Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-16T01:42:54.661Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 May 2011

Xiaohua Douglas Zhang
Affiliation:
Merck Research Laboratories, Pennsylvania
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optimal High-Throughput Screening
Practical Experimental Design and Data Analysis for Genome-Scale RNAi Research
, pp. 189 - 200
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acion, L., Peterson, J.J., Temple, S., Arndt, S.. Probabilistic index: an intuitive non-parametric approach to measuring the size of treatment effects. Statistics in Medicine 25 (2006) 591–602.CrossRefGoogle ScholarPubMed
Anderson, T.W., Darling, D.A.. Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Annals of Mathematical Statistics 23 (1952) 193–212.CrossRefGoogle Scholar
Aubert, J., Bar-Hen, A., Daudin, J.J., Robin, S.. Determination of the differentially expressed genes in microarray experiments using local FDR. BMC Bioinformatics 5 (2004) 125.CrossRefGoogle ScholarPubMed
Bakan, D.. The test of significance in psychological research. Psychological Bulletin 66 (1966) 423–37.CrossRefGoogle ScholarPubMed
Baldi, P., Hatfield, G.W.. DNA Microarrays and Gene Expression. Cambridge, UK, Cambridge University Press, 2002.CrossRefGoogle Scholar
Barbie, D.A., Tamayo, P., Boehm, J.S., Kim, S.Y., Moody, S.E., Dunn, I.F., Schinzel, A.C., Sandy, P., Meylan, E., Scholl, C., Frohling, S., Chan, E.M., Sos, M.L., Michel, K., Mermel, C., Silver, S.J., Weir, B.A., Reiling, J.H., Sheng, Q., Gupta, P.B., Wadlow, R.C., Le, H., Hoersch, S., Wittner, B.S., Ramaswamy, S., Livingston, D.M., Sabatini, D.M., Meyerson, M., Thomas, R.K., Lander, E.S., Mesirov, J.P., Root, D.E., Gilliland, D.G., Jacks, T., Hahn, W.C.. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462 (2009) 108–22.CrossRefGoogle ScholarPubMed
Bard, F., Casano, L., Mallabiabarrena, A., Wallace, E., Saito, K., Kitayama, H., Guizzunti, G., Hu, Y., Wendler, F., DasGupta, R., Perrimon, N., Malhotra, V.. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439 (2006) 604–7.CrossRefGoogle ScholarPubMed
Barkerand, G.A., Diamond, S.L.. RNA interference screen to identify pathways that enhance or reduce nonviral gene transfer during lipofection. Molecular Therapy 16 (2008) 1602–8.CrossRefGoogle Scholar
Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F., Soboleva, A., Tomashevsky, M., Edgar, R.. NCBI GEO: mining tens of millions of expression profiles – database and tools update. Nucleic Acids Research 35 (2007) D760–5.CrossRefGoogle ScholarPubMed
Becker, R.A., Chambers, J.M., Wilks, A.R.. The New S Language. Pacific Grove, CA, Wadsworth & Brooks/Cole, 1988.Google Scholar
Benjamini, Y., Hochberg, Y.. Controlling the false discovery rate – A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological 57 (1995) 289–300.Google Scholar
Birmingham, A., Anderson, E.M., Reynolds, A., Ilsley-Tyree, D., Leake, D., Fedorov, Y., Baskerville, S., Maksimova, E., Robinson, K., Karpilow, J., Marshall, W.S., Khvorova, A.. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods 3 (2006) 199–204.CrossRefGoogle Scholar
Birmingham, A., Selfors, L.M., Forster, T., Wrobel, D., Kennedy, C.J., Shanks, E., Santoyo-Lopez, J., Dunican, D.J., Long, A., Kelleher, D., Smith, Q., Beijersbergen, R.L., Ghazal, P., Shamu, C.E.. Statistical methods for analysis of high-throughput RNA interference screens. Nature Methods 6 (2009) 569–75.CrossRefGoogle ScholarPubMed
Blow, N.. RNAi technologies: a screen whose time has arrived. Nature Methods 5 (2008) 361–6.CrossRefGoogle Scholar
Bonferroni, C.E.. Il calcolo delle assicurazioni su gruppi di teste. In Studi in Onore del Professore Salvatore Ortu Carboni. Rome, Italy, 1935, pp. 13–60.Google Scholar
Boutros, M., Ahringer, J.. The art and design of genetic screens: RNA interference. Nature Reviews Genetics 9 (2008) 554–66.CrossRefGoogle ScholarPubMed
Boutros, M., Bras, L.P., Huber, W.. Analysis of cell-based RNAi screens. Genome Biology 7 (2006) R66.CrossRefGoogle ScholarPubMed
Boutros, M., Kiger, A.A., Armknecht, S., Kerr, K., Hild, M., Koch, B., Haas, S.A., Paro, R., Perrimon, N.. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303 (2004) 832–5.CrossRefGoogle ScholarPubMed
Brass, A.L., Dykxhoorn, D.M., Benita, Y., Yan, N., Engelman, A., Xavier, R.J., Lieberman, J., Elledge, S.J.. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319S (2008) 921–6.CrossRefGoogle Scholar
Brideau, C., Gunter, B., Pikounis, B., Liaw, A.. Improved statistical methods for hit selection in high-throughput screening. Journal of Biomolecular Screening 8 (2003) 634–47.CrossRefGoogle ScholarPubMed
Broberg, P.. Statistical methods for ranking differentially expressed genes. Genome Biology 4 (2003), R41.CrossRefGoogle ScholarPubMed
Broberg, P.. A comparative review of estimates of the proportion unchanged genes and the false discovery rate. BMC Bioinformatics 6 (2005) 199.CrossRefGoogle ScholarPubMed
Brown, K., Samarsky, D.. RNAi off-targeting: Light at the end of the tunnel. Journal of RNAi and Gene Silencing 2 (2006) 175–7.Google ScholarPubMed
Bumcrot, D., Manoharan, M., Koteliansky, V., Sah, D.W.Y.. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology 2 (2006) 711–19.CrossRefGoogle ScholarPubMed
Cao, Y., Kumar, R.M., Penn, B.H., Berkes, C.A., Kooperberg, C., Boyer, L.A., Young, R.A., Tapscott, S.J.. Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO Journal 25 (2006) 502–11.CrossRefGoogle Scholar
Carver, R.P.. Case against statistical significance testing. Harvard Educational Review 48 (1978) 378–99.CrossRefGoogle Scholar
Cherepanov, P., Maertens, G., Proost, P., Devreese, B., Beeumen, J., Engelborghs, Y., Clercq, E., Debyser, Z.. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. Journal of Biological Chemistry 278 (2003) 372–81.CrossRefGoogle ScholarPubMed
Chung, N.J., Zhang, X.D., Kreamer, A., Locco, L., Kuan, P.F., Bartz, S., Linsley, P.S., Ferrer, M., Strulovici, B.. Median absolute deviation to improve hit selection for genome-scale RNAi screens. Journal of Biomolecular Screening 13 (2008) 149–58.CrossRefGoogle ScholarPubMed
Church, J.D., Harris, B.. The estimation of reliability from stress-strength relationships. Technometrics 12 (1970) 49–54.CrossRefGoogle Scholar
Cleveland, W.S.. The Elements of Graphing Data. Summit, NJ, Hobart Press, 1994.Google Scholar
Cleveland, W.S., Grosse, E., Shyu, W.M.. Local regression models. In: Chambers, J.M. and Hastie, T.J. (Eds.), Statistical Models in S. Pacific Grove, CA, Wadsworth & Brooks/Cole, 1992.Google Scholar
Cohen, J.. The statistical power of abnormal-social psychological research: A review. Journal of Abnormal and Social Psychology 65 (1962) 145–53.CrossRefGoogle ScholarPubMed
Cohen, J.. Statistical Power Analysis for the Behavioral Sciences. Erlbaum, Hillsdale, NJ, 1988.Google Scholar
Cohen, J.. The earth is round (P less than.05). American Psychologist 49 (1994) 997–1003.CrossRefGoogle Scholar
Dalmasso, C., Broet, P., Moreau, T.. A simple procedure for estimating the false discovery rate. Bioinformatics 21 (2005) 660–8.CrossRefGoogle ScholarPubMed
Davidson, R., Duclos, J.Y.. Statistical inference for stochastic dominance and for the measurement of poverty and inequality. Econometrica 68 (2000) 1435–64.CrossRefGoogle Scholar
Downton, F.. The estimation of Pr(Y < X) in the normal case. Technometrics 15 (1973) 551–8.Google Scholar
Draghici, S., Khatri, P., Tarca, A.L., Amin, K., Done, A., Voichita, C., Georgescu, C., Romero, R.. A systems biology approach for pathway level analysis. Genome Research 17 (2007) 1537–45.CrossRefGoogle ScholarPubMed
Eastwood, B.J., Farmen, M.W., Iversen, P.W., Craft, T.J., Smallwood, J.K., Garbison, K.E., Delapp, N.W., Smith, G.F.. The minimum significant ratio: A statistical parameter to characterize the reproducibility of potency estimates from concentration-response assays and estimation by replicate-experiment studies. Journal of Biomolecular Screening 11 (2006) 253–61.CrossRefGoogle ScholarPubMed
Echeverri, C.J., Beachy, P.A., Baum, B., Boutros, M., Buchholz, F., Chanda, S.K., Downward, J., Ellenberg, J., Fraser, A.G., Hacohen, N., Hahn, W.C., Jackson, A.L., Kiger, A., Linsley, P.S., Lum, L., Ma, Y., Mathey-Prevot, B., Root, D.E., Sabatini, D.M., Taipale, J., Perrimon, N., Bernards, R.. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nature Methods 3 (2006) 777–9.CrossRefGoogle ScholarPubMed
Echeverri, C.J., Perrimon, N.. High-throughput RNAi screening in cultured cells: a user's guide. Nature Reviews Genetics 7 (2006) 373–84.CrossRefGoogle ScholarPubMed
Efron, B.. Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association 99 (2004) 96–104.CrossRefGoogle Scholar
Eisenstein, M.. Quality control. Nature 442 (2006) 1067–70.CrossRefGoogle ScholarPubMed
Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., Tuschl, T.. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411 (2001) 494–8.CrossRefGoogle ScholarPubMed
Espeseth, A.S., Huang, Q., Gates, A., Xu, M., Yu, Y., Simon, A.J., Shi, X.P., Zhang, X.H.D., Hodor, P., Stone, D.J., Burchard, J., Cavet, G., Bartz, S., Linsley, P., Ray, W.J., Hazuda, D.. A genome wide analysis of ubiquitin ligases in APP processing identifies a novel regulator of BACE1 mRNA levels. Molecular and Cellular Neuroscience 33 (2006) 227–35.CrossRefGoogle ScholarPubMed
Fedorov, Y., Anderson, E.M., Birmingham, A., Reynolds, A., Karpilow, J., Robinson, K., Leake, D., Marshall, W.S., Khvorova, A.. Off-target effects by siRNA can induce toxic phenotype. Rna-A Publication of the Rna Society 12 (2006) 1188–96.CrossRefGoogle ScholarPubMed
Fedorov, Y., King, A., Anderson, E., Karpilow, J., Ilsley, D., Marshall, W., Khvorova, A.. Different delivery methods – Different expression profiles. Nature Methods 2 (2005) 241.CrossRefGoogle ScholarPubMed
Fire, A., Xu, S.Q., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C.. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391 (1998) 806–11.CrossRefGoogle ScholarPubMed
Fisher, R.A.. Statistical Methods for Research Workers. Edinburgh, Scotland, Oliver & Boyd, 1941.Google Scholar
Fisher, R.A.. Statistical Methods for Research Workers. Edinburgh, Scotland, Oliver & Boyd, 1925.Google Scholar
Galun, E.. RNA Silencing. Singapore, World Scientific, 2005.CrossRefGoogle Scholar
Genovese, C., Wasserman, L.. Operating characteristics and extensions of the false discovery rate procedure. Journal of the Royal Statistical Society Series B-Statistical Methodology 64 (2002) 499–517.CrossRefGoogle Scholar
Glass, G.V.. Primary, secondary, and meta-analysis of research. Educational Researcher 5 (1976) 3–8.CrossRefGoogle Scholar
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531–7.CrossRefGoogle ScholarPubMed
Goodman, S.. A dirty dozen: Twelve P-value misconceptions. Seminars in Hematology 45 (2008) 135–40.CrossRefGoogle ScholarPubMed
Green, P.J., Silverman, B.W.. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. London, Chapman and Hall, 1994.CrossRefGoogle Scholar
Guan, Z., Wu, B.L., Zhao, H.Y.. Nonparametric estimator of false discovery rate based on Bernstein polynomials. Statistica Sinica 18 (2008) 905–23.Google Scholar
Gunter, B., Brideau, C., Pikounis, B., Liaw, A.. Statistical and graphical methods for quality control determination of high-throughput screening data. Journal of Biomolecular Screening 8 (2003) 624–633.CrossRefGoogle ScholarPubMed
Guttman, L.. What is not what in statistics. Statistician 26 (1977) 81–107.CrossRefGoogle Scholar
Guttman, L.. The illogic of statistical inference for cumulative science. Applied Stochastic Models and Data Analysis 1 (1985) 3–10.CrossRefGoogle Scholar
Hamamoto, I., Nishimura, Y., Okamoto, T., Aizaki, H., Liu, M.Y., Mori, Y., Abe, T., Suzuki, T., Lai, M.M.C., Miyamura, T., Moriishi, K., Matsuura, Y.. Human VAP-B is involved in hepatitis C virus replication through interaction with NS5A and NS5B. Journal of Virology 79 (2005) 13473–82.CrossRefGoogle ScholarPubMed
Haney, S.A.. RNAi and high-content screening in target identification and validation. Idrugs 8 (2005) 997–1001.Google ScholarPubMed
Hannon, G.J.. RNA interference. Nature 418 (2002) 244–51.CrossRefGoogle ScholarPubMed
Hannon, G.J., Zamore, P.D.. Small RNAs, big biology: biochemical studies of RNA interference. In: Hannon, G.J. (Ed.), A Guide to Gene Silencing. New York, Cold Spring Harbor Laboratory Press, 2003, pp. 87–108.Google Scholar
Harlow, L.L., Mulaik, S.A., Steiger, J.H.. What If There Were No Significance Tests? Mahwah, NJ, Lawrence Erlbaum Associates, 1997.Google Scholar
Hedges, L.V.. Distribution theory for Glass's estimator of effect size and related estimators. Journal of Educational Statistics 6 (1981) 107–28.CrossRefGoogle Scholar
Hedges, L.V.. I. Olkin Statistical Methods for Meta-Analysis. San Diego, CA, Academic Press, 1985.Google Scholar
Hollander, M., Wolfe, D.. Nonparametric Statistical Methods. New York, John Wiley & Sons, 1999.Google Scholar
Hornung, V., Guenthner-Biller, M., Bourquin, C., Ablasser, A., Schlee, M., Uematsu, S., Noronha, A., Manoharan, M., Akira, S., Fougerolles, A., Endres, S., Hartmann, G.. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Medicine 11 (2005) 263–70.CrossRefGoogle ScholarPubMed
Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., Hill, D.P., Kania, R., Schaeffer, M., Pierre, S. St, Twigger, S., White, O., Rhee, S.Y.. Big data: The future of biocuration. Nature 455 (2008) 47–50.CrossRefGoogle ScholarPubMed
Huber, P.J.. Robust Statistics. New York, Wiley, 1981.CrossRefGoogle Scholar
Huberty, C.J.. A history of effect size indices. Educational and Psychological Measurement 62 (2002) 227–40.CrossRefGoogle Scholar
Huberty, C.J., Lowman, L.L.. Group overlap as a basis for effect size. Educational and Psychological Measurement 60 (2000) 543–63.CrossRefGoogle Scholar
Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., Zamore, P.D.. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293 (2001) 834–8.CrossRefGoogle ScholarPubMed
Ioannidis, J.P.A.. Microarrays and molecular research: noise discovery? Lancet 365 (2005) 454–5.CrossRefGoogle ScholarPubMed
Ioannidis, J.P.A.. Why most published research findings are false. Plos Medicine 2 (2005) 696–701.CrossRefGoogle ScholarPubMed
Iversen, P.W., Eastwood, B.J., Sittampalam, G.S., Cox, K.L.. A comparison of assay performance measures in screening assays: Signal window, Z factor, and assay variability ratio. Journal of Biomolecular Screening 11 (2006) 247–52.CrossRefGoogle Scholar
Jackson, A.L., Bartz, S.R., Schelter, J., Kobayashi, S.V., Burchard, J., Mao, M., Li, B., Cavet, G., Linsley, P.S.. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnology 21 (2003) 635–7.CrossRefGoogle ScholarPubMed
Jackson, A.L., Burchard, J., Leake, D., Reynolds, A, Schelter, J., Guo, J., Johnson, J.M., Lim, L., Karpilow, J., Nichols, K., Marshall, W., Khvorova, A., Linsley, P.S.. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA-A Publication of the RNA Society 12 (2006) 1197–1205.CrossRefGoogle ScholarPubMed
Jackson, A.L., Linsley, P.S.. Noise amidst the silence: off-target effects of siRNAs? Trends in Genetics 20 (2004) 521–4.CrossRefGoogle ScholarPubMed
Judge, A.D., Sood, V., Shaw, J.R., Fang, D., McClintock, K., MacLachlan, I.. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnology 23 (2005) 457–62.CrossRefGoogle ScholarPubMed
Kassner, P.D.. Discovery of novel targets with high throughput RNA interference screening. Combinatorial Chemistry & High Throughput Screening 11 (2008) 175–84.CrossRefGoogle ScholarPubMed
Kevorkov, D., Makarenkov, V.. Statistical analysis of systematic errors in high-throughput screening. Journal of Biomolecular Screening 10 (2005) 557–67.CrossRefGoogle ScholarPubMed
Kirk, R.E.. Practical significance: A concept whose time has come. Educational and Psychological Measurement 56 (1996) 746–59.CrossRefGoogle Scholar
Kleinman, M.E., Yamada, K., Takeda, A., Chandrasekaran, V., Nozaki, M., Baffi, J.Z., Albuquerque, R.J.C., Yamasaki, S., Itaya, M., Pan, Y.Z., Appukuttan, B., Gibbs, D., Yang, Z.L., Kariko, K., Ambati, B.K., Wilgus, T.A., DiPietro, L.A., Sakurai, E., Zhang, K., Smith, J.R., Taylor, E.W., Ambati, J.. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452 (2008) 591–7.CrossRefGoogle ScholarPubMed
Klinghoffer, R.A., Frazier, J., Annis, J., Berndt, J.D., Roberts, B.S., Arthur, W.T., Lacson, R., Zhang, X.H.D., Ferrer, M., Moon, R.T., Cleary, M.A.. A lentivirus-mediated genetic screen identifies dihydrofolate reductase (DHFR) as a modulator of b-actinin/GSK3 signaling. PLoS ONE 4 (2009) e6892.CrossRefGoogle Scholar
Konig, R., Chiang, C.Y., Tu, B.P., Yan, S.F., DeJesus, P.D., Romero, A., Bergauer, T., Orth, A., Krueger, U., Zhou, Y., Chanda, S.K.. A probability-based approach for the analysis of large-scale RNAi screens. Nature Methods 4 (2007) 847–9.CrossRefGoogle ScholarPubMed
Konig, R., Zhou, Y.Y., Elleder, D., Diamond, T.L., Bonamy, G.M.C., Irelan, J.T., Chiang, C.Y., Tu, B.P., Jesus, P.D., Lilley, C.E., Seidel, S., Opaluch, A.M., Caldwell, J.S., Weitzman, M.D., Kuhen, K.L., Bandyopadhyay, S., Ideker, T., Orth, A.P., Miraglia, L.J., Bushman, F.D., Young, J.A., Chanda, S.K.. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135 (2008) 49–60.CrossRefGoogle ScholarPubMed
Lagos-Quintana, M., Rauhut, R., Lendeckel, W., Tuschl, T.. Identification of novel genes coding for small expressed RNAs. Science 294 (2001) 853–8.CrossRefGoogle ScholarPubMed
Langaas, M., Lindqvist, B.H., Ferkingstad, E.. Estimating the proportion of true null hypotheses, with application to DNA microarray data. Journal of the Royal Statistical Society Series B-Statistical Methodology 67 (2005) 555–72.CrossRefGoogle Scholar
Lau, N.C., Lim, L.P., Weinstein, E.G., Bartel, D.P.. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294 (2001) 858–62.CrossRefGoogle ScholarPubMed
Lee, R.C., Ambros, V.. An extensive class of small RNAs in Caenorhabditis elegans. Science 294 (2001) 862–4.CrossRefGoogle ScholarPubMed
Liao, J.G., Lin, Y., Selvanayagam, Z.E., Shih, W.C.J.. A mixture model for estimating the local false discovery rate in DNA microarray analysis. Bioinformatics 20 (2004) 2694–2701.CrossRefGoogle ScholarPubMed
Lin, X.Y., Ruan, X., Anderson, M.G., McDowell, J.A., Kroeger, P.E., Fesik, S.W., Shen, Y.. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Research 33 (2005) 4527–35.CrossRefGoogle ScholarPubMed
Llano, M., Saenz, D.T., Meehan, A., Wongthida, P., Peretz, M., Walker, W.H., Teo, W.L., Poeschla, E.M.. An essential role for LEDGF/p75 in HIV integration. Science 314 (2006) 461–4.CrossRefGoogle ScholarPubMed
Maeda, I., Kohara, Y., Yamamoto, M., Sugimoto, A.. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Current Biology 11 (2001) 171–6.CrossRefGoogle ScholarPubMed
Maertens, G., Cherepanov, P., Pluymers, W., Busschots, K., Clercq, E., Debyser, Z., Engelborghs, Y.. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. Journal of Biological Chemistry. 278 (2003) 33528–39.CrossRefGoogle ScholarPubMed
Mahanthappa, N.. Translating RNA interference into therapies for human disease. Pharmacogenomics 6 (2005) 879–83.CrossRefGoogle ScholarPubMed
Malo, N., Hanley, J.A., Cerquozzi, S., Pelletier, J., Nadon, R.. Statistical practice in high-throughput screening data analysis. Nature Biotechnology 24 (2006) 167–75.CrossRefGoogle ScholarPubMed
Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., Gilad, Y.. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research 18 (2008) 1509–17.CrossRefGoogle ScholarPubMed
Matson, R.S.. Applying Genomic and Proteomic Microarray Technology in Drug Discovery. Boca Raton, FL,CRC Press, 2005.Google Scholar
Mcgraw, K.O., Wong, S.P., A Common Language Effect Size Statistic. Psychological Bulletin 111 (1992) 361–365.CrossRefGoogle Scholar
McLachlan, G.J., Bean, R.W., Jones, L.B.T.. A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics 22 (2006) 1608–15.CrossRefGoogle ScholarPubMed
McLean, J.E.. Improving Education through Action Research: A Guide for Administrators and Teachers. Thousand Oaks, CA, Corwin Press, 1995.Google Scholar
Meehl, P.E.. Theory-testing in psychology and physics: A methodological paradox. Philosophy of Science 20 (1967) 103–15.CrossRefGoogle Scholar
Meehl, P.E.. Theoretical risks and tabular asterisks – Karl, Ronald, and slow progress of soft psychology. Journal of Consulting and Clinical Psychology 46 (1978) 806–34.CrossRefGoogle Scholar
Michiels, S., Koscielny, S., Hill, C.. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet365 (2005) 488–92.Google ScholarPubMed
Muller, P., Kuttenkeuler, D., Gesellchen, V., Zeidler, M.P., Boutros, M.. Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature436 (2005) 871–5.Google ScholarPubMed
Napoli, C., Lemieux, C., Jorgensen, R.. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2 (1990) 279–89.CrossRefGoogle ScholarPubMed
Neter, J., Kutner, M.H., Nachtsheim, C.J.. Applied Linear Statistical Models. Chicago, McGraw-Hill, 1996.Google Scholar
Neyman, J., Pearson, E.S.. On the use and interpretation of certain test criteria for purposes of statistical inference, Part I. Biometrika 29A (1928) 175–240.Google Scholar
Neyman, J., Pearson, E.S.. On the use and interpretation of certain test criteria for purposes of statistical inference, Part II. Biometrika 29A (1928) 263–94.Google Scholar
Nybakken, K., Vokes, S.A., Lin, T.Y., McMahon, A.P., Perrimon, N.. A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nature Genetics 37 (2005) 1323–32.CrossRefGoogle ScholarPubMed
Onwuegbuzie, A.J., Levin, J.R.. Without supporting statistical evidence, where would reported measures of substantive importance lead? To no good effect. Journal of Modern Applied Statistical Methods 2 (2003) 133–51.CrossRefGoogle Scholar
Owen, D.B., Graswell, K.J., Hanson, D.L.. Nonparametric upper confidence bounds for P(Y < X) and confidence limits for P(Y < X) when X and Y are normal. Journal of the American Statistical Association 59 (1964) 906–24.Google Scholar
Park, H.J., Partridge, E., Cheung, P., Pawling, J., Donovan, R., Wrana, J.L., Dennis, J.W.. Chemical enhancers of cytokine signaling that suppress microfilament turnover and tumor cell growth. Cancer Research 66 (2006) 3558–66.CrossRefGoogle ScholarPubMed
Pearson, K.. On the correlation of characters not quantitatively measurable. Philosophical Transactions of the Royal Society of London 195 (1901) 1–47.Google Scholar
Pelkmans, L., Fava, E., Grabner, H., Hannus, M., Habermann, B., Krausz, E., Zerial, M.. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436 (2005) 78–86.CrossRefGoogle ScholarPubMed
Pollard, P.. How significant is “significance”? In: Keren, G. and Lewis, C. (Eds.), A Handbook for Data Analysis in the Behavioral Sciences: Methodological Issues. Hillsdale, NJ, Lawrence Erlbaum Associates, 1993, pp. 449–460.Google Scholar
Pounds, S., Morris, S.W.. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 19 (2003) 1236–42.CrossRefGoogle ScholarPubMed
Randall, G., Grakoui, A., Rice, C.M.. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proceedings of the National Academy of Sciences of the United States of America 100 (2003) 235–240.CrossRefGoogle ScholarPubMed
Reiser, B., Guttman, I.. Statistical-Inference for Pr(Y-Less-Than-X) – the Normal Case. Technometrics 28 (1986) 253–7.Google Scholar
Riester, D., Wirsching, F., Salinas, G., Keller, M., Gebinoga, M., Kamphausen, S., Merkwirth, C., Goetz, R., Wiesenfeldt, M., Sturzebecher, J., Bode, W., Friedrich, R., Thurk, M., Schwienhorst, A.. Thrombin inhibitors identified by computer-assisted multiparameter design. Proceedings of theNational Academy of Sciences of the United States of America 102 (2005) 8597–8602.CrossRefGoogle Scholar
Robin, S., Bar-Hen, F., Daudin, J.J., Pierre, L.. A semi-parametric approach for mixture models: Application to local false discovery rate estimation. Computational Statistics & Data Analysis 51 (2007) 5483–93.CrossRefGoogle Scholar
Rom, D.M., Hwang, E.. Testing for individual and population equivalence based on the proportion of similar responses. Statistics in Medicine 15 (1996) 1489–1505.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Rosenthal, R., Rosnow, R.L., Rubin, D.B.. Contrasts and Effect Sizes in Behavioral Research. Cambridge, UK, Cambridge University Press, 2000.Google Scholar
Rozeboom, W.W.. The fallacy of the null-hypothesis significance test. Psychological Bulletin 57 (1960) 416–28.CrossRefGoogle ScholarPubMed
Ruvkun, G.. Molecular biology – Glimpses of a tiny RNA world. Science 294 (2001) 797–9.CrossRefGoogle ScholarPubMed
Satterthwaite, F.E.. An approximate distribution of estimates of variance components. Biometrics Bulletin 2 (1946) 110–14.CrossRefGoogle ScholarPubMed
Scacheri, P.C., Rozenblatt-Rosen, O., Caplen, N.J., Wolfsberg, T.G., Umayam, L., Lee, J.C., Hughes, C.M., Shanmugam, K.S., Bhattacharjee, A., Meyerson, M., Collins, F.S.. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 1892–7.CrossRefGoogle ScholarPubMed
Schmidt, F.L.. What do data really mean – Research findings, metaanalysis, and cumulative knowledge in psychology. American Psychologist 47 (1992) 1173–81.CrossRefGoogle Scholar
Schmidt, F.L.. Statistical significance testing and cumulative knowledge in psychology: Implications for training of researchers. Psychological Methods 1 (1996) 115–29.CrossRefGoogle Scholar
Semizarov, D., Frost, L., Sarthy, A., Kroeger, P., Halbert, D.N., Fesik, S.W.. Specificity of short interfering RNA determined through gene expression signatures. Proceedings of the National Academy of Sciences of the United States of America 100 (2003) 6347–52.CrossRefGoogle ScholarPubMed
Senn, S., Testing for individual and population equivalence based on the proportion of similar responses. Statistics in Medicine 16 (1997) 1303–1305.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Shapiro, S.S., Wilk, M.B.. An analysis of variance test for normality (complete samples). Biometrika 52 (1965) 591–611.CrossRefGoogle Scholar
Shoemaker, J.. Statistical challenges with gene expression studies. Pharmacogenomics 7 (2006) 511–19.CrossRefGoogle ScholarPubMed
Snove, O., Holen, T.. Many commonly used siRNAs risk off-target activity. Biochemical and Biophysical Research Communications 319 (2004) 256–63.CrossRefGoogle ScholarPubMed
Sonnichsen, B., Koski, L.B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A.M., Artelt, J., Bettencourt, P., Cassin, E., Hewitson, M., Holz, C., Khan, M., Lazik, S., Martin, C., Nitzsche, B., Ruer, M., Stamford, J., Winzi, M., Heinkel, R., Roder, M., Finell, J., Hantsch, H., Jones, S.J.M., Jones, M., Piano, F., Gunsalus, K.C., Oegema, K., Gonczy, P., Coulson, A., Hyman, A.A., Echeverri, C.J.. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434 (2005) 462–9.CrossRefGoogle ScholarPubMed
Steiger, J.H.. Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods 9 (2004) 164–82.CrossRefGoogle Scholar
Stephens, M.A.. EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association 69 (1974) 730–7.CrossRefGoogle Scholar
Sterne, J.A.C., Smith, G.D.. Sifting the evidence – what's wrong with significance tests? British Medical Journal 322 (2001) 226–31.CrossRefGoogle ScholarPubMed
Stine, R.A., Heyse, J.F.. Non-parametric estimates of overlap. Statistics in Medicine 20 (2001) 215–36.3.0.CO;2-X>CrossRefGoogle Scholar
Stone, D.J., Marine, S., Majercak, J., Ray, W.J., Espeseth, A., Simon, A., Ferrer, M.. High-throughput screening by RNA interference – Control of two distinct types of variance. Cell Cycle 6 (2007) 898–901.CrossRefGoogle Scholar
Storey, J.D.. A direct approach to false discovery rates. Journal of the Royal Statistical Society Series B-Statistical Methodology 64 (2002) 479–98.CrossRefGoogle Scholar
Storey, J.D.. The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics 31 (2003) 2013–35.CrossRefGoogle Scholar
Storey, J.D., Tibshirani, R.. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America 100 (2003) 9440–5.CrossRefGoogle ScholarPubMed
Strimmer, K.. A unified approach to false discovery rate estimation. BMC Bioinformatics 9 (2008) 303.CrossRefGoogle ScholarPubMed
Sui, Y.X., Wu, Z.J.. Alternative statistical parameter for high-throughput screening assay quality assessment. Journal of Biomolecular Screening 12 (2007) 229–34.CrossRefGoogle ScholarPubMed
Tamhane, A.C., Dunlop, D.D.. Statistics and Data Analysis. Upper Saddle River, NJ, Prentice-Hall, 2000.Google Scholar
Tian, H., Cao, L.C., Tan, Y.P., Williams, S., Chen, L.L., Matray, T., Chenna, A., Moore, S., Hernandez, V., Xiao, V., Tang, M.X., Singh, S.. Multiplex mRNA assay using electrophoretic tags for high-throughput gene expression analysis. Nucleic Acids Research 32 (2004) e126.CrossRefGoogle ScholarPubMed
Timm, N.H.. Estimating effect sizes in exploratory experimental studies when using a linear model. American Statistician 58 (2004) 213–17.CrossRefGoogle Scholar
Tsai, C.A., Hsueh, H.M., Chen, J.J.. Estimation of false discovery rates in multiple testing: application to gene microarray data. Biometrics 59 (2003) 1071–81.CrossRefGoogle ScholarPubMed
Vacha-Haase, T., Thompson, B.. How to estimate and interpret various effect sizes. Journal of Counseling Psychology 51 (2004) 473–81.CrossRefGoogle Scholar
Venables, W.N., Ripley, B.D.. Modern Applied Statistics with S. New York, Springer, 2002.CrossRefGoogle Scholar
Vysochanskij, D.F., Petunin, Y.I.. Justification of the 3-sigma rule for unimodal distribution. Theory of Probability and Mathematical Statistics 21 (1980) 25–36.Google Scholar
Watson, J.D., Crick, F.H.. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171 (1953) 737–8.CrossRefGoogle ScholarPubMed
Wilcoxon, F.. Individual comparisons by ranking methods. Biometrics 1 (1945) 80–3.CrossRefGoogle Scholar
Willingham, A.T., Deveraux, Q.L., Hampton, G.M., Aza-Blanc, P.. RNAi and HTS: exploring cancer by systematic loss-of-function. Oncogene 23 (2004) 8392–8400.CrossRefGoogle ScholarPubMed
Zhang, J.H., Chung, T.D.Y., Oldenburg, K.R.. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. Journal of Biomolecular Screening 4 (1999) 67–73.CrossRefGoogle ScholarPubMed
Zhang, J.H., Chung, T.D.Y., Oldenburg, K.R.. Confirmation of primary active substances from high throughput screening of chemical and biological populations: A statistical approach and practical considerations. Journal of Combinatorial Chemistry 2 (2000) 258–65.CrossRefGoogle ScholarPubMed
Zhang, X.H.D.. A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays. Journal of Biomolecular Screening 12 (2007) 645–55.CrossRefGoogle ScholarPubMed
Zhang, X.H.D.. A pair of new statistical parameters for quality control in RNA interference high-throughput screening assays. Genomics 89 (2007) 552–61.CrossRefGoogle ScholarPubMed
Zhang, X.H.D.. New concept of contrast in statistical analysis. The American Statistical Association Proceedings, Alexandria, VA, 2007, pp. 637–648.Google Scholar
Zhang, X.H.D.. Threshold determination of strictly standardized mean difference in RNA interference high throughput screening assays. IMECS Proceeding (2007) 261–6.Google Scholar
Zhang, X.H.D.. Genome-wide screens for effective siRNAs through assessing the size of siRNA effects. BMC Research Notes 1 (2008) 33.CrossRefGoogle ScholarPubMed
Zhang, X.H.D.. Novel analytic criteria and effective plate designs for quality control in genome-scale RNAi screens. Journal of Biomolecular Screening 13 (2008) 363–77.CrossRefGoogle ScholarPubMed
Zhang, X.H.D.. A method for effectively comparing gene effects in multiple conditions in RNAi and expression-profiling research. Pharmacogenomics 10 (2009) 345–58.CrossRefGoogle ScholarPubMed
Zhang, X.H.D.. A statistical method assessing collective activity of multiple siRNAs targeting a gene in RNAi screens. Alexandria, VA. The American Statistical Association Proceedings. 2010 (In press).Google Scholar
Zhang, X.H.D.. An effective method for controlling false discovery and false non-discovery rates in genome-scale RNAi screens. Journal of Biomolecular Screening 15 (2010) 1116–22.CrossRefGoogle Scholar
Zhang, X.H.D.. Assessing the size of gene or RNAi effects in multifactor high-throughput experiments. Pharmacogenomics 11 (2010) 199–213.CrossRefGoogle ScholarPubMed
Zhang, X.H.D.. Strictly standardized mean difference, standardized mean difference and classical t-test for the comparison of two groups. Statistics in Biopharmaceutical Research 2 (2010) 292–9.CrossRefGoogle Scholar
Zhang, X.H.D., Espeseth, A., Chung, N., Ferrer, M.. Evaluation of a novel metric for quality control in an RNA interference high-throughput screening assay. Las Vegas, NV, CSREA Press, 2006, pp. 385–390.Google Scholar
Zhang, X.H.D., Espeseth, A.S., Johnson, E.N., Chin, J., Gates, A., Mitnaul, L.J., Marine, S.D., Tian, J., Stec, E.M., Kunapuli, P., Holder, D.J., Heyse, J.F., Strulovici, B., Ferrer, M.. Integrating experimental and analytic approaches to improve data quality in genome-wide RNAi screens. Journal of Biomolecular Screening 13 (2008) 378–89.CrossRefGoogle ScholarPubMed
Zhang, X.H.D., Ferrer, M., Espeseth, A.S., Marine, S.D., Stec, E.M., Crackower, M.A., Holder, D.J., Heyse, J.F., Strulovici, B.. The use of strictly standardized mean difference for hit selection in primary RNA interference high-throughput screening experiments. Journal of Biomolecular Screening 12 (2007) 497–509.CrossRefGoogle ScholarPubMed
Zhang, X.H.D., Heyse, J.F.. Determination of sample size in genome-scale RNAi screens. Bioinformatics 25 (2009) 841–4.CrossRefGoogle ScholarPubMed
Zhang, X.H.D., Kuan, P.F., Ferrer, M., Shu, X.H., Liu, Y.C.X., Gates, A.T., Kunapuli, P., Stec, E.M., Xu, M., Marine, S.D., Holder, D.J., Strulovici, B., Heyse, J.F., Espeseth, A.S.. Hit selection with false discovery rate control in genome-scale RNAi screens. Nucleic Acids Research 36 (2008) 4667–79.CrossRefGoogle ScholarPubMed
Zhang, X.H.D., Lacson, R., Yang, R., Marine, S., McCampbell, A., Toolan, D., Hare, T., Kajdas, J., Holder, D.J., Heyse, J.F., Ferrer, M.. The use of SSMD-based false discovery and false non-discovery rates in genome-scale RNAi screens. Journal of Biomolecular Screening 15 (2010) 1123–31.CrossRefGoogle Scholar
Zhang, X.H.D., Marine, S.D., Ferrer, M.. Error rates and powers in genome-scale RNAi screens. Journal of Biomolecular Screening 14 (2009) 230–8.CrossRefGoogle ScholarPubMed
Zhang, X.H.D., Yang, X.C., Chung, N., Gates, A., Stec, E., Kunapuli, P., Holder, D.J., Ferrer, M., Espeseth, A.. Exploring statistical methods for hit selection in RNA interference high throughput screening experiments. The American Statistical Association Proceedings, 2005, pp. 775–80.
Zhang, X.H.D., Yang, X.C., Chung, N.J., Gates, A., Stec, E., Kunapuli, P., Holder, D.J., Ferrer, M., Espeseth, A.S.. Robust statistical methods for hit selection in RNA interference high-throughput screening experiments. Pharmacogenomics 7 (2006) 299–309.CrossRefGoogle ScholarPubMed
Zhao, H.F., L'Abbe, D., Jolicoeur, N., Wu, M.Q., Li, Z., Yu, Z.B., Shen, S.H.. High-throughput screening of effective siRNAs from RNAi libraries delivered via bacterial invasion. Nature Methods 2 (2005) 967–73.CrossRefGoogle ScholarPubMed
Zhao, W.Q., Santini, F., Breese, R., Ross, D., Zhang, X.H.D., Stone, D.J., Ferrer, M., Townsend, M., Wolfe, A.L., Seager, M.A., Kinney, G.G., Shughrue, P.J., Ray, W.J.. Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption. Journal of Biological Chemistry285 (2010) 7619–32.Google ScholarPubMed
Zhou, H.L., Xu, M., Huang, Q., Gates, A.T., Zhang, X.H.D., Castle, J.C., Stec, E., Ferrer, M., Strulovici, B., Hazuda, D.J., Espeseth, A.S.. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host & Microbe 4 (2008) 495–504.CrossRefGoogle ScholarPubMed
Zhou, W.. Statistical inference for P(X < Y). Statistics in Medicine 27 (2008) 257–79.CrossRefGoogle ScholarPubMed
Zuck, P., Murray, E.M., Stec, E., Grobler, J.A., Simon, A.J., Strulovici, B., Inglese, J., Flores, O.A., Ferrer, M.. A cell-based beta-lactamase reporter gene assay for the identification of inhibitors of hepatitis C virus replication. Analytical Biochemistry 334 (2004) 344–55.CrossRefGoogle ScholarPubMed
,[Anon]. A billion dollar punt. Nature Biotechnology 24 (2006) 1453.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Xiaohua Douglas Zhang
  • Book: Optimal High-Throughput Screening
  • Online publication: 03 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511973888.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Xiaohua Douglas Zhang
  • Book: Optimal High-Throughput Screening
  • Online publication: 03 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511973888.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Xiaohua Douglas Zhang
  • Book: Optimal High-Throughput Screening
  • Online publication: 03 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511973888.010
Available formats
×