Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-25T06:31:09.722Z Has data issue: false hasContentIssue false

6 - Mechanisms of Tolerance

Published online by Cambridge University Press:  06 July 2010

Christoph Stein
Affiliation:
Universitätsklinikum Benjamin Franklin, Berlin
Get access

Summary

Introduction

Accumulating evidence indicates that many neurons or neuronal systems adapt to chronic receptor activation by the expression of compensating mechanisms. These compensating mechanisms can take the form of a reduced sensitivity of the receptor through which the agonist acts (homologous desensitization), a reduced sensitivity of co-expressed receptors that serve similar functional roles (heterologous desensitization), and a change in the functions of effector systems to compensate for the persistent activation of one class of receptors. Each of these mechanisms has been observed in some circumstances following chronic exposure of cells or whole animals to morphine and other opiate drugs. All these processes may play a role in opiate drug tolerance, but their relative contributions will probably vary in different situations. Furthermore, the physiologic environment in which opiate drugs act may vary with time in ways that will influence the sensitivity of the system to opiates.

Altered Drug Metabolism in Opiate Tolerance

Chronic exposure to drugs like alcohol (ethanol) or barbiturates may lead to an increased metabolism of the drug and thus to a reduced pharmacologic effect, but there is little evidence of drug-induced changes in the metabolism of morphine and related drugs of sufficient magnitude to account for the level of tolerance that can be observed during chronic morphine treatment. Morphine is partially metabolized to an active metabolite, morphine-6-glucuronide, and this metabolite may contribute in part to the analgesic actions of morphine in vivo (Paul et al., 1989).

Type
Chapter
Information
Opioids in Pain Control
Basic and Clinical Aspects
, pp. 109 - 130
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×