Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-29T15:20:56.231Z Has data issue: false hasContentIssue false

Chap. 56 - ALMA ACCENT DUAL RADIOFREQUENCY DEVICE FOR TISSUE CONTOURING

from PART FOUR - COSMETIC APPLICATIONS OF LIGHT, RADIOFREQUENCY, AND ULTRASOUND ENERGY

Published online by Cambridge University Press:  06 July 2010

Sorin Eremia
Affiliation:
University of California, Los Angeles, School of Medicine
Get access

Summary

Alma Lasers's Accent is a 200-W, 40.68-MHz, high-frequency radiofrequency (RF) generator. Accent is designed for contact operation using a unipolar probe and a bipolar probe for volumetric and surface heating, respectively.

The unipolar treatment tip handpiece (antenna) creates an electromagnetic field deep within the dermal tissue, which changes polarity 40 million times per second. That polarity change generates heat based on water molecules' movement and their friction between themselves and other tissues.

The unipolar probe delivers the RF energy to tissue from the ball-like extremity of the coupling tip. Delivery of RF energy is to the deep dermis and beyond.

The bipolar probe is designed for surface heating from 2–6 mm in depth, depending on tissue properties. There is a coaxial-grounded electrode that surrounds an RF tip.

The initial effect of treatment is twofold: an immediate three-dimensional collagen contraction (horizontal and vertical fibers), producing a dermal contraction for tightening, and a fibrous septae contraction for contouring. The tissue heating during treatment also produces a secondary wound-healing response, with further collagen deposition and remodeling, resulting in additional tightening over time.

As of the date of this publication, Accent is approved by the Food and Drug Administration for skin tightening and wrinkle reduction in the face and body. Off-label and experimental studies have documented its efficacy for cellulite reduction, collagen deposition, contraction of the fat in the abdomen and arms, and reduction of arm and abdominal circumference (Figure 56.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E, Del Pino, Rosado, RH, Azuela, A, et al. Effect of controlled volumetric tissue healing with radiofrequency on cellulite and the subcutaneous tissue of the buttocks and thighs. J. Drugs Dermatol. 2006;5:714–22.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×