Monte Carlo Study of Supernova Neutrino Spectra Formation.The Astrophysical Journal 590 (2): 971.Google Scholar
[932] Fogli, G. et al. 2009. J. Cosmol. Astropart. Phys. 0910: 002. doi: 10.1088/1475-7516/ 2009/10/002.Google Scholar
[933] Vaananen, D., and Volpe, C.. 2011. ‘The Neutrino Signal at HALO: Learning about the Primary Supernova Neutrino Fluxes and Neutrino Properties.J. Cosmol. Astropart. Phys. 1110: 019. doi: 10.1088/1475-7516/2011/10/019.Google Scholar
[934] Choubey, Sandhya, Dasgupta, Basudeb, Dighe, Amol, and Mirizzi, Alessandro. 2010. ‘Signatures of Collective and Matter Effects on Supernova Neutrinos at Large Detectors.’ arXiv preprint arXiv:1008.0308.Google Scholar
[935] Hüdepohl, Lorenz, Müller, B., Janka, H-T., Marek, Andreas, and Raffelt, Georg G.. 2010. ‘Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling.Physical Review Letters 104 (25): 251101. [Erratum 105: 249901 (2010)].Google Scholar
[936] Pantaleone, James. 1992. ‘Neutrino Oscillations at High Densities.Physics Letters B 287 (1-3): 128132.Google Scholar
[937] Duan, Huaiyu, and Alexander Friedland. 2011. ‘Self-induced Suppression of Collective Neutrino Oscillations in a Supernova.Physical Review Letters 106 (9): 091101.Google Scholar
[938] Gava, Jerome, Kneller, James, Volpe, Cristina, and McLaughlin, G. C.. 2009. ‘Dynamical Collective Calculation of Supernova Neutrino Signals.Physical review letters 103 (7): 071101.Google Scholar
[939] Duan, H., Fuller, G. M., and Qian, Y-Z.. 2010. ‘Collective Neutrino Oscillations.Ann. Rev. Nucl. Part. Sci. 60: 569. doi: 10.1146/annurev.nucl.012809.104524.Google Scholar
[940] Duan, Huaiyu, Fuller, George M., Carlson, J., and Qian, Yong-Zhong. 2007. ‘Analysis of Collective Neutrino Flavor Transformation in Supernovae.Physical Review D 75 (12): 125005.Google Scholar
[941] Mirizzi, A., Raffelt, G. G., and Serpico, P. D.. 2006. ‘Earth Matter Effects in Supernova Neutrinos: Optimal Detector Locations.J. Cosm. Astropart. Phys. 0605: 012. doi: 10.1088/1475-7516/2006/05/012.Google Scholar
[942] Lunardini, Cecilia, and Smirnov, A. Yu. 2001. ‘Supernova Neutrinos: Earth Matter Effects and Neutrino Mass Spectrum.Nuclear Physics B 616 (1-2): 307-348.Google Scholar
[943] Takahashi, Keitaro, and Sato, Katsuhiko. 2002. ‘Earth Effects on Supernova Neutrinos and their Implications for Neutrino Parameters.Physical Review D 66 (3): 033006.Google Scholar
[944] Takahashi, Keitaro, and Sato, Katsuhiko. 2003. ‘Effects of Neutrino Oscillation on Supernova Neutrino: Inverted Mass Hierarchy.Progress of theoretical physics 109 (6): 919931.Google Scholar
[945] Araki, T., Enomoto, S., Furuno, K., Gando, Y., Ichimura, K., Ikeda, H., Inoue, K. et al. 2005. ‘Experimental Investigation of Geologically Produced Antineutrinos with KamLAND.Nature 436 (7050): 499503.Google Scholar
[946] Faessler, A., Hodak, R., Kovalenko, S., and Simkovic, F.. 2013. ‘Search for the Cosmic Neutrino Background and KATRIN.Rom. J. Phys. 58 (9-10): 1221. arXiv: 1304.5632 [nucl-th].Google Scholar
[947] Mertens, Susanne, Alborini, Antonio, Altenmuller, Konrad, Bode, Tobias, Bombelli, Luca, Brunst, Tim, Carminati, Marco et al. 2019. ‘A Novel Detector System for KATRIN to Search for keV-scale Sterile Neutrinos.Journal of Physics G: Nuclear and Particle Physics 46 (6): 065203.Google Scholar
[948] https://www-boone.fnal.gov/.Google Scholar
[949] https://minerva.fnal.gov/.Google Scholar
[950] Axani, S., Collin, G., Conrad, J. M., Shaevitz, M. H., Spitz, J., and Wongjirad, T.. 2015. ‘Decisive Disappearance Search at High △ with Monoenergetic Muon Neutrinos.’ Physical Review D 92 (9): 092010.Google Scholar
[951] Akimov, D., Albert, J. B., An, P., Awe, C., Barbeau, P. S., Becker, B., Belov, V. et al. 2018. 'COHERENT 2018 at the Spallation Neutron Source.’ arXiv preprint arXiv:1803.09183.Google Scholar
[952] Koshkarev, D. G. 1974. CERN Internal Report. CERN/ISR-DI/74-62.Google Scholar
[953] Neuffer, D. ‘Design Considerations for a Muon Storage Ring (1980).’ In Telmark Conference on Neutrino Mass, Barger and Cline eds., Telmark, Wisconsin.Google Scholar
[954] Adey, David, Bayes, Ryan, Bross, Alan D., and Pavel Snopok. 2015. ‘nuSTORM and A Path to a Muon Collider.Annual Review of Nuclear and Particle Science 65: 145-175.Google Scholar
[955] Adey, D., Agarwalla, S. K., Ankenbrandt, C. M., Asfandiyarov, R., Back, J. J., Barker, G., Baussan, E. et al. 2013. ‘nuSTORM-neutrinos from STORed Muons: Proposal to the Fermilab PAC.’ arXiv preprint arXiv: 1308.6822.Google Scholar
[956] Zucchelli, P. 2002. ‘A Novel Concept for a ve/ve Neutrino Factory: the Beta-beam.’ Physics Letters B 532 (3-4): 166-172Google Scholar
[957] Volpe, Cristina. 2004. ‘What About a Beta-beam Facility for Low-energy Neutrinos?.’ Journal of Physics G: Nuclear and Particle Physics 30 (7): L1.Google Scholar
[958] Volpe, Cristina. 2005. ‘Neutrino-nucleus Interactions as a Probe to Constrain Doublebeta Decay Predictions.Journal of Physics G: Nuclear and Particle Physics 31 (8): 903.Google Scholar
[959] Mezzetto, Mauro. 2003. ‘Physics Potential of the SPL Super Beam.Journal of Physics G: Nuclear and Particle Physics 29 (8): 1781.Google Scholar
[960] Mezzetto, Mauro. 2005. ‘SPL and Beta Beams to the Frejus.Nuclear Physics B-Proceedings Supplements 149: 179-181.Google Scholar
[961] Mezzetto, M. 2006. Nucl. Phys. Proc. Suppl. 155: 214-217. doi: 0.1016/j.nuclphysbps. 2006.02.112.Google Scholar
[962] Autin, Bruno, Benedikt, M., Grieser, M., Hancock, S., Haseroth, H., Jansson, A., Koster, U. et al. 2003. ‘The Acceleration and Storage of Radioactive ions for a Neutrino Factory.’ Journal of Physics G: Nuclear and Particle Physics 29 (8): 1785.Google Scholar
[963] Burguet-Castell, Jordi, Casper, D., Couce, E., Gömez-Cadenas, Juan José, and Hernandez, P.. 2005. ‘Optimal ß-beam at the CERN-SPS.Nuclear Physics B 725 (1-2): 306-326.Google Scholar
[964] Jachowicz, Natalie, and McLaughlin, G. C.. 2006. ‘Reconstructing Supernova-neutrino Spectra Using Low-energy Beta Beams.Physical Review Letters 96 (17): 172301.Google Scholar
Jachowicz, N., and McLaughlin, G. C.. 2006. Eur. Phys. J. A27 (S1): 41-48. doi: 10.1140/epja/i2006-08-005-x.Google Scholar
[965] Serreau, J. and Volpe, C.. 2004. ‘Neutrino-nucleus interaction rates at a low-energy ß-beam facility.Physical Review C 70 (5): 055502.Google Scholar
Volpe, C. 2006. ‘Physics with a very first low-energy beta-beam.Nuclear Physics B-Proceedings Supplements 155 (1): 97101.Google Scholar
[966] Ackermann, Markus, Ahlers, Markus, Anchordoqui, Luis, Bustamante, Mauricio, Connolly, Amy, Deaconu, Cosmin, Grant, Darren et al. 2019. ‘Astrophysics Uniquely Enabled by Observations of High-energy Cosmic Neutrinos.’ arXiv preprint arXiv: 1903.04334.Google Scholar
[967] Stecker, Floyd W.PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei.’ Physical Review D 88, no. 4 (2013): 047301.Google Scholar
[968] Davis Jr, Raymond, and Harmer, Don S.. 1959. ‘Attempt to Observe the Cl 37(νe) Ar37 Reaction Induced by Reactor Antineutrinos.Bull. Am. Phys. Soc. 4: 217.Google Scholar
[969] Pontecorvo, B. 1958. Sov. Phys. JETP 7: 172. [Zh. Eksp. Teor. Fiz. 34 (1957) 247].Google Scholar
[970] Pontecorvo, B. 1968. Sov. Phys. JETP 26: 984. [Zh. Eksp. Teor. Fiz. 53 (1967) 1717-1725].Google Scholar
[971] Davis Jr, Raymond. 1964. ‘Solar Neutrinos. II. Experimental.’ Physical Review Letters 12(11): 303.Google Scholar
[972] Davis, R., Lande, K., Lee, C. K., Cleveland, B. T., and Ullman, J.. 1990. In Proceedings, 21st International Cosmic Ray Conference, Adelaide, Australia, January 6-19, 1990, Vol. 7, pp. 155-158.Google Scholar
[973] Bahcall, John N. 1964. ‘Solar Neutrinos. i. Theoretical.Physical Review Letters 12 (11): 300.Google Scholar
[974] Araki, T., Eguchi, K., Enomoto, S., Furuno, K., Ichimura, K., Ikeda, H., Inoue, K. et al. 2005. ‘Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion.Physical Review Letters 94 (8): 081801.Google Scholar
[975] Mention, G., Fechner, M., Lasserre, Th, Mueller, Th A., Lhuillier, D., Cribier, M., and Letourneau, A.. 2011. ‘Reactor Antineutrino Anomaly.Physical Review D 83 (7): 073006.Google Scholar
[976] Huber, Patrick. 2011. ‘Determination of Antineutrino Spectra from Nuclear Reactors.’ Physical Review C 84 (2): 024617. [Erratum: Physical Review C 85: 029901(2012).].Google Scholar
[977] Mueller, Th A., Lhuillier, D., Fallot, Muriel, Letourneau, A., Cormon, S., Fechner, M., Giot, Lydie et al. 2011. ‘Improved Predictions of Reactor Antineutrino Spectra.Physical Review C 83 (5): 054615.Google Scholar
[978] Gando, A., Gando, Y., Ichimura, K., Ikeda, H., Inoue, K., Kibe, Y., Y Kishimoto et al. 2011. ‘Constraints on θ13 from a Three-flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND.Physical Review D 83 (5): 052002.Google Scholar
[979] Allison, W. W. M., Alner, G. J., Ayres, D. S., Barrett, W. L., Bode, C., Border, P. M., Brooks, C. B. et al. 1997. ‘Measurement of the Atmospheric Neutrino Flavour Composition in Soudan 2.Physics Letters B 391 (3-4): 491-500.Google Scholar
Kafka, T. 1999. In ‘Proceedings of 5th Int. Workshop on Topics in Astroparticle and Underground Physics, Gran Sasso, Italy, Sep. 1997.Nuclear Physics B -Proceedings Supplements 70 (1-3): 204-206.Google Scholar
[980] Wendell, R. 2014. ‘Atmospheric Results from Super-Kamiokande. -2014.’ Talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, USA, June 2-7, 2014.Google Scholar
[981] Hosaka, J., Ishihara, K., Kameda, J., Koshio, Yusuke, Minamino, A., Mitsuda, C., Miura, M. et al. 2006. ‘Solar Neutrino Measurements in Super-Kamiokande-I.Physical Review D 73 (11): 112001.Google Scholar
[982] Cravens, J. P., Abe, K., Iida, T., Ishihara, K., Kameda, J., Koshio, Yusuke, Minamino, A. et al. 2008. ‘Solar Neutrino Measurements in Super-Kamiokande-II.Physical Review D 78 (3): 032002.Google Scholar
[983] Abe, K., Hayato, Y., Iida, T., Ikeda, M., Ishihara, C., Iyogi, K., Kameda, J. et al. 2011. ‘Solar neutrino results in Super-Kamiokande-III.’ Physical Review 83 (5): 052010.Google Scholar
[984] Koshio, Y 2014. ‘Solar Results from Super-Kamiokande'. Talk given at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, USA, June 2-7, 2014.Google Scholar
[985] Abdurashitov, J. N., Gavrin, V. N., Gorbachev, V. V., Gurkina, P. P., Ibragimova, T. V., Kalikhov, A. V., Khairnasov, N. G. et al. 2009. ‘Measurement of the Solar Neutrino Capture Rate with Gallium Metal. III. Results for the 2002-2007 Data-taking Period.’ Physical Review C 80 (1): 015807.Google Scholar
[986] Bellini, Gianpaolo, Benziger, J., Bick, D., Bonetti, S., Bonfini, G., Avanzini, M. Buizza, Caccianiga, B. et al. 2011. ‘Precision M of the Be 7 Solar Neutrino Interaction Rate in Borexino.Physical Review Letters 107 (14): 141302.Google Scholar
[987] Bellini, G., Benziger, J., Bonetti, S., Avanzini, M. Buizza, Caccianiga, B., Cadonati, L., Calaprice, Frank et al. 2010. ‘Measurement of the Solar B 8 Neutrino Rate with a Liquid Scintillator Target and 3 MeV Energy Threshold in the Borexino Detector.Physical Review D 82 (3): 033006.Google Scholar
[988] Kaether, Florian, Hampel, Wolfgang, Heusser, Gerd, Kiko, Juergen, and Kirsten, Till. 2010. ‘Reanalysis of the GALLEX Solar Neutrino Flux and Source Experiments.’ Physics Letters B 685 (1): 47-54.Google Scholar
[989] Aharmim, B., Ahmed, S. N., Anthony, A. E., Barros, N., Beier, E. W., Bellerive, Alain, Beltran, B. et al. 2013. ‘Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory.Physical Review C 88 (2): 025501.Google Scholar
[990] An, Feng Peng, Balantekin, A. B., Band, H. R., Bishai, M., Blyth, S., Cao, D., Cao, G. F et al. 2017. ‘Measurement of Electron Antineutrino Oscillation Based on 1230 Days of Operation of the Daya Bay Experiment.Physical Review D 95 (7): 072006.Google Scholar
[991] Bak, G., Choi, J. H., Jang, H. I., Jang, J. S., Jeon, S. H., Joo, K. K., Ju, Kiwon et al. 2018. ‘Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO.’ Physical Review Letters 121 (20): 201801.Google Scholar
[992] Abe, Y., Appel, S., Abrahao, T., Almazan, Helena, Alt, C., dos Anjos, J. C., Barriere, J. C. et al. 2016. ‘Measurement of θ13 in Double Chooz using Neutron Captures on Hydrogen with Novel Background Rejection Techniques.Journal of High Energy Physics 2016 (1): 163.Google Scholar
[993] Abe, Y., Dos Anjos, J. C., Barriere, J. C., Baussan, E., Bekman, I., Bergevin, M., Bezerra, T. J. C. et al. 2014. ‘Improved Measurements of the Neutrino Mixing Angle θ13 with the Double Chooz Detector.Journal of High Energy Physics 2014 (10): 86.Google Scholar
[994] Ahn, M. H., Aliu, E., Andringa, S., Aoki, S., Aoyama, Y., Argyriades, J., Asakura, K. et al. 2006. ‘Measurement of Neutrino Oscillation by the K2K Experiment.Physical Review D 74 (7): 072003.Google Scholar
[995] Aguilar-Arevalo, A. A., Anderson, C. E., Brice, S. J., Brown, B. C., Bugel, L., Conrad, J. M., Dharmapalan, R. et al. 2010. ‘Event Excess in the MiniBooNE Search for νμνe Oscillations.Physical Review Letters 105 (18): 181801.Google Scholar
Sorel, M. 2008. ‘MiniBooNE: First Results on the Muon-to-electron Neutrino Oscillation Search.In Journal of Physics: Conference Series 110 (8): 082020. IOP Publishing.Google Scholar
[996] Popov, B. A. 2004. ‘Final Results on the Search for νμνe Oscillations in the NOMAD Experiment.Physics of Atomic Nuclei 67 (11): 19421947.Google Scholar
[997] Eskut, E., Kayis-Topaksu, A., Onengut, G., Van Dantzig, R., De Jong, M., Konijn, J., Melzeretal, O.. 2001. ‘New Results from a Search for νμντ and νυντ oscillation.’ Physics Letters B 497 (1-2): 8-22.Google Scholar
[998] Adamson, P., Anghel, I., Backhouse, C., Barr, G., Bishai, M., Blake, A., Bock, G. J. et al. 2013. ‘Measurement of Neutrino and Antineutrino Oscillations using Beam and Atmospheric Data in MINOS.Physical Review Letters 110 (25): 251801.Google Scholar
[999] Adamson, P., Anghel, I., Backhouse, C., Barr, G., Bishai, M., Blake, A., Bock, G. J. et al. 2013. ‘Electron Neutrino and Antineutrino Appearance in the Full MINOS Data Sample.’ Physical Review Letters 110(17): 171801.Google Scholar
[1000] Abe, Katsushige, Akutsu, R., Ali, A., Amey, J., Andreopoulos, C., Anthony, L., Antonova, M. et al. 2018. ‘Search for C P Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 x 1021 Protons on Target.Physical Review Letters 121 (17): 171802.Google Scholar
[1001] Abe, K., Amey, J., Andreopoulos, C., Antonova, M., Aoki, S., Ariga, A., Ashida, Y. et al. 2017. ‘Measurement of Neutrino and Antineutrino Oscillations by the T2K Experiment Including a New Additional Sample of νe Interactions at the Far Detector.Physical Review D 96 (9): 092006.Google Scholar
[1002] Adamson, P., Aliaga, L., Ambrose, D., Anfimov, Nikolay, Antoshkin, A., Arrieta-Diaz, E., Augsten, K. et al. 2017. ‘Constraints on Oscillation Parameters from νe Appearance and νμ Disappearance in NOvA.Physical Review Letters 118 (23): 231801.Google Scholar
[1003] Acero, M. A., Adamson, P., Aliaga, L., Alion, T., Allakhverdian, V., Anfimov, N., Antoshkin, A. et al. 2018. ‘New Constraints on Oscillation Parameters from νe Appearance and νμ Disappearance in the NOvA Experiment.Physical Review D 98 (3): 032012.Google Scholar
[1004] Acero, M. A. et al. [NOvA Collaboration]. 2019. ‘First Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOvA.Phys. Rev. Lett. 123 (15): 151803. arXiv: 1906.04907.Google Scholar
[1005] OPERA collaboration, Agafonova, N., Aleksandrov, A., Anokhina, A., Aoki, S., Ariga, A., Ariga, T. et al. 2014. ‘Observation of Tau Neutrino Appearance in the CNGS Beam with the OPERA Experiment.Progress of Theoretical and Experimental Physics 2014 (10): 101C01.Google Scholar
[1006] Agafonova, N., Aleksandrov, A., Anokhina, A., Aoki, S., Ariga, A., Ariga, T., Bender, D. et al. 2015. ‘Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment.Physical Review Letters 115 (12): 121802.Google Scholar
[1007] Agafonova, N., Aleksandrov, A., Anokhina, A., Aoki, S., Ariga, Akitaka, Ariga, Tomoko, Asada, T. et al. 2013. ‘New Results on νυντ Appearance with the OPERA Experiment in the CNGS beam.Journal of High Energy Physics 2013 (11): 36.Google Scholar
[1008] Agafonova, N. et al. [OPERA Collaboration]. 2019. SciPost Phys. Proc. 1: 028. doi: 10.21468/SciPostPhysProc. 1.028.Google Scholar
[1009] Mikheyev, S. P., and Yu, A. Smirnov. 1986. ‘Resonant Amplification of v Oscillations in Matter and Solar-neutrino Spectroscopy.Il Nuovo Cimento C 9 (1): 1726.Google Scholar
[1010] Wolfenstein, Lincoln. 1978. ‘Neutrino Oscillations in Matter.Physical Review D 17 (9): 2369.Google Scholar
[1011] Cabibbo, Nicola. 1978. ‘Time Reversal Violation in Neutrino Oscillation.Physics Letters B 72 (3): 333335.Google Scholar
[1012] Bilenky, S. M., Hosek, J., and Petcov, S. T.. 1980. ‘On Oscillations of Neutrinos with Dirac and Majorana Masses.Phys. Lett. B 94: 495-498. doi: 10.1016/0370-2693(80) 90927-2.Google Scholar
[1013] Barger, V., Whisnant, K., and Phillips, R. J. N.. 1980. ‘CP Nonconservation in Threeneutrino Oscillations.Physical Review Letters 45 (26): 2084.Google Scholar
[1014] Jarlskog, Cecilia. 1985. ‘Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation.Physical Review Letters 55 (10): 1039.Google Scholar
[1015] Gonzalez-Garcia, M. C., Maltoni, Michele, and Schwetz, Thomas. 2014. ‘Updated fit to three neutrino mixing: status of leptonic CP violation.’ Journal of High Energy Physics 2014(11): 52.Google Scholar
[1016] http://backreaction.blogspot.co.uk/2009/09/light-bulbs-and-solar-energy-production.html.Google Scholar
[1017] https://commons.wikimedia.org/wiki/File:RadialDensityPREM.jpg.Google Scholar
[1018] Cleveland, Bruce T., Daily, Timothy, Davis Jr, Raymond, Distel, James R., Lande, Kenneth, Lee, C. K., Wildenhain, Paul S., and Jack Ullman. 1998. ‘Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector.The Astrophysical Journal 496 (1): 505.Google Scholar
[1019] MACRO collaboration. 2004. ‘Measurements of Atmospheric Muon Neutrino Oscillations, Global Analysis of the Data Collected with MACRO Detector.The European Physical Journal C-Particles and Fields 36 (3): 323339.Google Scholar
[1020] Aharmim, B., Ahmed, S. N., Andersen, T. C., Anthony, A. E., Barros, N., Beier, E. W., Bellerive, Alain et al. 2009. ‘Measurement of the Cosmic Ray and Neutrino-induced Muon Flux at the Sudbury Neutrino Observatory.Physical Review D 80 (1): 012001.Google Scholar
[1021] Adamson, P., Anghel, I., Aurisano, A., Barr, G., Bishai, M., Blake, A., Bock, G. J. et al. 2014. ‘Combined Analysis of νμ Disappearance and νυνeAppearance in MINOS using Accelerator and Atmospheric Neutrinos.’ Physical Review Letters 112 (19): 191801.Google Scholar
[1022] Terliuk, Andrii. 2019. ‘Atmospheric Neutrino Oscillations with IceCube.’ PoS: 007.Google Scholar
[1023] Albert, A., Andre, Michél, Anghinolfi, Marco, Anton, Gisela, Ardid, M., Aubert, J-J., Aublin, J. et al. 2019. ‘Measuring the Atmospheric Neutrino Oscillation Parameters and Constraining the 3 + 1 Neutrino Model with Ten Years of ANTARES Data.Journal of High Energy Physics 2019 (6): 113.Google Scholar
[1024] Abe, K., Adam, J., Aihara, H., Akiri, T., Andreopoulos, C., Aoki, S., Ariga, A. et al. 2014. ‘Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon Neutrino Disappearance in an off-axis Beam.’ Physical Review Letters 112 (18): 181801.Google Scholar
[1025] Sanchez, M. 2015. ‘Results and Prosects from the NOnuA Experiment.’ Talk given at the XVII International Workshop on Neutrino Factories and Future Neutrino Facilities, Rio de Janeiro, Brazil, August 10-15, 2015.Google Scholar
[1026] Abe, K., Adam, J., Aihara, H., Akiri, T., Andreopoulos, C., Aoki, S., Ariga, Akitaka et al. 2014. ‘Observation of Electron Neutrino Appearance in a Muon Neutrino Beam.’ Physical Review Letters 112(6): 061802.Google Scholar
[1027] Aguilar-Arevalo, A. A., Brown, B. C., Bugel, L., Cheng, G., Church, E. D., Conrad, J. M., Dharmapalan, R. et al. 2012. ‘A Combined νμνe and νμνe Oscillation Analysis of the MiniBooNE Excesses.’ arXiv preprint arXiv: 1207.4809.Google Scholar
[1028] Athanassopoulos, C., Auerbach, L. B., Bauer, D. A., Bolton, R. D., Boyd, B., Burman, R. L., Caldwell, D. O. et al. 1995. ‘Candidate Events in a Search for νμνe Oscillations.’ Physical Review Letters 75 (14): 2650.Google Scholar
Athanassopoulos, C., Auerbach, L. B., Burman, R. L., Cohen, I., Caldwell, D. O., Dieterle, B. D., Donahue, J. B. et al. 1996. ‘Evidence for νμνeOscillations from the LSND Experiment at the Los Alamos Meson Physics Facility.’ Physical Review Letters 11 (15): 3082.Google Scholar
Athanassopoulos, C., Auerbach, L. B., Burman, R. L., Caldwell, D. O., Church, E. D., Cohen, I., Donahue, J. B. et al. 1998. ‘Results on νμνeNeutrino Oscillations from the LSND Experiment.Physical Review Letters 81 (9): 1774.Google Scholar
Athanassopoulos, C., Auerbach, L. B., Burman, R. L., Caldwell, D. O., Church, E. D., Cohen, I., Donahue, J. B. et al. 1998. ‘Results on νμνeOscillations from Pion Decay in Flight Neutrinos.Physical Review C 58 (4): 2489.Google Scholar
Aguilar, A., Auerbach, L. B., Burman, R. L., Caldwell, D. O., Church, E. D., Cochran, A. K., Donahue, J. B. et al. 2001. ‘Evidence for Neutrino Oscillations from the Observation of νe Appearance in a νμ Beam.Physical Review D 64 (11): 112007.Google Scholar
[1029] Abe, Y., Aberle, Christoph, Dos Anjos, J. C., Barriere, J. C., Bergevin, M., Bernstein, A., Bezerra, T. J. C. et al. 2012. ‘Reactor νe disappearance in the Double Chooz experiment.’ Physical Review D 86 (5): 052008.Google Scholar
[1030] Zhang, C. 2014. ‘Recent Results from Daya Bay, Talk given at the XXVI International Conference on Neutrino Physics and Astrophysics.’ Boston, USA: 2-7.Google Scholar
[1031] Choi, J. H., Choi, W. Q., Choi, Y., Jang, H. I., Jang, J. S., Jeon, E. J., Joo, K. K. et al. 2016. ‘Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment.’ Physical review letters 116 (21): 211801.Google Scholar
[1032] Giunti, Carlo, and Kim, Chung W.. 2007. Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press.Google Scholar
[1033] Bilenky, Samoil. 2010. Introduction to the Physics of Massive and Mixed Neutrinos. Vol. 817. Springer.Google Scholar
[1034] Astier, P., Autiero, D., Baldisseri, A., Baldo-Ceolin, M., Banner, M., Bassompierre, G., Benslama, K. et al. 2001. ‘Final NOMAD Results on νμνμ and νeντ Oscillations Including a New Search for vx Appearance using Hadronic r Decays.’ Nuclear Physics B 611(1-3): 3-39.Google Scholar
[1035] Adamson, P., Auty, D. J., Ayres, D. S., Backhouse, C., Barr, G., Bishai, M., Blake, A. et al. 2011. ‘Active to Sterile Neutrino Mixing Limits from Neutral-current Interactions in MINOS.Physical Review Letters 107 (1): 011802.Google Scholar
[1036] Abe, K., Haga, Y., Hayato, Y., Ikeda, M., Iyogi, K., Kameda, J., Kishimoto, Y. et al. 2015. ‘Limits on Sterile Neutrino Mixing using Atmospheric Neutrinos in Super-Kamiokande.’ Physical Review D 91 (5): 052019.Google Scholar
[1037] Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., I. Al Samarai et al. 2017. ‘Search for Sterile Neutrino Mixing using Three Years of IceCube DeepCore Data.Physical Review D 95 (11): 112002.Google Scholar
[1038] Bellini, G. et al. [Borexino Collaboration]. 2013. Physical Review D 88 (7): 072010.Google Scholar
[1039] Cherry, John F., and Shoemaker, Ian M.. 2019. ‘Sterile Neutrino Origin for the Upward Directed Cosmic Ray Showers Detected by ANITA.Physical Review D 99 (6): 063016.Google Scholar
[1040] Hamann, Jan, Hannestad, Steen, Raffelt, Georg G., and Wong, Yvonne YY. 2011. ‘Sterile Neutrinos with eV Masses in Cosmology—How Disfavoured Exactly?.’ Journal of Cosmology and Astroparticle Physics 2011 (9): 034.Google Scholar
[1041] Abazajian, Kevork N., Acero, M. A., Agarwalla, S. K., Aguilar-Arevalo, A. A., Albright, C. H., Antusch, S., Arguelles, C. A. et al. 2012. ‘Light Sterile Neutrinos: A White Paper.’ arXiv preprint arXiv: 1204.5379.Google Scholar
[1042] Alekseev, I., Belov, V., Brudanin, V., Danilov, M., Egorov, V., Filosofov, D., Fomina, M. et al. 2018. ‘Search for Sterile Neutrinos at the DANSS Experiment.Physics Letters B 787: 56-63.Google Scholar
[1043] Almazán, H. et al. [STEREO Collaboration]. 2018. Physical Review Letters 121: 161801.Google Scholar
[1044] Serebrov, A. P. et al. [NEUTRINO-4 Collaboration]. 2019. Pisma Zh. Eksp. Teor. Fiz. 109 (4): 209-218. [JETP Lett. 109 (4) 213-221].Google Scholar
[1045] http://meetings.aps.org/Meeting/APR19/Session/Z14.9.Google Scholar
[1046] Allen, R., Avignone, F. T., Boissevain, J., Efremenko, Y., Elnimr, M., Gabriel, T., Garcia, F. G. et al. 2013. ‘The OscSNS White Paper.’ arXiv preprint arXiv: 1307.7097.Google Scholar
[1047] Wallerstein, George, Iben, Icko, Parker, Peter, Boesgaard, Ann Merchant, Hale, Gerald M., Champagne, Arthur E., Barnes, Charles A. et al. 1997. ‘Synthesis of the Elements in Stars: Forty Years of Progress.Reviews of Modern Physics 69 (4): 995.Google Scholar
[1048] https://en.wikipedia.org/wiki/Nucleosynthesis/.Google Scholar
[1049] http://www.int.washington.edu/PROGRAMS/14-2b/.Google Scholar
[1050] Langanke, K., Martinez-Pinedo, G., and Sieverding, A.. 2018. ‘Neutrino nucleosynthesis: An overview.AAPPS Bulletin 28 (6): 4148. doi: 10.22661/AAPPSBL.2018.28.6.41.Google Scholar
[1051] Hubble, Edwin P. 1926. ‘Extragalactic Nebulae.’ The Astrophysical Journal 64.Google Scholar
Hubble, Edwin P. 1926. Astrophys. J. 63: 236.Google Scholar
Hubble, Edwin P. 1929. ‘A Spiral Nebula as a Stellar System, Messier 31.’ The Astrophysical Journal 69.Google Scholar
[1052] Cowan, John J., and Thielemann, Friedrich-Karl. 2004. ‘R-process Nucleosynthesis in Supernovae.Physics Today 57 (10): 4754.Google Scholar
[1053] https://cnx.org/contents/bIMtPPGL@7/Evolution-of-the-Early-Universe.Google Scholar
[1054] Penzias, Arno A., and Wilson, Robert Woodrow. 1965. ‘A Measurement of Excess antenna Temperature at 4080 Mc/s.The Astrophysical Journal 142: 419-421.Google Scholar
[1055] http://homepages.spa.umn.edu/llrw/a1001s02/HRdiag.html.Google Scholar
[1056] Chandrasekhar, Subrahmanyan. 1931. ‘The Maximum mass of Ideal White Dwarfs.’ The Astrophysical Journal 74: 81.Google Scholar
[1057] http://cse.ssl.berkeley.edu/bmendez/ay10/2000/cycle/planetarynebula.html.Google Scholar
[1058] Margalit, B., and Metzger, B. D.. 2017. Astrophys. J. 850: L19.Google Scholar
[1059] https://phys.org/news/2010-05-supernova-universal-mysteries.html.Google Scholar
[1060] Abbott, Benjamin P., Abbott, Rich, Abbott, T. D., Acernese, Fausto, Ackley, Kendall, Adams, Carl, Adams, Thomas et al. 2017. ‘GW170817: Observation of Gravitational Waves froma Binary Neutron Star Inspiral.Physical Review Letters 119 (16): 161101.Google Scholar
[1061] https://www.insidescience.org/news/gravitational-waves-throw-light-neutron-starmergersGoogle Scholar
[1062] Goeppert-Mayer, Maria. 1935. ‘Double Beta-disintegration.Physical Review 48 (6): 512.Google Scholar
[1063] Furry, W.H. 1939. ‘On Transition Probabilities in Double Beta-disintegration.Physical Review 56 (12): 1184.Google Scholar
[1064] Barabash, A. S. 2010. ‘Precise Half-life Values for Two-neutrino Double-β Decay.Physical Review C 81 (3): 035501.Google Scholar
[1065] Racah, Giulio. 1937. ‘Symmetry Between Particles and Anti-particles.Nuovo cimento 14: 322-328.Google Scholar
[1066] Barabash, A. S. 2011. ‘Experiment Double Beta Decay: Historical Review of 75 Years of Research.Physics of Atomic Nuclei 74 (4): 603613.Google Scholar
[1067] Zuber, Kai, Neutrino Physics (II-edition), CRC Press (2012).Google Scholar
[1068] Stephenson Jr, WC Haxtonand GJ. 1984. ‘Double Beta Decay.Prog. Part. Nucl. Phys 12: 409-479.Google Scholar
[1069] Kotani, Tsuneyuki, and Takasugi, Eiichi. 1985. ‘Double Beta Decay and Majorana Neutrino.Progress of Theoretical Physics Supplement 83: 1-175.Google Scholar
[1070] Dolinski, M. J., Poon, A. W P., and Rodejohann, W.. 2019. ‘Neutrinoless Double-Beta Decay: Status and Prospects.Ann. Rev. Nucl. Part. Sci. 69: 219-251. arXiv:1902. 04097 [nucl-ex].Google Scholar
[1071] Engel, Jonathan, and Menéndez, Javier. 2017. ‘Status and Future of Nuclear Matrix Elements for Neutrinoless Double-beta Decay: A Review.Reports on Progress in Physics 80 (4): 046301.Google Scholar
[1072] Vergados, John D., Ejiri, Hiroyasu, and Simkovic, F.. 2016. ‘Neutrinoless Double Beta Decay and Neutrino Mass.International Journal of Modern Physics E 25 (11): 1630007.Google Scholar
[1073] Deppisch, Frank F., Hirsch, Martin, and Pas, Heinrich. 2012. ‘Neutrinoless Double-beta Decay and Physics Beyond the Standard Model.Journal of Physics G: Nuclear and Particle Physics 39 (12): 124007.Google Scholar
[1074] Umehara, S., Kishimoto, T., Ogawa, I., Hazama, R., Miyawaki, H., Yoshida, S., Matsuoka, K. et al. 2008. ‘Neutrino-less Double-β Decay of 48Ca Studied by CaF2 (Eu) Scintillators.Physical Review C 78 (5): 058501.Google Scholar
[1075] Agostini, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E. et al. 2018. ‘Improved Limit on Neutrinoless Double-β Decay of 76Ge from GERDA Phase II.Physical Review Letters 120 (13): 132503.Google Scholar
[1076] Aalseth, C. E., Abgrall, N., Aguayo, E., Alvis, S. I., Amman, M., Arnquist, I. J., Avignone III, F. T. et al. 2018. ‘Search for Neutrinoless Double-β Decay in Ge 76 with the Majorana Demonstrator.’ Physical Review Letters 120(13): 132502.Google Scholar
[1077] Argyriades, J., Arnold, R., Augier, C., Baker, J., Barabash, A. S., Basharina-Freshville, A., Bongrand, M. et al. 2010. ‘Measurement of the Two Neutrino Double Beta Decay Half-life of Zr-96 with the NEMO-3 detector.Nuclear Physics A 847 (3-4): 168-179.Google Scholar
[1078] Arnold, R., Augier, C., Baker, J. D., Barabash, A. S., Basharina-Freshville, A., Blondel, S., Blot, S. et al. 2015. ‘Results of the Search for Neutrinoless Double-β Decay in 100Mo with the NEMO-3 Experiment.Physical Review D 92 (7): 072011.Google Scholar
[1079] Arnold, R., Augier, C., Baker, J. D., Barabash, A. S., Basharina-Freshville, A., Blondel, S., Blot, S. et al. 2017. ‘Measurement of the 2vββ Decay Half-life and Search for the Ovββ Decay of 116Cd with the NEMO-3 Detector.Physical Review D 95 (1): 012007.Google Scholar
[1080] Arnaboldi, C., Brofferio, C., Bucci, C., Capelli, S., Cremonesi, O., Fiorini, E., Giuliani, A. et al. 2003. ‘A Calorimetric Search on Double Beta Decay of 130Te.Physics Letters B 557 (3-4): 167-175.Google Scholar
[1081] Alduino, C., Alessandria, F., Alfonso, K., Andreotti, E., Arnaboldi, C., Avignone III, F. T., Azzolini, O. et al. 2018. ‘First Results from CUORE: A Search for Lepton Number Violation via Ovββ Decay of 130Te.Physical review letters 120 (13): 132501.Google Scholar
[1082] Gando, A., Gando, Y., Hachiya, T., Hayashi, A., Hayashida, S., Ikeda, H., Inoue, K. et al. 2016. ‘Publisher's Note: Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen [Physical Review Letters 117: 082503].'[Addendum: Physical Review Letters 117 (10): 109903.]Google Scholar
[1083] Albert, J. B., Anton, G., Badhrees, I., Barbeau, P. S., Bayerlein, R., Beck, D., Belov, V. et al. 2018. ‘Search for Neutrinoless Double-beta Decay with the Upgraded EXO-200 Detector.Physical Review Letters 120 (7): 072701.Google Scholar
[1084] Arnold, R., Augier, C., Baker, J. D., Barabash, A. S., Basharina-Freshville, A., Blondel, S., Blot, S. et al. 2016. ‘Measurement of the 2vββ Decay Half-life of 150Nd and a search for Ovββ Decay Processes with the Full Exposure from the NEMO-3 Detector.’ Physical Review D 94 (7): 072003.Google Scholar
[1085] Vergados, J. D., Ejiri, H., and Šimkovic, F.. 2012. ‘Theory of Neutrinoless Double-beta Decay.Reports on Progress in Physics 75 (10): 106301.Google Scholar
[1086] Elliott, Steven R., and Vogel, Petr. 2002. ‘Double Beta Decay.’ Annual Review of Nuclear and Particle Science 52 (1): 115-151.Google Scholar
[1087] Avignone III, Frank T., Elliott, Steven R., and Engel, Jonathan. 2008. ‘Double Beta Decay, Majorana Neutrinos, and Neutrino Mass.Reviews of Modern Physics 80 (2): 481.Google Scholar
[1088] Ejiri, Hiroyasu. 2005. ‘Double Beta Decays and Neutrino Masses.Journal of the Physical Society of Japan 74 (8): 21012127.Google Scholar
[1089] Giuliani, A., Cadenas, J. J., Pascoli, S., Previtali, E., Saakyan, R., Schaeffner, K., and Schoenert, S.. 2019. ‘Double Beta Decay APPEC Committee Report.’ arXiv preprint arXiv: 1910.04688.Google Scholar
[1090] Kuno, Yoshitaka, and Okada, Yasuhiro. 2001. ‘Muon Decay and Physics Beyond the Standard Model.Reviews of Modern Physics 73 (1): 151.Google Scholar
[1091] Ruggier, C., and Valencia, G.. 2019. Contributions at 2019 Conference on KAONS.Google Scholar
[1092] Drechsel, D., and Giannini, M. M.. 1997. ‘Electroproduction of Hyperons.Physics Letters B 397 (3-4): 311-316.Google Scholar
[1093] Jin, Xuemin, and Jaffe, Robert L.. 1997. ‘Weak Hyperon Production in ep Scattering.’ Physical Review D 55 (9): 5636.Google Scholar
[1094] Cirigliano, Vincenzo, González-Alonso, Martín, and Graesser, Michael L.. 2013. ‘Nonstandard Charged Current Interactions: Beta Decays versus the LHC.’ Journal of High Energy Physics 2013 (2): 46.Google Scholar
[1095] Cirigliano, Vincenzo, Gardner, Susan, and Holstein, Barry R.. 2013. ‘Beta decays and non-standard interactions in the LHC era.Progress in Particle and Nuclear Physics 71: 93-118.Google Scholar
[1096] Vos, K. K., Wilschut, H. W., and Timmermans, R. G. E.. 2015. ‘Symmetry Violations in Nuclear and Neutron β Decay.Reviews of Modern Physics 87 (4): 1483.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • M. Sajjad Athar, Aligarh Muslim University, India, S. K. Singh, Aligarh Muslim University, India
  • Book: The Physics of Neutrino Interactions
  • Online publication: 22 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108489065.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • M. Sajjad Athar, Aligarh Muslim University, India, S. K. Singh, Aligarh Muslim University, India
  • Book: The Physics of Neutrino Interactions
  • Online publication: 22 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108489065.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • M. Sajjad Athar, Aligarh Muslim University, India, S. K. Singh, Aligarh Muslim University, India
  • Book: The Physics of Neutrino Interactions
  • Online publication: 22 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108489065.028
Available formats
×