Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: December 2015

4 - Optical beams and focusing

from Part I - Theory
Bandres, M. A., and Gutiérrez-Vega, J. C. 2004. Ince Gaussian beams. Opt. Lett., 29, 144–6.
Baumgartl, J., Mazilu, M., and Dholakia, K. 2008. Optically mediated particle clearing using Airy wavepackets. Nature Photon., 2, 675–8.
Berry, M. V., and Balazs, N. L. 1979. Nonspreading wave packets. Am. J. Phys., 47, 264–7.
Bouchal, Z. 2003. Nondiffracting optical beams: Physical properties, experiments and applications. Czech. J. Phys., 53, 537–624.
Cojocaru, E. 2008. Mathieu functions computational toolbox implemented in Matlab. arXiv, 0811.1970.
Debye, P. 1909. Das Verhalten von Lichtwellen in der Nähe eines Brennpunktes oder einer Brennlinie. Ann. Physik, 30, 755–76.
Durnin, J., Miceli, Jr., J. J., and Eberly, J. H. 1987. Diffraction-free beams. Phys. Rev. Lett., 58, 1499–1501.
Hall, D. G. 1996. Vector-beam solutions of Maxwell's wave equation. Opt. Lett., 21, 9–11.
Leutenegger, M., Rao, R., Leitgeb, R. A., and Lasser, T. 2006. Fast focus field calculations. Opt. Express, 14, 11 277–91.
Mandel, L., and Wolf, E. 1995. Optical coherence and quantum optics. Cambridge, UK: Cambridge University Press.
Richards, B., and Wolf, E. 1959. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. London A, 253, 358–79.
Rose, P., Boguslawski, M., and Denz, C. 2012. Nonlinear lattice structures based on families of complex nondiffracting beams. New J. Phys., 14, 033018.
Wolf, E. 1959. Electromagnetic diffraction in optical systems. I. An integral representation of the image field. Proc. R. Soc. London A, 253, 349–57.
Zauderer, E. 1986. Complex argument Hermite–Gaussian and Laguerre–Gaussian beams. J. Opt. Soc. Am. A, 3, 465–9.
Zhan, Q. 2009. Cylindrical vector beams: From mathematical concepts to applications. Adv. Opt. Photon., 1, 1–57.