Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T20:27:19.006Z Has data issue: false hasContentIssue false

13 - Alternative phenotypes and the pharmacogenetics of mood and anxiety disorders

from Part V - Specific psychotropic drugs and disorders

Published online by Cambridge University Press:  20 August 2009

Emanuela Mundo
Affiliation:
Centre for Addiction and Mental Health, University of Toronto, Canada
James L. Kennedy
Affiliation:
Centre for Addiction and Mental Health, University of Toronto, Canada
Bernard Lerer
Affiliation:
Hadassah-Hebrew Medical Center, Jerusalem
Get access

Summary

OVERVIEW

The biological mechanisms of action of the main classes of antidepressant compound involve the serotonin (5-HT) system. Consequently, genes of this system have been considered ideal candidates in pharmacogenetic studies of the antidepressant response. There are critical methodological issues created by the complexity of the definition of the phenotypes (i.e., categorical versus dimensional), the involvement of nongenetic factors in determining the clinical effect of antidepressants, and the different genetic strategies available to detect genetic susceptibility in complex traits (e.g., family-based association studies, transmission disequilibrium test for qualitative and quantitative traits). In this chapter, we present and discuss the most recent findings on genetic predictors of the response to antidepressants in mood and anxiety disorders. The need for a more homogeneous phenotype definition (e.g., including phenotypes related to the diagnosis such as rapid cycling course, psychotic symptoms, atypical features) is pointed out. We also propose and discuss the role of alternative phenotypes (side effects or non-desirable reactions) in pharmacogenetic studies focused on the prediction of the clinical effect of antidepressants. As an example, the phenomenon of antidepressant-induced mania, as an abnormal response to antidepressants, is described. The most recent data on the role of candidate genes (particularly for the 5-HT system, e.g., 5-HTT, 5HT1Dβ, 5HT2A) in contributing to the risk of developing this phenotype are presented and discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×