Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T20:44:12.182Z Has data issue: false hasContentIssue false

8 - Y123 and related compounds

Published online by Cambridge University Press:  23 November 2009

David W. Lynch
Affiliation:
Iowa State University
Clifford G. Olson
Affiliation:
Iowa State University
Get access

Summary

Introduction

Although Y123 and Bi2212 both contain CuO2 planes and have similar values of Tc, there are notable differences which have affected the course of the study of each class of material. We have already mentioned two such differences, the reproducible cleavage of Bi2212 and the stability of the cleaved surface in ultrahigh vacuum. The cleavage plane(s) of Y123 is not really known and may vary from cleave to cleave. Moreover, a single plane is unlikely, and the atomic nature of the exposed surface may change at cleavage steps. Surface reconstruction, or at least relaxation, may be possible, even at low temperature. The surfaces of Y123 generally are not stable in ultrahigh vacuum except at temperatures below about 50 K. However, exceptions to this have been found by several groups, but the reasons for this stability are not yet known. Tc may be varied in Bi2212 by the addition or removal of oxygen and there is an optimum oxygen content at which Tc is a maximum. YBa2Cu3Ox also has variable oxygen stoichiometry, but between x = 6.8 and x = 7, Tc remains very close to its maximum value. In Bi2212 the oxygen content changes occur on or adjacent to the Bi–O planes. In Y123 the changes occur in the Cu–O chains, although the holes provided by the oxygen atoms are believed to reside on the CuO2 planes (Cava et al., 1990). Starting from x = 7, removing oxygen atoms from the chains should lower the hole concentration.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×