Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-17T19:40:04.792Z Has data issue: false hasContentIssue false

Congenital Muscle Disorders

from Section 7 - Spinal and Neuromuscular Disorders

Published online by Cambridge University Press:  07 August 2021

Mirna Lechpammer
Affiliation:
New York University School of Medicine
Marc Del Bigio
Affiliation:
University of Manitoba, Canada
Rebecca Folkerth
Affiliation:
New York University School of Medicine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Cruz, PMR, Palace, J, Beeson, D. The neuromuscular junction and wide heterogeneity of congenital myasthenic syndromes. Int J Mol Sci 2018; 19(6): 1677.Google Scholar
Abicht, A, Müller, J, Lochmüller, H. Congenital myasthenic syndromes. In: Adam, MP, Ardinger, HH, Pagon, RA, et al., editors., GeneReviews® [Internet]. Seattle: University of Washington; 1993–2019 (last updated July 14, 2016).Google Scholar
GeneTable of Neuromuscular Diseases; www.musclegenetable.frGoogle Scholar
Engel, AG, Shen, X-M, Selcen, D, Sine, SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 2016;14(4):420–34.Google Scholar
Engel, AG, Shen X-M, Selcen D. The unfolding landscape of the congenital myasthenic syndromes. Ann N Y Acad Sci. 2018;1413(1):2534.Google Scholar
Finsterer, J. Congenital myasthenic syndromes. Orphanet J Rare Dis. 2019 14(1):57.Google Scholar
Szelinger S, Krate J, Ramsey K, Strom SP, Shieh PB, Lee H, Belnap N, Balak C, Siniard AL, Russell M, Richholt R, Both M, Claasen AM, Schrauwen I, Nelson SF, Huentelman MJ, Craig DW, Yang SP, Moore SA, Sivakumar K, Narayanan V, Rangasamy S; UCLA Clinical Genomics Center. Congenital myasthenic syndrome caused by a frameshift insertion mutation in GFPT1. Neurol Genet. 2020;6(4):e468.CrossRefGoogle Scholar

References

Bönnemann, CG, Wang, CH, Quijano-Roy, S, Deconinck, N, Bertini, E, Ferreiro, A, Muntoni, F, Sewry, C, Béroud, C, Mathews, KD, Moore, SA, Bellini, J, Rutkowski, A, North, KN, on behalf of Members of the International Standard of Care Committee for Congenital Muscular Dystrophies.Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014:24(4):289311.CrossRefGoogle Scholar
Dowling, JJ, Gonorazky, HD, Cohn, RD, Campbell, C. Treating pediatric muscular disorders: the future is now. Am J Med Genet 2018:176:804–41.Google Scholar
GeneTable of Neuromuscular Diseases; www.musclegenetable.fr/Google Scholar
Leung, DG. Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2017 July;264(7):1320–33.CrossRefGoogle ScholarPubMed
Amato, AA, Russell, JA. Neuromuscular Disorders, 2nd ed. New York: McGraw Hill Education, 2016.Google Scholar
Quijano-Roy, S, Sparks, SE, Rutkowski, A. LAMA2-related muscular dystrophy. GeneReviews. June 7, 2012. www.ncbi.nlm.nih.gov/books/NBK97333/.Google Scholar
Sellick, GS, Longman, C, Brockington, M, Mahjneh, I, Sagi, L, Bushby, K, Topaloğlu, H, Muntoni, F, Houlston, RS. Localisation of merosin-positive congenital muscular dystrophy to chromosome 4p16.3. Hum Genet. 2005 117(2–3):207–12.Google Scholar
Yurchenco, PD, McKee, KK, Reinhard, JR, Rüegg, MA. Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies. Matrix Biol. 2018;71–2:174–87.Google Scholar
Yoshida-Moriguchi, T, Campbell, KP. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology. 2015; 25(7):702–13.Google Scholar
Bouchet-Séraphin, C, Vuillaumier-Barrot, S, Seta, N. Dystroglycanopathies: about numerous genes involved in glycosylation of one single glycoprotein. J Neuromuscul Dis. 2015;2(1):2738.Google Scholar
Devisme, L, Bouchet, C, Gonzalès, M, Alanio, E, Bazin, A, Bessières, B, Bigi, N, Blanchet, P, Bonneau, D, Bonnières, M, Bucourt, M, Carles, D, Clarisse, B, Delahaye, S, Fallet-Bianco, C, Figarella-Branger, D, Gaillard, D, Gasser, B, Delezoide, AL, Guimiot, F, Joubert, M, Laurent, N, Laquerrière, A, Liprandi, A, Loget, P, Marcorelles, P, Martinovic, J, Menez, F, Patrier, S, Pelluard, F, Perez, MJ, Rouleau, C, Triau, S, Attié-Bitach, T, Vuillaumier-Barrot, S, Seta N, Encha-Razavi F. Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies.Brain. 2012;135(Pt 2):469–82.CrossRefGoogle Scholar
Godfrey, C, Foley, AR, Clement, E, Muntoni, F. Dystroglycanopathies: coming into focus. Curr Opin Genet Dev. 2011;21(3):278–85.Google Scholar
Willer, T, Lee, H, Lommel, M, Yoshida-Moriguchi, T, de Bernabe, DB, Venzke, D, Cirak, S, Schachter, H, Vajsar, J, Voit, T, Muntoni, F, Loder, AS, Dobyns, WB, Winder, TL, Strahl, S, Mathews, KD, Nelson, SF, Moore, SA, Campbell, KP. ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet. 2012;44(5):575–80.CrossRefGoogle ScholarPubMed
Wallace, SE, Conta, JH, Winder, TL, Willer, T, Eskuri, JM, Haas, R, Patterson, K, Campbell, KP, Moore, SA, Gospe, SM Jr. A novel missense mutation in POMT1 modulates the severe congenital muscular dystrophy phenotype associated with POMT1 nonsense mutations. Neuromuscul Disord. 2014;24(4):312–20.Google Scholar
Chang, W, Winder, TL, LeDuc, CA, Simpson, LL, Millar, WS, Dungan, J, Ginsberg, N, Plaga, S, Moore, SA, Chung, WK. Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families. Prenat Diagn. 2009;29(6):560–9.Google Scholar
Lampe, AK, Flanigan, KM, Bushby, KM, Hicks, D. Collagen type VI-related disorders. GeneReviews, last updated August 9, 2012. www.ncbi.nlm.nih.gov/books/NBK1503/.Google Scholar
Bönnemann, CG. The collagen VI-related myopathies: muscle meets its matrix. Nat Rev Neurol. 2011;7(7):379–90.Google Scholar
Yonekawa, T, Nishino, I. Ullrich congenital muscular dystrophy: clinicopathological features, natural history and pathomechanism(s). J Neurol Neurosurg Psychiatry. 2015;86(3):280–7.Google Scholar
Komaki, H, Hayashi, YK, Tsuburaya, R, Sugie, K, Kato, M, Nagai, T, Imataka, G, Suzuki, S, Saitoh, S, Asahina, N, Honke, K, Higuchi, Y, Sakuma, H, Saito, Y, Nakagawa, E, Sugai, K, Sasaki, M, Nonaka, I, Nishino, I. Inflammatory changes in infantile-onset LMNA-associated myopathy. Neuromuscul Disord. 2011;21(8):563–8.CrossRefGoogle ScholarPubMed
Quijano-Roy, S, Mbieleu, B, Bönnemann, CG, Jeannet, PY, Colomer, J, Clarke, NF, Cuisset, JM, Roper, H, De Meirleir, L, D’Amico, A, Ben Yaou, R, Nascimento, A, Barois, A, Demay, L, Bertini, E, Ferreiro, A, Sewry, CA, Romero, NB, Ryan, M, Muntoni, F, Guicheney, P, Richard, P, Bonne, G, Estournet, B. De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol. 2008;64(2):177–86.Google Scholar

References

Cassandrini, et al. Congenital myopathies: clinical phenotypes and new diagnostic tools. Ital J Pediatr 2017:43:101.Google Scholar
Massalska, D, et al. Prenatal diagnosis of congenital myopathies and muscular dystrophies. Clin Genet 2016;90:199210.Google Scholar
GeneTable of Neuromuscular Diseases; www.musclegenetable.fr/Google Scholar
Jungbluth, H, Treves, S, Zorzato, F, Sarkozy, A, Ochala, J, Sewry, C, Phadke, R, Gautel, M, Muntoni, F. Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol. 2018;14(3):151–67.Google Scholar
Malicdan, MCV and Nishino, I. Central core disease. GeneReviews. Last updated December 4, 2014. www.ncbi.nlm.nih.gov/books/NBK1391/.Google Scholar
Pelin, K and Wallgren-Pettersson, C. Update on the genetics of congenital myopathies. Sem Ped Neurol 29:1222, 2019.Google Scholar
North, KN and Ryan, MM. Nemaline myopathy. GeneReviews. Last updated June 11, 2015. www.ncbi.nlm.nih.gov/books/NBK1288/.Google Scholar
Dowling, JJ, Lawlor, MW, and Das, S. X-linked myotubular myopathy. GeneReviews. Last updated August 23, 2018. www.ncbi.nlm.nih.gov/books/NBK1116/?term=MTM1.Google Scholar
Lawlor, MW, Beggs, AH, Buj-Bello, A, Childers, MK, Dowling, JJ, James, ES, Meng, H, Moore, SA, Prasad, S, Schoser, B, Sewry, CA. Skeletal muscle pathology in X-linked myotubular myopathy: review with cross-species comparisons. J Neuropathol Exp Neurol. 2016;75(2):102–10.Google Scholar
Leung, DG. Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2017;264:1320–33.Google Scholar

References

McNeil, SM, et al. Congenital inflammatory myopathy: a demonstrative case and proposed diagnostic classification. Muscle Nerve 2002;25(2):259–64.Google Scholar
Andre, LM, et al. Skeletal muscle myogenesis in DM. Frontiers in Neurology 2018;9:124.Google Scholar
Ho, G, et al. Congenital and childhood myotonic dystrophy: current aspects of disease and future directions. World J Clin Pediatr 2015;4(4):6680.CrossRefGoogle ScholarPubMed
Shevell, M, et al. Congenital inflammatory myopathy. Neurology 1990;40(7):111–14.CrossRefGoogle ScholarPubMed
Leung, DG. Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2017;264:1320–33.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×