Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T03:42:08.699Z Has data issue: false hasContentIssue false

10 - Modeling the dynamics of tritrophic population interactions

Published online by Cambridge University Press:  04 August 2010

Marcos Kogan
Affiliation:
Oregon State University
Paul Jepson
Affiliation:
Oregon State University
Get access

Summary

Introduction

Increasingly, population modeling and systems analysis are being used to examine the complex issues that are at the heart of CP/IPM (crop production and integrated pest management) and biological control. The design of economically sound and sustainable crop management strategies requires a thorough understanding of the whole production system including arthropod pests, pathogens, and weeds. More than three decades ago, Huffaker and Croft (1976) stressed the need to rely on systems analysis and interdisciplinary collaboration to accomplish this task. Soon the question arose as to how mathematical techniques employed in the analysis of physical systems could be adapted to solve agroecosystem problems that are principally biological in nature and that focus on population management (Gutierrez and Wang, 1977; Getz and Gutierrez, 1982). Simple models of population dynamics often excluded the biological details for mathematical tractability and hence are frequently inadequate instruments for field application. Individual-based models have been used to explore population interactions (e.g. De Angelis and Gross, 1992), but often the rules for the interactions at the individual level are unknown. Simulation approaches stress biological realism and completeness and some show promise for exploring system structure and function, especially physiologically based models (PBM) (Gutierrez and Wang, 1977), sufficient to gain insights into complex quantitative relationships (see Gilbert et al., 1976; Gutierrez and Baumgärtner, 1984a; b; Graf et al., 1990a; Gutierrez, 1996; Di Cola et al., 1998). In this chapter we will consider only physiologically based multitrophic population dynamics models, or models with the potential to be so extended.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, T. F. H. and Starr, T. B. (1982). Hierarchy. Perspectives for Ecological Complexity. Chicago: The University of Chicago Press.Google Scholar
Anastacio, P. M., Frias, A. F. and Marques, J. C. (1999 a). CRISP (crayfish and rice integrated system of production): 1. Modelling rice (Oryza sativa) growth and production. Ecological Modelling, 123, 17–28.CrossRefGoogle Scholar
Anastacio, P. M., Nielsen, S. N. and Marques, J. C. (1999 b). CRISP (crayfish and rice integrated system of production): 2. Modelling crayfish (Procambarus clarkii) population dynamics. Ecological Modelling, 123, 5–16.CrossRefGoogle Scholar
Anderson, J. L. (ed.) (1990). Second International Symposium on computer modelling in fruit research and orchard management. Utah State University, Logan, 5–8 September, 1989. Acta Horticulturae, 276, 1–372.Google Scholar
Bachelet, D. and Gay, C. A. (1993). The impacts of climate change on rice yield: A comparison of four model performances. Ecological Modelling, 65, 71–93.CrossRefGoogle Scholar
Baker, D. N., Hesketh, J. D. and Duncan, W. G. (1972). Simulation of growth and yield in cotton. Crop Science, 11, 431–5.CrossRefGoogle Scholar
Bakema, E., Jansen, D. M. and Penning de Vries, F. W. T. (1984). Systems analysis and stimulation for rice production – A research and training project. In Workshop on Physical Aspects of Soil Management in Rice-Based Cropping Systems. Manila, Philippines: International Rice Research Institute.Google Scholar
Batzli, G. O. (1974). Production assimilation and accumulation of organic matter in ecosystems. Journal of Theoretical Biology, 45, 205–17.CrossRefGoogle ScholarPubMed
Baumgärtner, J. (1999). Population models: bases for the design of control, utilization, and conservation strategies. (Atti delle “giornate di studio sui metodi numerici, statistici ed informatici nella difesa delle colture agrarie e delle foreste”), Sassari, May 19–22. Frustula Entomologica, 22, 7–22.Google Scholar
Baumgärtner, J. (2001). Biodiversity that mitigates pests in agroecosystems. In Biodiversity Planning Support Programs. Global Environment Facility, Unep Bpsp Thematic Studies on the Integration of Biodiversity into National Agricultural Sectors. Nairobi, Kenya: UNEP BPSP.Google Scholar
Baumgärtner, J. and Baronio, P. (1989). Modello fenologico di volo di Lobesia botrana Den. & Schiff. (Lep., Tortricidae) Relativo alla situazione ambientale della Emiglia–Romagna. Boll. Istituto Entom. ‘Guido Grandi’ Università Bologna, 43, 157–70.Google Scholar
Baumgärtner, J., Bieri, M. and Delucchi, V. (1987). Growth and development of immature life stages of Propylaea-quaturdecimpunctata and Coccinella septempunctata L. (Col., Coccinellidae) simulated by the metabolic pool model. Entomophaga, 32, 415–24.CrossRefGoogle Scholar
Baumgärtner, J., Bieri, M., Klay, A., Genini, M., and Zahner, Ph. (1989). Fungicide side effects on the dynamics of an acarine predator–prey system. In Gessler, C., Butt, D. J. and Koller, B. (eds.), Apple Orchards: An Explorative Study with Simulation Models. Integrated Control of Pome Fruit Diseases, Vol. II. Bull. Srop/Wprs,12, pp. 317–35.Google Scholar
Baumgärtner, J., Delucchi, V., Arx, R. and Rubli, D. (1986). Whitefly (Bemisia tabaci Genn., Stern.: Aleyrodidae) infestation patterns as influenced by cotton, weather and Heliothis: Hypotheses testing by using simulation models. Agriculture, Ecosystems and Environment, 17, 49–59.CrossRefGoogle Scholar
Baumgärtner, J. U., Frazer, B. D., Gilbert, N.et al. (1981 a). Coccinellids (Coleoptera) and aphids (Homoptera): The overall relationship. Canadian Entomologist, 113, 975–80.CrossRefGoogle Scholar
Baumgärtner, J., Favre, J. J. and Schmid, A. (1988a). The use of a time-varying distributed delay model for simulating the flight phenology of the summerfruit tortrix Adoxophyes orana F. V. R. in the Valais, Switzerland. Bull. Srop/Wprs, 11, 33–7.
Baumgärtner, J., Genini, M., Graf, B., Gutierrez, A. P. and Zahner, P. (1988 b). Generalizing a population model for simulating golden delicious apple tree growth and development. Proc. Intern. Symp. Computer Modelling in Fruit Research and Orchard Management. Stuttgard–Holenheim.Google Scholar
Baumgärtner, J., Gilioli, G., Schneider, D. and Severini, M. (2002). The management of populations in hierarchically organized systems. Notiziario sulla protezione delle piante, 15, 247–63.Google Scholar
Baumgärtner, J., Graf, B., Zahner, Ph., Genini, M. and Gutierrez, A. P. (1986). Generalizing a population model for simulating ‘golden delicious’ apple tree growth and development. Acta Horticulturae, 184, 111–22.CrossRefGoogle Scholar
Baumgärtner, J., Gutierrez, A. P. and Klay, A A. (1988c). Elements for modelling the dynamics of tritrophic population interactions. Experimental and Applied Acarology, 5, 243–64.CrossRefGoogle Scholar
Baumgärtner, J. U., Gutierrez, A. P. and Summers, C. S. (1981 b). The influence of aphid prey consumption on searching behavior, weight increase, developmental time, and mortality of Chrysopa carnea Stephens and Hippodamia convergens G.-M. Canadian Entomologist, 113, 1015–24.Google Scholar
Baumgärtner, J. and Hartmann, J. (2000). The use of phenology models in plant conservation programs: the establishment of the earliest cutting date for the wild daffodil Narcissus radiiflorus. Biological Conservation, 93, 155–61.CrossRefGoogle Scholar
Baumgärtner, J. and Hartmann, J. (2001). The design and implementation of sustainable plant diversity conservation program for alpine meadows and pastures. Journal of Agricultural and Environmental Ethics, 14, 67–83.CrossRefGoogle Scholar
Baumgärtner, J., Regev, U., Rahalivavololonoa, N.et al. (1989). Rice production in Madagascar: regression analysis with particular reference to pest control. Agriculture, Ecosystems and Environment, 30, 37–47.CrossRefGoogle Scholar
Baumgärtner, J., Schilperoord, P., Basetti, P., Baiocchi, A. and Jermini, M. (1998). The use of a phenology model and a risk analyses for planning buckwater (Fagopyrum esculentum) sowing dates in alpine areas. Agricultural Systems, 57, 557–69.CrossRefGoogle Scholar
Baumgärtner, J., Schulthess, F. and Xia, Y. L. (2003 a). Integrated arthropod pest management systems for human health improvement in Africa. Insect Science and Its Application, 23, 85–98.Google Scholar
Baumgärtner, J., Severini, M. and Ricci, M. (1990 a). The mortality of overwintering Phyllonorycter blancardella (Lep., Gracillariidae) pupae simulated as a loss in a time-varying distributed delay model. Mitteilungen Der Schweizerischen Entomologischen Gesellschaft, 63, 439–50.Google Scholar
Baumgärtner, J. and Severini, M. (1987). Microclimate and arthropod phenologies: the leaf miner Phyllonorycter blancardella F. (Lep.) as an example. In Prodi, F., Rossi, F. and Cristoferi, G. (eds.), Agrometeorology, Fondazione Cesena Agricultura Publ. pp. 225–43.Google Scholar
Baumgärtner, J., Getachew Tikubet, , Melaku Girma et al. (2003 b). Cases for adaptive ecological systems management. Redia, LXXXVI, 165–72.Google Scholar
Baumgärtner, J., Wermelinger, B., Hugentobler, U.et al. (1990 b). Use of a dynamic model on dry matter production and allocation in apple orchard ecosystem research. Acta Horticulturae, 276, 123–39.CrossRefGoogle Scholar
Baumgärtner, J. and Yano, E. (1990). Whitefly population dynamics and modelling. In Gerling, D. (ed.), Whiteflies: Their Bionomics, Pest Status and Management. Andover, UK: Intercept Ltd.Google Scholar
Baumgärtner, J. and Zahner, Ph. (1984). Simulation experiments with stochastic population models as a tool to explore pest management strategies in an apple tree–mite system (Panonychus ulmi Koch, Tetranychus urticae Koch). In Cavalloro, R. (ed.), Statistical and Mathematical Methods in Population Dynamics and Pest Control. Proceedings of the Meeting of the EC Expert Group, Parma, October 26–28, 1983. Rotterdam: Balkema. pp. 166–78.Google Scholar
Beddington, J. R., Hassell, M. P. and Lawton, J. H. (1976). The components of arthropod predation. II. The predator rate of increase. Journal of Animal Ecology, 45, 165–85.CrossRefGoogle Scholar
Berryman, A. A. and Gutierrez, A. P. (1999). Dynamics of Insect Predator–Prey Interactions. In Huffaker, C. B. and Gutierrez, A. P. (eds.), Ecological Entomology. John Wiley and Sons.Google Scholar
Berryman, A. A., Gutierrez, A. P. and Arditi, R. (1995). Credible parsimonious and useful predator–prey models – a reply to Abrams, Gleeson and Sarnelle. Ecology, 76, 1980–5.CrossRefGoogle Scholar
Bonato, O., Baumgärtner, J. and Gutierrez, J. (1994 a). A simulation model to analyse the cassava–mites system in Central Africa, 10th Symposium of the International Society for Tropical Root Crops (ISTRC). Salvador, Bahia, November 13–19.Google Scholar
Bonato, O., Baumgartner, J. and Gutierrez, J. (1994 b). Impact of Mononychellus progresivus and Oligonychus gossypii (Acari: Tetranychidae) on cassava growth and yield in Central Africa. Journal of Horticultural Science, 69, 1089–94.CrossRefGoogle Scholar
Bonato, O., Schulthess, F. F. and Baumgärtner, J. (1999). Simulation model for maize crop growth based on acquisition and allocation processes for carbohydrate and nitrogen. Ecological Modelling, 124, 11–28.CrossRefGoogle Scholar
Butler, G. D. Jr., Hamilton, A. G. and Gutierrez, A. P. (1978). Pink bollworm: diapause in relation to temperature and photoperiod. American Entomological Society, 71, 201–2.Google Scholar
Carrière, Y., Ellers-Kirk, C., Liu, Y. B.et al. (2001 a). Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 94, 1571–6.CrossRefGoogle Scholar
Carrière, Y., Ellers-Kirk, C., Patin, A. L.et al. (2001 b). Overwintering cost associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 94, 935–41.CrossRefGoogle Scholar
Caton, B. P., Foin, T. C. and Hill, J. E. (1999). A plant growth model for integrated weed management in direct-seeded rice. II. Validation testing of water-depth effects and monoculture growth. Field Crops Research, 62, 145–55.CrossRefGoogle Scholar
Cerutti, F., Baumgärtner, J. and Delucchi, V. (1990). Research on the grapevine ecosystem in the Tessin, Switzerland : III. Biology and mortality factors affecting Empoasca vitis Goethe (Homoptera, Cicadellidae, Typhlocybinae). Mitteilungen Der Schweizerischen Entomologischen Gesellschaft, 63, 43–54.Google Scholar
Cerutti, F., Baumgärtner, J. and Delucchi, V. (1991 a). Richerche sull'ecosistema vigneto nel ticino. iv. modellizzazione della dinamica di popolazioni di Empoasca Vitis Göthe (Homoptera, Cicadellidae, Typhlocybinae). Boll. Ist. Ent. G. Grandi Univ. Bologna, 46, 179–200.Google Scholar
Cerutti, F., Baumgärtner, J. and Delucchi, V. (1991 b). The dynamics of grape leafhopper Empoasca vitis Gothe populations in Southern Switzerland and the implications for habitat management. Biocontrol Science and Technology, 1, 177–94.CrossRefGoogle Scholar
Cerutti, F., Delucchi, V., Baumgartner, J. and Rubli, D. (1989). Research on the “vineyard” ecosystem in Ticino, Switzerland : I. Colonization of vineyards by the leafhopper Empoasca vitis Goethe (Homoptera, Cicadellidae, Typhlocybinae) and its parasitoid Anagrus atomus Haliday (Hymenoptera, Myaridae), and the importance of neighboring plants. Mitteilungen Der Schweizerischen Entomologischen Gesellschaft, 62, 253–67.Google Scholar
Chapra, S. C. (1997). Surface Water-Quality Modeling. New York: McGraw–Hill.Google Scholar
Chu Chang-Chi, T. J., Henneberry, R. C., Weddle, E. T.et al. (1996). Reduction of pink bollworm (Lepidotera: Gelechiidae) populations in Imperial Valley, California, following mandatory short-season management systems. Journal of Economic Entomology, 89, 175–82.Google Scholar
Cock, J. H. (1985). Cassava: physiological basis. In Cock, J. H. and Reyes, J. A. (eds.), Cassava, Research, Production and Utilization, UNDP/CIAT. pp. 33–62.Google Scholar
Comiskey, J. A., Dallmeier, F., and Alonso, A. (1999). Framework for assessment and monitoring of biodiversity. In Levin, S. (ed.), Encyclopedia of Biodiversity, Vol. 3. New York: Academic Press. pp. 63–73.Google Scholar
Croft, B. A. and Knight, A. L. (1983). Evaluation of the PETE phenology modeling system for integrated pest management of deciduous tree fruit species. Bulletin of the Entomological Society of America, 29, 37–42.CrossRefGoogle Scholar
Curry, G. L. and Feldman, R. M. (1987). Mathematical Foundations of Population Dynamics, Texas: A&M University Press.Google Scholar
d'Oultremont, T. and Gutierrez, A. P. (2002 a). An object-oriented multitrophic model of a rice–fish agroecosystem: I. Fishpond foodweb. I. A tropical fishpond food web. Ecological Modelling, 156, 123–42.CrossRefGoogle Scholar
d'Oultremont, T. and Gutierrez, A. P. (2002 b). An object-oriented multitrophic model of a rice–fish agroecosystem: II. Linking the flooded rice–fishpond systems. Ecological Modelling, 155, 159–76.CrossRefGoogle Scholar
Angelis, , , D. L. and Gross, L. J. (eds.) (1992). Individual Based Models in Ecology, Populations, Communities and Ecosystems, New York: Chapman and Hall.Google Scholar
Berardinis, E., Tiso, R., Butturini, A. and Briolini, G. (1993). A phenological forecasting model for the apple and pear leaf–roller Argyrotaenia pulchellana (Hw.) (Lepidoptera: Tortricidae). Bollettino dell'Istituto di Entomologia “Guido Grandi” della Universita degli Studi di Bologna, 47, 111–22.Google Scholar
Wit, C. T. and Gouriaan, J. (1978). Simulation of Ecological Processes, 2nd edn. Wageningen; Netherlands: Pudoc Publishers.Google Scholar
Di Cola, G., Gilioli, G., and Baumgärtner, J. (1998). Mathematical models for age-structured population dynamics: an overview. In Baumgärtner, J., Brandmayr, P. and Manly, B. F. J. (eds.), Population and Community Ecology for Insect Management and Conservation. Rotterdam: Balkema. pp. 45–62.Google Scholar
Di Cola, G., Gilioli, G. and Baumgärtner, J. (1999). Mathematical models for age–structured population dynamics. In Huffaker, C. B. and Gutierrez, A. P. (eds.), Ecological Entomology, second edn. New York: John Wiley and Sons. pp. 503–34.Google Scholar
Dingkuhn, M., Penning de Vries, F. W. T., & Miezan, K. M. (1993). Improvement of rice plant type concepts: Systems research enables interaction of physiology and breeding. In Vries, F. Penning, Teng, V. and Metselaar, K. (eds.), Systems Approaches for Sustainable Agricultural Development. Dordrecht: Kluwer Academic Publishers. pp. 19–35.CrossRefGoogle Scholar
Doutt, R. L. and Nakata, J. (1973). The Rubus leafhopper and its egg parasitoid: an endemic biotic system useful in grape-pest management. Environmental Entomology, 2, 381–406.CrossRefGoogle Scholar
Falcon, L. A., Bosch, R., Gallagher, J. and Davidson, A. (1971). Investigation of the pest status of Lygus hesperus in cotton in Central California. Journal of Economic Entomology, 64, 56–61.CrossRefGoogle Scholar
Fitzpatrick, E. A. and Nix, H. A. (1970). The climatic factor in Australian grasslands ecology. In Moore, R. M. (ed.), Australian Grasslands. Australian National University Press. pp. 3–26.Google Scholar
Foerster, von H. (1959). Some remarks on changing populations. In Stahlman, F. Jr. (ed.), The Kinetics of Cellular Proliferation. New York: Grune and Stratton. pp. 382–407.Google Scholar
Fouque, F. and Baumgärtner, J. (1996). Simulating development and survival of Aedes vexans (Diptera, Culicidae) preimaginal stages under field conditions. Journal of Medical Entomology, 33, 32–8.CrossRefGoogle ScholarPubMed
Fouque, F., Baumgartner, J. and Delucchi, V. (1992). Analysis of temperature-dependent stage-frequency data of Aedes vexans Meigen populations originated from the Magadino Plain Southern Switzerland. Bulletin of the Society for Vector Ecology, 17, 28–37.Google Scholar
Fouque, F.,Delucchi, V. and Baumgartner, J. (1991). Mosquito control in the Magadino Plain: faunistic survey of the culicids and identification of the species harmful to a man. Mitteilungen Der Schweizerischen Entomologischen Gesellschaft, 64, 231–42.Google Scholar
Gerling, D. (1990). Whiteflies: Their Bionomics, Pest Status and Management, Andover, UK: Intercept Ltd.Google Scholar
Getz, W. and Gutierrez, A. P. (1982). A perspective on crop systems analysis and insect pest management. Annual Review of Entomology, 27, 447–66.CrossRefGoogle Scholar
Gilbert, N. (1984). What they didn't tell you about limit cycles. Oecologica, 65, 112–13.CrossRefGoogle ScholarPubMed
Gilbert, N. E., Gutierrez, A. P., Frazer, B. D. and Jones, R. (1976). Ecological Relationships. Reading, UK and San Francisco: W. H. Freeman and Co.Google Scholar
Gilioli, G., Baumgärtner, J. and Vacante, V. (2005). Temperature influences on the functional response of Coenosia attenuata Stein (Diptera, Muscidae) individuals. Journal of Economic Entomology, 98, 1524–30.CrossRefGoogle ScholarPubMed
Graf, B., Baumgärtner, J. and Delucchi, V. (1985). Simulation models for the dynamics of three apple aphids, Dysaphis plantaginae, Rhopalosiphum insertum, and Aphis pomi (Homoptera, Aphididae) in a Swiss apple orchard. Zeitschrift fur Angewandte Entomologie, 99, 453–65.CrossRefGoogle Scholar
Graf, B., Baumgartner, J. and Gutierrez, A. P. (1990 a). Modeling agroecosystem dynamics with the metabolic pool approach. Mitteilungen Der Schweizerischen Entomologischen Gesellschaft, 63, 465–76.Google Scholar
Graf, B., Gutierrez, A. P., Rakotobe, O., Zahner, P. and Delucchi, V. (1990 b). A simulation model for the dynamics of rice growth and development. 2. The competition with weeds for nitrogen and light. Agricultural Systems, 32, 367–92.CrossRefGoogle Scholar
Graf, B., Lamb, R., Heong, K. L. and Fabellar, L. (1992). A simulation model for the population dynamics of rice leaf-folders Lepidoptera: Pyralidae and their interactions with rice. Journal of Applied Ecology, 29, 558–70.CrossRefGoogle Scholar
Graf, B., Rakotobe, O., Zahner, P., Delucchi, V. and Gutierrez, A. P. (1990 c). A simulation model for the dynamics of rice growth and development. 1. The carbon balance. Agricultural Systems, 32, 341–65.CrossRefGoogle Scholar
Gray, V. M. (2000). A comparison of two approaches for modelling cassava (Manihot esculenta Crantz.) crop growth. Annals of Botany London, 85, 77–90.CrossRefGoogle Scholar
Greenplate, J. T. (1999). Quantification of Bacillus thurigiensis insect control protein Cry1Ac over time in bollgard cotton fruits and terminals. Journal of Economic Entomology, 92, 1379–83.CrossRefGoogle Scholar
Gurney, W. S. C., Middleton, D. A. J., Nisbet, R. M.et al. (1996). Individual energetics and the equilibrium demography of structured populations. Theoretical Population Biology, 49, 344–68.CrossRefGoogle ScholarPubMed
Gutierrez, A. P. (1992). The physiological basis of ratio dependent theory. Ecology, 73, 1529–53.CrossRefGoogle Scholar
Gutierrez, A. P. (1996). Applied Population Ecology: A Supply–Demand Approach. New York: John Wiley and Sons.Google Scholar
Gutierrez, A. P. (2001). Climate change: effects on pest dynamics. In Reddy, K. R. and Hodges, H. F. (eds.), Climate Change and Global Crop Productivity. Wallingford, UK: CAB International. pp. 353–74.Google Scholar
Gutierrez, A. P. and Baumgärtner, J. U. (1984 a). Multitrophic level models of predator–prey energetics: I. Age specific energetics models – pea aphid Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) as an example. Canadian Entomologist, 116, 923–32.CrossRefGoogle Scholar
Gutierrez, A. P. and Baumgärtner, J. U. (1984 b). Multitrophic level models of predator–prey energetics: II. A realistic model of plant–herbivore–parasitoid–predator interactions. Canadian Entomologist, 116, 933–49.CrossRefGoogle Scholar
Gutierrez, A. P., Baumgärtner, J. U. and Hagen, K. S. (1981 a). A conceptual model for growth, development, and reproduction in the ladybird beetle, Hippodamia convergens (Coleoptera: Coccinellidae). Canadian Entomologist, 113, 21–33.CrossRefGoogle Scholar
Gutierrez, A. P., Butler, G. D. Jr. and Ellis, C. K. (1981 b). Pink bollworm: diapause induction and termination in relation to fluctuating temperatures and decreasing photophases. Environmental Entomology, 10, 936–42.CrossRefGoogle Scholar
Gutierrez, A. P., Butler, G., Wang, Y. and Westphal, D. (1977 a). The interaction of the pink bollworm, cotton and weather. Canadian Entomologist, 109, 1457–68.CrossRefGoogle Scholar
Gutierrez, A. P., Christensen, J. B., Merritt, C. M.et al. (1976). Alfalfa and the Egyptian alfalfa weevil. Canadian Entomologist, 108, 635–48.CrossRefGoogle Scholar
Gutierrez, A. P., Daxl, R., Leon Quant, G. and Falcon, L. A. (1981 c). Estimating economic thresholds for bollworm, Heliothis zea Boddie, and boll weevil, Anthonomus grandis Boh., damage in Nicaraguan cotton, Gossypium hirsutum L. Environmental Entomology, 10, 872–9.CrossRefGoogle Scholar
Gutierrez, A. P., Devay, J. E., Pullman, G. S. and Friebertshauser, G. E. (1982). A model of verticillium wilt in relation to cotton growth and development. Phytopathology, 73, 89–95.CrossRefGoogle Scholar
Gutierrez, A. P., Dos Santos, W. J., Pizzamiglio, M. A.et al. (1991 a). Modelling the interaction of cotton and the cotton boll weevil: II. Boll weevil (Anthonomus grandis) in Brazil. Journal of Applied Ecology, 28, 398–418.CrossRefGoogle Scholar
Gutierrez, A. P., Dos Santos, W. J., Villacorta, A.et al. (1991 b). Modelling the interaction of cotton and the cotton boll weevil: I. A comparison of growth and development of cotton varieties. Journal of Applied Ecology, 28, 371–97.CrossRefGoogle Scholar
Gutierrez, A. P., Ellis, C. K., d'Oultremont, T. and Pontic, L. (2007). Climatic limits of pink bollworm in Arizona and California: effects of climate warming. Acta Oecologica, 30, 353–64.CrossRefGoogle Scholar
Gutierrez, A. P., Falcon, L. A., Loew, W. B., Leipzig, P. and Bosch, R. (1975). An analysis of cotton production in California: a model for Acala cotton and the efficiency of defoliators on its yields. Environmental Entomology, 4, 125–36.CrossRefGoogle Scholar
Gutierrez, A. P., Havenstein, D. E., Nix, H. A. and Moore, P. A. (1974). The ecology of Aphis craccivora Koch and subterranean clover stunt virus. III. A regional perspective of the phenology and migration of the cowpea aphid. Journal of Applied Ecology, 11, 21–35.CrossRefGoogle Scholar
Gutierrez, A. P., Leigh, T. F., Wang, Y. and Cave, R. D. (1977 b). An analysis of cotton production in California: Lygus hesperus injury – an evaluation. Canadian Entomologist, 109, 1375–86.CrossRefGoogle Scholar
Gutierrez, A. P., Mills, N. J., Schreiber, S. J. and Ellis, C. K. (1994). A physiologically based tritrophic perspective on bottom up–top down regulation of populations. Ecology, 75, 2227–42.CrossRefGoogle Scholar
Gutierrez, A. P., Neuenschwander, P., Schulthess, F.et al. (1988 a). Analysis of biological control of cassava pests in Africa: II. Cassava mealybug, Phenacoccus manihoti. Journal of Applied Ecology, 25, 921–40.CrossRefGoogle Scholar
Gutierrez, A. P., Neuenschwander, P. and Alphen, J. J. M. (1993). Factors affecting biological control of cassava mealybug by exotic parasitoids: a ratio-dependent supply-demand driven model. Journal of Applied Ecology, 30, 706–21.CrossRefGoogle Scholar
Gutierrez, A. P., Pitcairn, M. J., Ellis, C. K., Carruthers, N. and Ghezelbash, R. (2005 a). Evaluating biological control of yellow starthistle (Centaurea solstitialis) in California: a GIS based supply–demand demographic model. Biological Control, 34, 115–31.CrossRefGoogle Scholar
Gutierrez, A. P. and Pizzamiglio, M. A. (in press). Physiologically based GIS model of weather mediated model of competition between a parasitoid and a coccinellid predator of oleander scale. Neotropical Entomology.Google Scholar
Gutierrez, A. P. and Ponsard, S. (2005 b). Physiologically based model of Bt cotton–pest interactions: I. Pink bollworm: resistance, refuges and risk. Ecological Modelling, 191, 346–59.CrossRefGoogle Scholar
Gutierrez, A. P., Ponsard, S. and Adamczyk, J. J. Jr. (2005 c). A physiologically based model of Bt cotton–pest interactions: II. bollworm–defoliator–natural enemy interactions. Ecological Modelling, 191, 360–82.CrossRefGoogle Scholar
Gutierrez, A. P., Pizzamiglio, M. A., Dos Santos, W. J., Villacorta, A. and Gallagher, K. D. (1986). Analysis of diapause induction and termination in field pink bollworm, Pectinophora gossypilla (Saunders, 1843). Brazilian Environmental Entomology, 15, 494–500.CrossRefGoogle Scholar
Gutierrez, A. P. and Regev, U. (2005). The bioeconomics of tritrophic systems: applications to invasive species. Ecological Economics, 52, 382–96.CrossRefGoogle Scholar
Gutierrez, A. P., Schulthess, F., Wilson, L. T.et al. (1987). Energy acquisition and allocation in plants and insects: a hypothesis for the possible role of hormones in insect feeding patterns. Canadian Entomologist, 119, 109–29.CrossRefGoogle Scholar
Gutierrez, A. P., Wermelinger, B., Schulthess, F., Baumgärtner, J. U., Herren, H. R., Ellis, C. K. and Yaninek, J. S. (1988 b). Analysis of biological control of cassava pests in Africa: I. Simulation of carbon nitrogen and water dynamics in cassava. Journal of Applied Ecology, 25, 901–20.CrossRefGoogle Scholar
Gutierrez, A. P., Villacorta, A., Cure, J. R. and Ellis, C. K. (1998). tritophic analysis of the coffee (Coffee arabica)–coffee berry borer (Hypothenemus hampei Ferrari)–parasitoid system. Annals of the Entomological Society of Brazil, 27, 357–85.CrossRefGoogle Scholar
Gutierrez, A. P. and Wang, Y. (1977). Applied population ecology: models for crop production and pest management. In Holling, C. S. and Norton, G. A. (eds.), Proceedings of the IIASA Workshop on Pest Management Modelling, October 25–28 1977, Laxenburg, Austria. pp. 255–80.Google Scholar
Gutierrez, A. P., Williams, D. W. and Kido, H. (1985). A model of grape growth and development: the mathematical structure and biological considerations. Crop Science, 25, 721–8.CrossRefGoogle Scholar
Gutierrez, A. P., Yaninek, J. S., Neuenschwander, P. and Ellis, C. K. (1999). A physiologically-based tritrophic metapopulation model of the African cassava foodweb. Ecological Modelling, 123, 225–42.CrossRefGoogle Scholar
Gutierrez, A. P., Yaninek, J. S., Wermelinger, B., Herren, H. R. and Ellis, C. K. (1988 c). Analysis of biological control of cassava pests in Africa: III. Cassava greenmite Mononychellus tanajoa. Journal of Applied Ecology, 25, 941–50.CrossRefGoogle Scholar
Habib, R. and Blaise, Ph. (eds.). (1996). Third International Symposium on Computer Modelling in Fruit Research and Orchard Management. Fourth International Symposium on Computer Modelling in Fruit Research and Orchard Management. Avignon, 4–8 September, (1995). Acta Horticulturae, 416.
Hanna, R., Onzo, A., Lingeman, R., Yaninek, J. S. and Sabelis, M. (2005). Seasonal cycles and persistence in an acarine predator–prey system on cassava in Africa. Population Ecology, 47, 107–17.CrossRefGoogle Scholar
Hanski, I. A. (ed.) (2004). Ecology, Genetics, and Evolution of Metapopulations, Amsterdam: Elsevier.Google Scholar
Hanski, I. and Gilpin, M. (1991). Metapopulation dynamics: brief history and conceptual domain. Biological Journal of the Linnean Society, 42, 3–16.CrossRefGoogle Scholar
Harper, J. L. and White, J. (1974). The demography of plants. Annual Review of Ecology and Systematics, 5, 419–63.CrossRefGoogle Scholar
Hassan, S. T. S. and Wilson, L. T. (1993). Simulated larval feeding damage patterns of Heliothis armigera (Huebner) and H. punctigera (Wallengren) (Lepidoptera: Noctuidae) on cotton in Australia. International Journal of Pest Management, 39, 239–45.CrossRefGoogle Scholar
Hassell, M. P., Lawton, J. H. and Beddington, J. R. (1976). The components of arthropod predation. I. The prey death rate. Journal of Animal Ecology, 45, 135–64.CrossRefGoogle Scholar
Hastings, A. (1994). Metapopulation dynamics and genetics. Annual Review of Ecology and Systematics, 25, 167–88.CrossRefGoogle Scholar
Hawkins, B. A. and Cornell, V. H. (1999). Theoretical Approaches to Biological Control, Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Herren, H. R. and Neuenschwander, P. (1991). Biological control of cassava pests in Africa. Annual Review of Entomology, 36, 257–83.CrossRefGoogle Scholar
Hesketh, J. D., Baker, N. D. and Duncan, W. G. (1971). Simulation of growth and yield of cotton: respiration and the carbon balance. Crop Science, 11, 39–398.CrossRefGoogle Scholar
Hilbeck, A., Baumgartner, M., Martinnad, P. M. and Bigler, F. (1998). Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology, 27, 480–7.CrossRefGoogle Scholar
Hilbeck, A., Moar, W. J., Pusztai-Carey, M., Filippini, A. and Bigler, F. (1999). Prey-mediated effects of Cry1Ab toxin and protoxin and Cry2A protoxin on the predator Chrysoperla carnea. Entomologia Experimentalis et Applicata, 91, 305–16.CrossRefGoogle Scholar
Hilbert, D. W. (1995). Growth-based approach to modeling the developmental rate of arthropods. Environmental Entomology, 24, 771–8.CrossRefGoogle Scholar
Holling, C. S. (1978). Adaptive Environmental Assessment and Management. Chichester, UK: Wiley.Google Scholar
Holst, N., Axelsen, J. A., Olesen, J. E. and Ruggle, P. (1997). Object-oriented implementation of the metabolic pool model. Ecological Modelling, 104, 175–87.CrossRefGoogle Scholar
Holst, N. and Ruggle, P. (1997). A physiologically based model of pest–natural enemy interactions. Experimental and Applied Acarology, 21, 325–41.CrossRefGoogle Scholar
Holt, J., Jeger, M. J., Thresh, J. M. and Otim-Nape, G. W. (1997). An epidemiological model incorporating vector population dynamics applied to African cassava mosaic virus disease. Journal of Applied Ecology, 34, 793–806.CrossRefGoogle Scholar
Huffaker, C. B. and Croft, B. A. (1976). Integrated pest management in the U.S.: progress and promise. Environmental Health Perspectives, 14, 167–83.CrossRefGoogle ScholarPubMed
Huffaker, C. B. and Kennett, C. E. (1966). Studies of two parasites in control of the olive scale, Parltoria oleae (Colvée). IV. Biological control of Parlatoria oleae (Colvée) through the compensatory action of two introduced parasites. Hilgardia, 37, 283–334.CrossRefGoogle Scholar
Inubushi, K., Hori, K., Matsumoto, S. and Wada, H. (1997). Anaerobic decomposition of organic carbon in paddy soil in relation to methane emission to the atmosphere. Water Science and Technology, 36, 523–30.CrossRefGoogle Scholar
Isley, D. (1932). Abundance of bollweevil in relation to summer weather and food. Arkansas Experimental Station Bulletin.Google Scholar
Iwaki, H. (1975). Computer simulation of vegetative growth of rice plants. In Murata, Y. (ed.), Crop Productivity and Solar Energy Utilization in Various Climates in Japan, Tokyo: University of Tokyo Press.Google Scholar
Iwaki, H. (1977). Computer simulation of growth process of paddy rice. Japan Agricultural Research Quarterly, 11, 6–11.Google Scholar
Ives, A. R., Carpenter, S. R. and Dennis, B. (1999). Community interaction webs and zooplankton responses to planktivory manipulations. Ecology, 80, 1405–21.CrossRefGoogle Scholar
Ives, A. R. and Jansen, V. A. A. (1998). Complex dynamics in stochastic tritrophic models. Ecology, 79, 1039–52.CrossRefGoogle Scholar
Ives, A. R. and Settle, W. H. (1997). Metapopulation dynamics and pest control in agricultural systems. Amer. Nat, 149, 220–46.CrossRefGoogle Scholar
Janisch, E. (1925). Uber die Temperaturabhangigkeit Biologischer Vorgange und ihre Kurvenmabige Analyse. Pfluger Archiv fur die Gesamte Physiologie des Menschen und dir tiere, 209, 414–36.CrossRefGoogle Scholar
Johnsen, S. and Gutierrez, A. P. (1997 a). Induction and termination of winter diapause in a Californian strain of the cabbage maggot (Diptera: Anthomyiidae). Environmental Entomology, 26, 84–90.CrossRefGoogle Scholar
Johnsen, S., Gutierrez, A. P. and Jorgensen, J. (1997 b). Overwintering in the cabbage root fly Delia radicum: a dynamic model of temperature-dependent dormancy and post-dormancy development. Journal of Applied Ecology, 34, 21–8.CrossRefGoogle Scholar
Jørgensen, S. E. (2001). (Ed.). Thermodynamics and Ecological Modelling, Boca Raton, FL: Lewis Publishers.Google Scholar
Jørgensen, S. E. and Svirezhev, Y. M. (2004). Towards a Thermodynamics Theory for Ecological Systems. Amsterdam: Elsevier.Google Scholar
Kenmore, P. E., Carino, F., Perez, C. A., Dyck, V. A. and Gutierrez, A. P. (1986). Population regulation of the rice brown planthopper (Nilaparvata lugens Stal) within rice fields in the Philippines. Journal of Plant Protection in the Tropics, 1, 19–37.Google Scholar
Kogan, M., Croft, B. A., and Sutherst, R. F. (1999). Applications of ecology for integrated pest management. In Huffaker, C. B. and Gutierrez, A. P. (eds.), Ecological Entomology. John Wiley & Sons. pp. 681–727.Google Scholar
Lactin, D. J., Holliday, N. J., Johnson, D. L. and Craigen, R. (1995). Improved rate model of temperature-dependent development by arthropods. Environmental Entomology, 24, 68–75.CrossRefGoogle Scholar
Lawton, J. H. (1977). Spokes missing in ecological wheel. Nature (London), 265, 768.CrossRefGoogle Scholar
Lawton, J. H., Hassell, M. P. and Beddington, J. R. (1975). Prey death rates and rate of increase of anthropod predator populations. Nature, 225, 60–2.CrossRefGoogle Scholar
Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika, 33, 183–212.CrossRefGoogle ScholarPubMed
Logan, J. A., Woollkind, D. J., Hoyt, S. C. and Tanagoshi, L. K. (1976). An analytical model of temperature dependent rate phenomena in arthropods. Environmental Entomology, 5, 1133–40.CrossRefGoogle Scholar
Manetsch, T. J. (1976). Time-varying distributed delays and their use in aggregate models of large systems. IEEE Transactions on Systems Man and Cybernetics, 6, 547–53.CrossRefGoogle Scholar
Matthews, R. B. and Hunt, L. A. (1994). GUMCAS: a model describing the growth of cassava (Manihot esculenta L. Crantz). Field Crops Research, 36, 69–84.CrossRefGoogle Scholar
McMennamy, J. A. and O'Toole, J. C. (1983). Ricemod: a physiologically based rice growth and yield model. IRPS, 87, 1–33.Google Scholar
McQueen, D. J. and Post, J. R. (1988). Cascading trophic interactions uncoupling at the zooplankton–phytoplankton link. Hydrobiologia, 159, 277–96.CrossRefGoogle Scholar
Meikle, W. G., Holst, N. and Markham, R. H. (1999). Population simulation model of Sitophilus zeamais (Coleoptera: Curculionidae) in grain stores in West Africa. Environmental Entomology, 28, 836–44.CrossRefGoogle Scholar
Meikle, W. G., Holst, N., Scholz Dagmar, D. and Markham, R. (1998). Simulation model of Prostephanus truncatus (Coleoptera: Bostrichidae) in rural maize stores in the Republic of Benin. Environmental Entomology, 27, 59–69.CrossRefGoogle Scholar
Mills, N. J. and Getz, W. M. (1996). Modelling the biological control of insect pests: A review of host–parasitoid models. Ecological Modelling, 92, 121–43.CrossRefGoogle Scholar
Mills, N. J. and Gutierrez, A. P. (1996). Prospective modelling in biological control: an analysis of the dynamics of heteronomous hyperparasitism in a cotton–whitefly–parasitoid system. Journal of Applied Ecology, 33, 1379–94.CrossRefGoogle Scholar
Murdoch, W. W., Swarbrick, S. L., Luck, R. F., Walde, S. and Yu, D. S. (1996). Refuge dynamics and metapopulation dynamics: An experimental test. American Naturalist, 147, 424–44.CrossRefGoogle Scholar
Mutsaers, H. J. W. and Wang, Z. (1999). Are simulation models ready for agricultural research in developing countries?Agronomy Journal, 91, 1–4.CrossRefGoogle Scholar
Nachman, G. (1987). Systems analysis of acarine predator–prey interactions: II. The role of spatial processes in system stability. Journal of Animal Ecology, 56, 267–82.CrossRefGoogle Scholar
Nachman, G. (1991). An acarine predator–prey metapopulation system inhabiting greenhouse cucumbers. Biological Journal of the Linnean Society, 42, 285–304.CrossRefGoogle Scholar
Naranjo, S. (2005). Long-term assessment of the effects of transgenic Bt cotton on the abundance of nontarget arthropods natural enemies. Ecological Entomology, 34, 1193–210.Google Scholar
Neuenschwander, P., Hammond, W. N. O., Gutierrez, A. P.et al. (1989). Impact assessment of the biological control of the cassava mealybug, Phenacoccus manihoti Matile–Ferrero (Hemiptera: Pseudococcidae), by the introduced parasitoid Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae). Bulletin of Entomological Research, 79, 579–94.CrossRefGoogle Scholar
Neuenschwander, P., Hennessey, R. D. and Herren, H. R. (1987). Food web of insects associated with the cassava mealybug, Phenacoccus manihoti Matile–Ferrero (Hemiptera: Pseudococcidae), and its introduced parasitoid, Epidinocarsis lopezi (DeSantis) (Hymenoptera: Encyrtidae), in Africa. Bulletin of Entomological Research, 79, 177–89.CrossRefGoogle Scholar
Oduor, G. I., Sabelis, M. W., Lingeman, R., Moraes, G. and Yaninek, J. S. (1997). Modelling fungal (Neozygites cf. floridana) epizootics in local populations of cassava green mites (Mononychellus tanajoa). Experimental and Applied Acarology, 21, 485–506.Google Scholar
Olszyk, D. M., Centeno, H. G. S., Ziska, L. H., Kern, J. S. and Matthews, R. B. (1999). Global climate change, rice productivity and methane emissions: comparison of simulated and experimental results. Agriculture and Forest Meteorology, 97, 87–101.CrossRefGoogle Scholar
Penning De Vries, F. W. T. (1993). Rice production and climate change. In Vries, F. Penning, Teng, P. and Metselaar, K. (eds.), Systems Approaches for Sustainable Agricultural Development. Boston: Kluwer Academic Publishers. pp. 175–89.CrossRefGoogle Scholar
Penning De Vries, F. W. T., Jansen, D. M., Ten Berge, H. F. M. and Bakema, A. H. (1989). Simulation of Ecophysiological Processes of Growth of Several Annual Crops. Wageningen, Netherlands: Pudoc.Google Scholar
Peters, R. (1991). A Critique for Ecology. Cambridge, UK: Cambridge University Press.Google Scholar
Petrusewicz, K. and MacFayden, A. (1970). Productivity of Terrestrial Animals: Principles and Methods, IBP Handbook 13. Oxford, UK: Blackwell.Google Scholar
Pickering, J. and Gutierrez, A. P. (1991). Differential impact of the Pathogen Pandora neoaphidis (R. & H.) Hunber (Zygomycetes: Entomophthorales) on the species composition of Acyrthosiphon aphids in alfalfa. Canadian Entomologist, 123, 315–20.CrossRefGoogle Scholar
Ponsard, S., Gutierrez, A. P. and Mills, N. J. (2002). Effects of Bt-toxin (Cry1Ac) in transgenic cotton on the adult longevity of four heteropteran predators. Environmental Entomology, 31, 1197–205.CrossRefGoogle Scholar
Reddy, K. R., Hodges, H. J. and Mckinion, J. M. (1997). Modeling temperature effects on cotton internode and leaf growth. Crop Science, 37, 503–9.CrossRefGoogle Scholar
Regev, U., Gutierrez, A. P., Devay, J. E. and Ellis, C. K. (1990). Optimal strategies for management of verticillium wilt. Agricultural Systems, 33, 139–52.CrossRefGoogle Scholar
Regev, U., Gutierrez, A. P., Schreiber, S. J. and Zilberman, D. (1998). Biological and economic foundations of renewable resource exploitation. Ecological Economics, 26, 227–42.CrossRefGoogle Scholar
Ritchie, J. T. (1972). Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 8, 1204–13.CrossRefGoogle Scholar
Rochat, J. and Gutierrez, A. P. (2001). Weather mediated regulation of olive scale by two parasitoids. Journal of Animal Ecology, 70, 476–90.CrossRefGoogle Scholar
Ruggle, P. and Gutierrez, A. P. (1995). Use of life tables to assess host plant resistance in alfalfa to Therioaphis trifolii F. maculata (Homoptera: Aphidae): hypothesis for maintenance of resistance. Environmental Entomology, 24, 313–25.CrossRefGoogle Scholar
Russell, D. (1995). Report to the Natural Resources Institute on the use of the Moalr/Nri Uk Cotton Model for Pink Bollworm Control in Fayoum and Beni–Suef. Natural Resources Institute. Portsmouth, UK.Google Scholar
Sabelis, M. W., Diekmann, O. and Jansen, V. A. A. (1991). Metapopulation persistence despite local extinction: Predator–prey patch models of the Lotka–Volterra type. Biological Journal of the Linnean Society, 42, 267–84.CrossRefGoogle Scholar
Sadras, V. O. and Wilson, L. J. (1997). Growth analysis of cotton crops infested with spider mites: II. Partitioning of dry matter. Crop Science, 37, 492–7.CrossRefGoogle Scholar
Schaub, L. and Baumgärtner, J. (1989). The significance of mortalities and temperatures on the phenology of Orthotylus marginalis Reut. (Heteroptera, Miridae). Mitteilungen der Schweizerischen Entomologischen, 62, 235–45.Google Scholar
Schreiber, S. and Gutierrez, A. P. (1998). A supply–demand perspective of species invasions and coexistence: applications to biological control. Ecological Modelling, 106, 27–45.CrossRefGoogle Scholar
Sciarretta, A., Girma, M., Belayun, L., Tikubet, G. and Baumgärtner, J. (2005). Development of an adaptive Tsetse fly population management scheme for the Luke community, Ethiopia. Journal of Medical Entomology, 42, 1006–10.CrossRefGoogle ScholarPubMed
Sequeira, R. A., Sharpe, P. J. H., Stone, N. D., El-Zik, K. M. and Makela, M. E. (1991). Object-oriented simulation: plant growth and discrete organ to organ interactions. Ecological Modelling, 58, 55–90.CrossRefGoogle Scholar
Settle, W. H. and Wilson, L. T. (1990 a). Behavioral factors affecting differential parasitism by Anagrus epos (Hymenoptera: Mymaridae) of two species of erythroneuran leafhoppers (Homoptera: Cicadellidae). Journal of Animal Ecology, 59, 877–92.CrossRefGoogle Scholar
Settle, W. H. and Wilson, L. T. (1990 b). Invasion by the variegated leafhopper and biotic interaction: parasitism, competition, and apparent competition. Ecology, 71, 1461–70.CrossRefGoogle Scholar
Settle, W. H., Ariawan, H., Hartjahyo, E. T.et al. (1996). Managing Tropical Rice Pests Through Conservation of Generalist Natural Enemies and Alternative Prey, 77, 1975–88.Google Scholar
Severini, M., Baumgärtner, J. and Ricci, M. (1990). Theory and practice of parameter estimation of distributed delay models for insect and plant phenologies. In Guzzi, R., Navarra, R. A. and Shukla, J. (eds.), Meteorology and Environmental Sciences. Singapore: World Scientific and International Publishers. pp. 674–719.CrossRefGoogle Scholar
Severini, M., Baumgärtner, J., Seifert, M. and Ricci, M. (1996). The analysis of poikilothermic population development by means of time distributed delay models. In Cola, G. Di and Gilioli, G. (eds.), Computer Science and Mathematical Methods in Plant Protection, Quaderni del Dipartimento di Matematica, 135, 159–76.Google Scholar
Shelford, V. E. (1931). Some concepts of bioecology. Ecology, 12, 455–67.CrossRefGoogle Scholar
Sharpe, P. J. H., Curry, G. L., DeMichele, D. W. and Cole, C. L. (1977). Distribution model of organism developmental times. Journal of Theoretical Biology, 66, 21–38.CrossRefGoogle Scholar
Sharpe, P. J. H. and Hu, L. C. (1980). Reaction kinetics of nutrition dependent poikilotherm development. Journal of Theoretical Biology, 82, 317–33.CrossRefGoogle ScholarPubMed
Sinko, J. W. and Streifer, W. (1967). A new model for age structure of a population. Ecology, 48, 910–18.CrossRefGoogle Scholar
Spiller, D. A. and Schoener, T. W. (2001). An experimental test for predator-mediated interactions among spider species. Ecology, 82, 1560–70.CrossRefGoogle Scholar
Stephens, A. P., Buskirk, S. W., Hayward, G. D. and Del Rio, C. M. (2005). Information theory and hypotheses testing: a call for pluralism. Journal of Applied Ecology, 42, 4–12.CrossRefGoogle Scholar
Stewart, S. D. and Sterling, W. L. (1988). Dynamics and impact of cotton fruit abscission and survival. Environmental Entomology, 17, 629–35.CrossRefGoogle Scholar
Stinner, R. E., Gutierrez, A. P. and Butler, G. Jr. (1974). An algorithm for temperature-dependent growth rate simulation. Canadian Entomologist, 106, 519–24.CrossRefGoogle Scholar
Stone, N. D. and Gutierrez, A. P. (1986 a). I. A field oriented simulation of pink bollworm in southwestern desert cotton. Hilgardia, 54, 1–24.CrossRefGoogle Scholar
Stone, N. D. and Gutierrez, A. P. (1986 b). II. A management model for pink bollworm in southwestern cotton. Hilgardia, 54, 25–41.CrossRefGoogle Scholar
Stone, N. D. and Gutierrez, A. P., Getz, W. M. and Norgaard, R. (1986). III. Strategies for pink bollworm control in southwestern desert cotton: An economic simulation study. Hilgardia, 54, 42–56.CrossRefGoogle Scholar
Sutherst, R. W., Maywald, G. F. and Bottomly, W. (1991). From CLIMEX to PESKY, a generic expert system for risk assessment. EPPO Bulletin, 21, 595–608.CrossRefGoogle Scholar
Tabashnik, B. E., Patin, A. L., Dennehy, T. J.et al. (2000). Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. Proceedings of the National Academy of Science USA, 97, 12980–4.CrossRefGoogle ScholarPubMed
Tamò, M. and Bäumgartner, J. (1993). Analysis of the cowpea agro-ecosystem in West Africa. I. A demographic model for carbon acquisition and allocation in cowpea, Vigna unguiculata (L.) Walp. Ecological Modelling, 65, 95–121.CrossRefGoogle Scholar
Tamò, M., Baumgärtner, J. and Gutierrez, A. P. (1993). Modelling the interaction between cowpea and the bean flower thrips Megalurothrips sjostedti (Trybom) (Thysanoptera, Thripidae). Ecological Modelling, 70, 89–113.CrossRefGoogle Scholar
Toko, M., O'Neil, R. T. J. and Yaninek, J. S. (1996). Development, reproduction and survival of Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) on cassava grown under soils of different levels of nitrogen. Experimental and Applied Acarology, 20, 405–19.Google Scholar
Trichilo, P. J. and Wilson, L. T. (1993). An ecosystem analysis of spider mite outbreaks: physiological stimulation or natural enemy suppression. Experimental and Applied Acarology, 17, 291–314.CrossRefGoogle Scholar
Turchin, P. and Batzli, G. O. (2001). Availability of food and the population dynamics of arvicoline rodents. Ecology, 82, 1521–34.CrossRefGoogle Scholar
Vansickle, J. (1977). Attrition in distributed delay models. IEEE Transactions on Systems Man and Cybernetics, 7, 635–8.CrossRefGoogle Scholar
Bosch, R. (1978). The Pesticide Conspiracy. New York: Doubleday.Google Scholar
Keulen, H. (1976). A calculation method for potential rice production. Contributions from the Central Research Institute for Agriculture. Bogor, 21, 1–26.Google Scholar
Villavaso, E. J., Mulrooney, J. E., McGovern, W. L. and Howard, K. D. (2001). Low dosages of malathion for boll weevil eradication. Southwestern Entomologist Supplement.Google Scholar
Arx, R., Baumgartner, J. and Delucchi, V. (1984). A model to simulate the population dynamics of Bemisia tabaci (Aleyrodidae) on cotton in the Sudan Gezira. Zeitschrift Fuer Angewandte Entomologie, 96, 341–63.CrossRefGoogle Scholar
Wagenmakers, P. S., Werf, W. and Blaise, Ph. (1999). Proceedings of the fifth international symposium on computer modelling in fruit research and orchard management. Acta Horticulturae, 499, 303.Google Scholar
Waltner-Toews, D., Kay, J. K., Neudoerffer, C. and Gitau, T. (2003). Perspective changes everything: managing ecosystem from inside out. Frontiers in Ecology and Environment, 1, 23–30.CrossRefGoogle Scholar
Wang, Y. and Gutierrez, A. P. (1980). An assessment of the use of stability analysis in population ecology. Journal of Animal Ecology, 49, 435–52.CrossRefGoogle Scholar
Wang, Y., Gutierrez, A. P., Oster, G. and Daxl, R. (1977). General population model for plant growth and development: coupling cotton–herbivore interactions. Canadian Entomologist, 109, 1359–74.CrossRefGoogle Scholar
Watt, K. F. E. (1959). A mathematical model for the effect of densities of attacked and attacking species on the number attacked. Canadian Entomologist, 91, 129–44.CrossRefGoogle Scholar
Welch, S. M. (1984). Developments in computer-based IPM extension delivery systems. Annual Review of Entomology, 29, 359–81.CrossRefGoogle Scholar
Welch, S. M., Croft, B. A., Brunner, J. F. and Michels, M. (1978). PETE: An extension phenology modeling system for multi-species pest complex. Environmental Entomology, 7, 482–94.CrossRefGoogle Scholar
Wermelinger, B., Baumgartner, J. and Gutierrez, A. P. (1991 a). A demographic model of assimilation and allocation of carbon and nitrogen in grapevines. Ecological Modelling, 53, 1–26.CrossRefGoogle Scholar
Wermelinger, , Baumgartner, B. J., Zahner, P. and Delucchi, V. (1990 a). Environmental factors affecting the life tables of Tetranychus urticae Koch (Acarina): I. Temperature. Mitteilungen Der Schweizerischen Entomologischen Gesellschaft, 63, 55–62.Google Scholar
Wermelinger, B., Candolfi, M. P. and Baumgartner, J. (1992). A model of the European red mite (Acari: Tetranychidae) population dynamics and its linkage to grapevine growth and development. Journal of Applied Entomology, 114, 155–66.CrossRefGoogle Scholar
Wermelinger, B., Oertli, J. J. and Baumgartner, J. (1991 b). Environmental factors affecting the life-tables of Tetranychus urticae (Acari: Tetranychidae): III. Host–plant nutrition. Experimental and Applied Acarology, 12, 259–74.CrossRefGoogle Scholar
Wermelinger, B., Schnider, F., Oertli, J. J. and Baumgartner, J. (1990 b). Environmental factors affecting the life tables of Tetranychus urticae Koch (Acarina): II. Host plant water stress. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 63, 347–58.Google Scholar
Williams, D. W. (1981). Ecology of the Blackberry Leafhopper, Dikrella Californica (Lawson), and its Role California Grape Agro-Ecosystems. Ph.D. thesis. Berkeley, CA: University of California.
Wilson, L. T., Corbett, A., Trichilo, P. J.et al. (1992). Strategic and tactical modelling cotton–spider mite agroecosystem management. Experimental and Applied Acarology, 14, 357–70.CrossRefGoogle Scholar
Wilson, L. T. and Gutierrez, A. P. (1980). Fruit predation submodel: Heliothis larvae feeding upon cotton fruiting structures. Hilgardia, 48, 24–36.CrossRefGoogle Scholar
Winter, F. (Ed.) (1986). First international symposium on computer modelling in fruit research and orchard management. Hohenheim, Federal Republic of Germany, 10–13 September (1985). Acta Horticulturae, 184, 205.Google Scholar
Wit, C. T. and Goudriaan, J. (1978). Simulation of Ecological Processes, 2nd edn. Wageningen, The Netherlands: Pudoc Publishers.Google Scholar
Wu, G. W. and Wilson, L. T. (1997). Growth and yield response of rice to rice water weevil injury. Environmental Entomology, 26, 1191–201.CrossRefGoogle Scholar
Zahner, P., Band, J. and Baumgärtner, J. (1988). Analysis of plant–spider mite interactions: I. Population models for the dynamics of Panonychus ulmi and Tetranychus urticae in apple orchard. Acta Oecologica Applicata, 9, 311–32.Google Scholar
Zemek, R. and Nachman, G. (1999). Interactions in a tritrophic acarine predator–prey metapopulation system: prey location and distance moved by Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental and Applied Acarology, 23, 21–40.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×