Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-23T14:09:57.185Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  04 May 2010

Arvind Varma
Affiliation:
University of Notre Dame, Indiana
Massimo Morbidelli
Affiliation:
ETH Zentrum, Switzerland
Hua Wu
Affiliation:
Ausimont Research and Development Center, Italy
Get access

Summary

The Concept of Sensitivity

The behavior of a chemical system is affected by many physicochemical parameters. Changing these parameters, we can alter the characteristics of the system to realize desired behavior or to avoid undesired behavior. In general, different parameters affect a system to different extents, and for the same parameter, its effect may depend on the range over which it is varied. By parametric sensitivity, we mean the sensitivity of the system behavior with respect to changes in parameters.

Let us illustrate the concept of sensitivity using some examples. Figure 1.1 shows the effect of changes in the initial temperature on the temperature evolution in a batch reactor for acetic anhydride hydrolysis, measured experimentally by Haldar and Rao (1992). There is a critical change in the temperature profile as the initial temperature increases from 319.0 to 319.5 K. In particular, an increase in the initial temperature by 0.5 K leads to a change in the temperature maximum by about 31 K. This experimental observation indicates that the system temperature becomes sensitive to small variations in the initial temperature in a specific region, called the parametrically sensitive region.

Figure 1.2 shows similar sensitivity phenomena in a tubular reactor obtained by numerical computations, given by Bilous and Amundson (1956) in their pioneering work on parametric sensitivity in the context of chemical reactors. In this example, the ambient temperature of a tubular reactor, where an exothermic reaction occurs, is changed. It is seen in Fig. 1.2a that when the ambient temperature increases by 2.5 K from 335 to 337.5 K, the temperature maximum (hot spot) along the reactor length changes by about 70 K.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Arvind Varma, University of Notre Dame, Indiana, Massimo Morbidelli, ETH Zentrum, Switzerland, Hua Wu, Ausimont Research and Development Center, Italy
  • Book: Parametric Sensitivity in Chemical Systems
  • Online publication: 04 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721779.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Arvind Varma, University of Notre Dame, Indiana, Massimo Morbidelli, ETH Zentrum, Switzerland, Hua Wu, Ausimont Research and Development Center, Italy
  • Book: Parametric Sensitivity in Chemical Systems
  • Online publication: 04 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721779.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Arvind Varma, University of Notre Dame, Indiana, Massimo Morbidelli, ETH Zentrum, Switzerland, Hua Wu, Ausimont Research and Development Center, Italy
  • Book: Parametric Sensitivity in Chemical Systems
  • Online publication: 04 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511721779.002
Available formats
×