Skip to main content Accessibility help
×
Home
  • Print publication year: 2010
  • Online publication date: July 2010

Chap. 58 - FRACTIONAL LASERS: GENERAL CONCEPTS

from PART FOUR - COSMETIC APPLICATIONS OF LIGHT, RADIOFREQUENCY, AND ULTRASOUND ENERGY

Summary

Ablative CO2 laser resurfacing using computerized scanners became widely used in 1995. Results were great, but so were challenges with healing and complications. Soon thereafter, ablative scanned Er:YAG lasers were also introduced as a less aggressive method, but even after significant technological improvements, skin tightening results with Er:YAG lasers, in the opinion of many users, were never of the level achieved by the CO2 lasers. For the past dozen years, ablative resurfacing, particularly with CO2 lasers, has remained the gold standard for treatment of age- and actinic-related rhytids of the facial skin. The combination of technological improvements with the lasers, experience in how to use these lasers, and know-how in managing the treated areas has dramatically reduced the problems that were initially encountered with these modalities. Nevertheless, prolonged healing time, need for intensive follow-up, significant complication risks, a high incidence of residual hypopigmentation, unimpressive results for acne scars, counterindication of use for darker skin types, and limitations of use for the face only have been major stimulants in the search for better alternatives. For a while, it was felt that nonablative resurfacing and skin tightening with lasers, broadband light, or radiofrequency devices would provide the searched for alternative. In spite of significant and ongoing improvements with nonablative technology, including such innovative ideas as the use of skin suction devices to better position the tissues for energy delivery, results of nonablative resurfacing have lagged far behind ablative techniques.

Related content

Powered by UNSILO