Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T03:56:06.867Z Has data issue: false hasContentIssue false

6 - Computational methods

from Part I - Theory

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 154 - 187
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albaladejo, S., Saenz, J. J., and Marques, M. I. 2011. Plasmonic nanoparticle chain in a light field: A resonant optical sail. Nano Lett., 11, 4597–4600.CrossRefGoogle Scholar
Benito, D. C., Simpson, S. H., and Hanna, S. 2008. FDTD simulations of forces on particles during holographic assembly. Opt. Express, 16, 2942–57.CrossRefGoogle ScholarPubMed
Borghese, F., Denti, P., Toscano, G., and Sindoni, O. I. 1980. An addition theorem for vector Helmholtz harmonics. J. Math. Phys., 21, 2754–55.CrossRefGoogle Scholar
Borghese, F., Denti, P., Saija, R., Toscano, G., and Sindoni, O. I. 1984. Multiple electromagnetic scattering from a cluster of spheres. I. Theory. Aerosol Sci. Technol., 3, 227–35.CrossRefGoogle Scholar
Borghese, F., Denti, P., Saija, R., and Sindoni, O. I. 1992. Optical properties of spheres containing a spherical eccentric inclusion. J. Opt. Soc. Am. A, 9, 1327–35.CrossRefGoogle Scholar
Borghese, F., Denti, P., Saija, R., and Iatì, M. A. 2006. Radiation torque on nonspherical particles in the transition matrix formalism. Opt. Express, 14, 9508–21.CrossRefGoogle ScholarPubMed
Borghese, F., Denti, P., Saija, R., and Iatì, M. A. 2007a. Optical trapping of nonspherical particles in the T-matrix formalism. Opt. Express, 15, 11, 984–98.Google ScholarPubMed
Borghese, F., Denti, P., and Saija, R. 2007b. Scattering from model nonspherical particles. Berlin: Springer Verlag.Google Scholar
Borghese, F., Denti, P., Saija, R., Iatì, M. A., and Maragò, O. M. 2008. Radiation torque and force on optically trapped linear nanostructures. Phys. Rev. Lett., 100, 163903.CrossRefGoogle ScholarPubMed
Brock, B. C. 2001. Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields. Sandia report, SAND2000–2217–Revised. Sandia National Laboratories, Albuquerque, NM.
Cao, Y., Stilgoe, A. B., Chen, L., Nieminen, T. A., and Rubinsztein-Dunlop, H. 2012. Equilibrium orientations and positions of non-spherical particles in optical traps. Opt. Express, 20, 12, 987–96.CrossRefGoogle ScholarPubMed
Courant, R., Friedrichs, K., and Lewy, H. 1967. On the partial difference equations of mathematical physics. IBM J. Res. Develop., 11, 215–34.CrossRefGoogle Scholar
Davis, L. W. 1979. Theory of electromagnetic beams. Phys. Rev. A, 19, 1177–9.CrossRefGoogle Scholar
Draine, B. T., and Flatau, P. J. 1994. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11, 1491–9.CrossRefGoogle Scholar
Elsherbeni, A. Z., and Demir, V. 2009. The finite-difference time-domain method for electromagnetics with MATLAB simulations. Raleigh, NC: Scitech.Google Scholar
Ferrell, R. A. 1958. Predicted radiation of plasma oscillations in metal films. Phys. Rev., 111, 1214–22.CrossRefGoogle Scholar
Ferrell, R. A., and Stern, E. 1962. Plasma resonance in the electrodynamics of metal films. Am. J. Phys., 30, 810–12.CrossRefGoogle Scholar
Fontes, A., Neves, A. A. R., Moreira, W. L., et al. 2005. Double optical tweezers for ultrasensitive force spectroscopy in microsphere Mie scattering. Appl. Phys. Lett., 87, 221109.CrossRefGoogle Scholar
Gauthier, R. C. 2005. Computation of the optical trapping force using an FDTD based technique. Opt. Express, 13, 3707–18.CrossRefGoogle ScholarPubMed
Girard, C. 2005. Near fields in nanostructures. Rep. Prog. Phys., 68, 1883–1933.CrossRefGoogle Scholar
Gouesbet, G. 2010. T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates. Opt. Commun., 283, 517–21.CrossRefGoogle Scholar
Gouesbet, G., and Gréhan, G. 2011. Generalized Lorenz–Mie theories. Berlin: Springer Verlag.CrossRefGoogle Scholar
Gouesbet, G., Lock, J. A., and Gréhan, G. 2011. Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review. J. Quant. Spectrosc. Radiat. Transfer, 112, 1–27.CrossRefGoogle Scholar
Loke, V. L. Y., Nieminen, T. A., Heckenberg, N. R., and Rubinsztein-Dunlop, H. 2009. T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry. J. Quant. Spectrosc. Radiat. Transfer, 110, 1460–71.CrossRefGoogle Scholar
Mackowski, D. W. 2002. Discrete dipole moment method for calculation of the T-matrix for non-spherical particles. J. Opt. Soc. Am. A, 19, 881–93.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. 2002. Scattering, absorption, and emmision of light by small particles. Cambridge, UK: Cambridge University Press.Google Scholar
Moreira, W. L., Neves, A. A. R., Garbos, M. K., et al. 2010. Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions. ArXiv, 1003.2392.
Neves, A. A. R., Fontes, A., Pozzo, L. de Y., et al. 2006a. Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric. Opt. Express, 14, 13, 101–6.CrossRefGoogle ScholarPubMed
Neves, A. A. R., Fontes, A., Padilha, L. A., et al. 2006b. Exact partial wave expansion of optical beams with respect to an arbitrary origin. Opt. Lett., 31, 2477–9.Google Scholar
Neves, A. A. R., Fontes, A., Cesar, C. L., et al. 2007. Axial optical trapping efficiency through a dielectric interface. Phys. Rev. E, 76, 061917.CrossRefGoogle ScholarPubMed
Nieminen, T. A., Rubinsztein-Dunlop, H., Heckenberg, N. R., and Bishop, A. I. 2001. Numerical modelling of optical trapping. Comput. Phys. Commun., 142, 468–71.CrossRefGoogle Scholar
Nieminen, T. A., Rubinsztein-Dunlop, H., and Heckenberg, N. R. 2003a. Calculation of the T-matrix: General considerations and application of the point-matching method. J. Quant. Spectrosc. Radiat. Transfer, 79-80, 1019–29.CrossRefGoogle Scholar
Nieminen, T. A., Rubinsztein-Dunlop, H., and Heckenberg, N. R. 2003b. Multipole expansion of strongly focussed laser beams. J. Quant. Spectrosc. Radiat. Transfer, 79, 1005–17.Google Scholar
Nieminen, T. A., Asavei, T., Loke, V. L., Heckenberg, N. R., and Rubinsztein-Dunlop, H. 2009. Symmetry and the generation and measurement of optical torque. J. Quant. Spectrosc. Radiat. Transfer, 110, 1472–82.CrossRefGoogle Scholar
Nieminen, T. A., Loke, V. L., Stilgoe, A. B., Heckenberg, N. R., and Rubinsztein-Dunlop, H. 2011. T-matrix method for modelling optical tweezers. J. Mod. Opt., 58, 528–44.CrossRefGoogle Scholar
Nozawa, R. 1966. Bipolar expansion of screened Coulomb potentials, Helmholtz’ solid harmonics, and their addition theorems. J. Math. Phys., 7, 1841–60.CrossRefGoogle Scholar
Pack, A., Hietschold, M., and Wannemacher, R. 2001. Failure of local Mie theory: Optical spectra of colloidal aggregates. Opt. Commun., 194, 277–87.CrossRefGoogle Scholar
Purcell, E. M., and Pennypacker, C. R. 1973. Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J., 186, 705–14.CrossRefGoogle Scholar
Qi, X., Nieminen, T. A., Stilgoe, A. B., Loke, V. L. Y., and Rubinsztein-Dunlop, H. 2014. Comparison of T-matrix calculation methods for scattering by cylinders in optical tweezers. Opt. Lett., 39, 4827–30.CrossRefGoogle ScholarPubMed
Rose, M. E. 1955. Multipole fields. New York: Wiley.Google Scholar
Rose, M. E. 1995. Elementary theory of angular momentum. New York: Dover.Google Scholar
Ruppin, R. 1975. Optical properties of small metal spheres. Phys. Rev. B, 11, 2871–6.CrossRefGoogle Scholar
Saija, R., Denti, P., Borghese, F., Maragò, O. M., and Iatì, M. A. 2009. Optical trapping calculations for metal nanoparticles: Comparison with experimental data for Au and Ag spheres. Opt. Express, 17, 10, 231–41.CrossRefGoogle ScholarPubMed
Simpson, S. H., and Hanna, S. 2006. Numerical calculation of inter-particle forces arising in association with holographic assembly. J. Opt. Soc. Am. A, 23, 1419–31.CrossRefGoogle Scholar
Simpson, S. H., and Hanna, S. 2007. Optical trapping of spheroidal particles in Gaussian beams. J. Opt. Soc. Am. A, 24, 430–43.CrossRefGoogle ScholarPubMed
Simpson, S. H., and Hanna, S. 2009. Optical angular momentum transfer by Laguerre– Gaussian beams. J. Opt. Soc. Am. A, 26, 625–38.CrossRefGoogle ScholarPubMed
Simpson, S. H., and Hanna, S. 2010a. Holographic optical trapping of microrods and nanowires. J. Opt. Soc. Am. A, 27, 1255–64.CrossRefGoogle ScholarPubMed
Simpson, S. H., and Hanna, S. 2010b. Orbital motion of optically trapped particles in Laguerre–Gaussian beams. J. Opt. Soc. Am. A, 27, 2061–71.CrossRefGoogle ScholarPubMed
Simpson, S. H., and Hanna, S. 2011. Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles. Opt. Express, 19, 16, 526–41.CrossRefGoogle ScholarPubMed
Simpson, S. H., Benito, D. C., and Hanna, S. 2007. Polarization-induced torque in optical traps. Phys. Rev. A, 76, 043408.CrossRefGoogle Scholar
Varshalovich, D. A., Moskalev, A. N., and Khersonskii, V. K. 1988. Quantum theory of angular momentum. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
Waterman, P. C. 1971. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D, 3, 825–39.CrossRefGoogle Scholar
Wyatt, P. J. 1962. Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects. Phys. Rev., 127, 1837–43.CrossRefGoogle Scholar
Yee, K. 1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag., 14, 302–7.Google Scholar
Yurkin, M. A., and Hoekstra, A. G. 2007. The discrete dipole approximation: An overview and recent developments. J. Quant. Spectrosc. Radiat. Transfer, 106, 558–89.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×