Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-21T23:22:51.191Z Has data issue: false hasContentIssue false

Chapter 4 - Psychobiotics and Fermented Foods

Published online by Cambridge University Press:  17 August 2023

Ted Dinan
Affiliation:
Emeritus Professor, University College Cork, Ireland
Get access

Summary

Psychobiotics are bacteria that have a positive mental health benefit when ingested in adequate amounts. They act through the brain–gut–microbiota axis which is a bidirectional communication system linking gut microbes and the brain. Until relatively recently, gut microbes were viewed as commensal with no major impact on brain function. It is now clear that gut microbes produce an array of molecules which are essential for normal brain function, for example short-chain fatty acids. Over 1,000 strains of bacteria have been identified in the human gut and there is increasing evidence to support the view that psychiatric illnesses are associated with a gut dysbiosis. It is within this context that the field of psychobiotic research has emerged. Given the novel state of the field, it is not surprising that there are far more animal than human studies in the literature. However, there is growing evidence that some psychobiotics can play a role in managing stress-related disorders such as anxiety, depression and irritable bowel syndrome. So far, the major focus of psychobiotic research has been on Lactobacilli and Bifidobacteria, but there is potential to use a far broader range of bacteria. Psychobiotics have the ability to influence the core stress axis, namely the hypothalamic–pituitary–adrenal axis, reduce inflammatory responses, elevate brain trophic factors and impact positively on a ‘leaky gut’. Overall, the field represents a paradigm shift in psychiatry.

Type
Chapter
Information
Nutritional Psychiatry
A Primer for Clinicians
, pp. 55 - 71
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mörkl, S., Butler, M. I., Holl, A., Cryan, J. F. and Dinan, T. G., 2020. Probiotics and the microbiota-gut-brain axis: focus on psychiatry. Current Nutrition Reports, 9(3), pp. 171–82.Google ScholarPubMed
Zhang, F., Luo, W., Shi, Y., Fan, Z. and Ji, G., 2012. Should we standardize the 1,700-year-old fecal microbiota transplantation? The American Journal of Gastroenterology, 107(11), p. 1755 (author reply on p. 6).Google Scholar
Zhang, F., Luo, W., Shi, Y., Fan, Z. and Ji, G., 2012. Should we standardize the 1,700-year-old fecal microbiota transplantation? The American Journal of Gastroenterology, 107(11), pp. 1755.Google Scholar
McFarland, L. V., 2015. From yaks to yogurt: the history, development, and current use of probiotics. Clinical Infectious Diseases, 60(suppl. 2), pp. S8590.Google Scholar
Fuller, R., 1989. Probiotics in man and animals. Journal of Applied Microbiology, 66(5), 365–78.Google ScholarPubMed
Fuller, R., 1991. Probiotics in human medicine. Gut, 32(4), pp. 439–42.Google Scholar
Dinan, T. G., Stanton, C. and Cryan, J. F., 2013. Psychobiotics: a novel class of psychotropic. Biological Psychiatry, 74(10), pp. 720–6.CrossRefGoogle ScholarPubMed
Sarkar, A., Lehto, S. M., Harty, S., et al., 2016. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends in Neurosciences, 39(11), pp. 763–81.Google Scholar
Jeżewska-Frąckowiak, J., Łubkowska, B., Sobolewski, I. and Skowron, P. M., 2021. Probiotics in the times of COVID-19. Acta Biochimica Polonica, 68(3), pp. 393–8.Google ScholarPubMed
Gibson, G. R., 2022. Commentary on: prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 127(4), pp. 554–5.Google Scholar
Gomez Quintero, D. F., Kok, C. R. and Hutkins, R., 2022. The future of synbiotics: rational formulation and design. Frontiers in Microbiology, 13, p. 919725.CrossRefGoogle ScholarPubMed
Batista, V. L., L. C. L., De Jesus, Tavares, L. M., et al., 2022. Paraprobiotics and postbiotics of Lactobacillus delbrueckii CIDCA 133 mitigate 5-FU-induced intestinal inflammation. Microorganisms, 10(7), p. 1418.CrossRefGoogle ScholarPubMed
Tsilingiri, K. and Rescigno, M., 2012. Postbiotics: what else? Beneficial Microbes, 4(1), pp. 101–7.Google Scholar
Stilling, R. M., van de Wouw, M., Clarke, G., et al., 2016. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochemistry International, 99, pp. 110–32.CrossRefGoogle ScholarPubMed
van de Wouw, M., Boehme, M., Lyte, J. M., et al., 2018. Short‐chain fatty acids: microbial metabolites that alleviate stress‐induced brain–gut axis alterations. The Journal of Physiology, 596(20), pp. 4923–44.CrossRefGoogle ScholarPubMed
Wei, C.-L., Wang, S., Yen, J.-T., et al., 2019. Antidepressant-like activities of live and heat-killed Lactobacillus paracasei PS23 in chronic corticosterone-treated mice and possible mechanisms. Brain Research, 1711, pp. 202–13.Google Scholar
Varian, B. J., Poutahidis, T., DiBenedictis, B. T., et al., 2017. Microbial lysate upregulates host oxytocin. Brain, Behavior, and Immunity, 61, pp. 3649.CrossRefGoogle ScholarPubMed
Warda, A. K., Rea, K., Fitzgerald, P., et al., 2019. Heat-killed lactobacilli alter both microbiota composition and behaviour. Behavioural Brain Research, 362, pp. 213–23.CrossRefGoogle ScholarPubMed
Drisko, J. A., Giles, C. K. and Bischoff, B. J., 2003. Probiotics in health maintenance and disease prevention. Alternative Medicine Review, 8(2), pp. 143–56.Google Scholar
Bambury, A., Sandhu, K., Cryan, J. F. and Dinan, T. G., 2018. Finding the needle in the haystack: systematic identification of psychobiotics. British Journal of Pharmacology, 175(24), pp. 4430–8.CrossRefGoogle ScholarPubMed
Messaoudi, M., Violle, N., Bisson, J. F., et al., 2011. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes, 2(4), pp. 256–61.Google Scholar
Cussotto, S., Clarke, G., Dinan, T. G. and Cryan, J. F., 2019. Psychotropics and the microbiome: a chamber of secrets … Psychopharmacology, 236(5), pp. 1411–32.Google Scholar
Bambury, A., Sandhu, K., Cryan, J. F. and Dinan, T. G., 2018. Finding the needle in the haystack: systematic identification of psychobiotics. British Journal of Pharmacology, 175(24), pp. 4430–8.CrossRefGoogle ScholarPubMed
Allen, A. P., Hutch, W., Borre, Y. E., et al., 2016. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Translational Psychiatry, 6(11), p. e939.CrossRefGoogle ScholarPubMed
Bruch, J. D., 2016. Intestinal infection associated with future onset of an anxiety disorder: results of a nationally representative study. Brain, Behavior, and Immunity, 57, pp. 222–6.Google Scholar
Reis, D. J., Ilardi, S. S. and Punt, S. E. W., 2018. The anxiolytic effect of probiotics: a systematic review and meta-analysis of the clinical and preclinical literature. Plos One, 13(6), p. e0199041.Google Scholar
Liu, R. T., Walsh, R. F. and Sheehan, A. E., 2019. Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neuroscience & Biobehavioral Reviews, 102, pp. 1323.Google Scholar
Kelly, J. R., Borre, Y., Patterson, E., et al., 2016. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, pp. 109–18.Google Scholar
Valles-Colomer, M., Falony, G., Darzi, Y., et al., 2019. The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology, 4(4), pp. 623–32.CrossRefGoogle ScholarPubMed
Kim, C. S. and Shin, D. M., 2019. Probiotic food consumption is associated with lower severity and prevalence of depression: a nationwide cross-sectional study. Nutrition, 63–4, pp. 169–74.Google Scholar
Akkasheh, G., Kashani-Poor, Z., Tajabadi-Ebrahimi, M., et al., 2016. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition, 32(3), pp. 315–20.CrossRefGoogle ScholarPubMed
Kazemi, A., Noorbala, A. A., Azam, K., Eskandari, M. H. and Djafarian, K., 2018. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: a randomized clinical trial. Clinical Nutrition, 38(2), pp. 522–8.Google ScholarPubMed
Kazemi, A., Noorbala, A. A. and Djafarian, K., 2020. Effect of probiotic and prebiotic versus placebo on appetite in patients with major depressive disorder: post hoc analysis of a randomised clinical trial. Journal of Human Nutrition and Dietetics, 33(1), pp. 5665.Google Scholar
Mohammadi, A. A., Jazayeri, S., Khosravi-Darani, K., et al., 2016. The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutritional Neuroscience, 19(9), pp. 387–95.Google Scholar
Rudzki, L., Ostrowska, L., Pawlak, D., et al., 2019. Probiotic Lactobacillus plantarum 299 v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology, 100, pp. 213–22.Google Scholar
Rao, A. V., Bested, A. C., Beaulne, T. M., et al., 2009. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathogens, 1(1), p. 6.CrossRefGoogle ScholarPubMed
Schaub, A. C., Schneider, E., Vazquez-Castellanos, J. F., et al., 2022. Clinical, gut microbial and neural effects of a probiotic add-on therapy in depressed patients: a randomized controlled trial. Translational Psychiatry, 12(1), p. 227.Google Scholar
Musazadeh, V., Zarezadeh, M., Faghfouri, A. H., et al., 2022. Probiotics as an effective therapeutic approach in alleviating depression symptoms: an umbrella meta-analysis. Critical Reviews in Food Science and Nutrition, 29, pp. 19.Google Scholar
Dinan, T. G., Cryan, J. F. and Stanton, C., 2018. Gut microbes and brain development have black box connectivity. Biological Psychiatry, 83(2), pp. 97–9.CrossRefGoogle ScholarPubMed
Sherwin, E., Sandhu, K. V., Dinan, T. G. and Cryan, J. F., 2016. May the force be with you: the light and dark sides of the microbiota-gut-brain axis in neuropsychiatry. CNS Drugs, 30(11), pp. 1019–41.CrossRefGoogle ScholarPubMed
Dinan, T. G. and Cryan, J. F., 2017. Brain-gut-microbiota axis and mental health. Psychosomatic Medicine, 79(8), pp. 920–6.CrossRefGoogle Scholar
Kelly, J. R., Allen, A. P., Temko, A., et al., 2017. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects. Brain, Behavior, and Immunity, 61, pp. 50–9.CrossRefGoogle ScholarPubMed
Allen, A. P., Dinan, T. G., Clarke, G. and Cryan, J. F., 2017. A psychology of the human brain–gut–microbiome axis. Social and Personality Psychology Compass, 11(4), p. e12309.CrossRefGoogle ScholarPubMed
Sudo, N., Chida, Y., Aiba, Y., et al., 2004. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. The Journal of Physiology, 558(1), pp. 263–75.Google Scholar
Desbonnet, L., Garrett, L., Clarke, G., et al., 2010. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience, 170(4), pp. 1179–88.CrossRefGoogle ScholarPubMed
Sun, Y., Geng, W., Pan, Y., et al., 2019. Supplementation with Lactobacillus kefiranofaciens ZW3 from Tibetan Kefir improves depression-like behavior in stressed mice by modulating the gut microbiota. Food & Function, 10(2), pp. 925–37.CrossRefGoogle ScholarPubMed
Grenham, S., Clarke, G., Cryan, J. F. and Dinan, T. G., 2011. Brain-gut-microbe communication in health and disease. Frontiers in Physiology, 2, p. 94.Google Scholar
Eisenstein, M., 2016. Microbiome: bacterial broadband. Nature, 533(7603), pp. S104–6.Google Scholar
Schmidt, K., Cowen, P. J., Harmer, C. J., et al., 2015. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl.), 232(10), pp. 1793–801.CrossRefGoogle ScholarPubMed
Schellekens, H., Torres-Fuentes, C., van de Wouw, M., et al., 2021. Bifidobacterium longum counters the effects of obesity: partial successful translation from rodent to human. EBioMedicine, 63, p. 103176.CrossRefGoogle ScholarPubMed
Richard, H. T. and Foster, J. W., 2003. Acid resistance in Escherichia coli. Advances in Applied Microbiology, 52, pp. 167–86.CrossRefGoogle ScholarPubMed
Siragusa, S., De Angelis, M., Di Cagno, R., et al., 2007. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Applied and Environmental Microbiology, 73(22), pp. 7283–90.Google Scholar
Shishov, V. A., Kirovskaia, T. A., Kudrin, V. S. and Oleskin, A. V., 2009. Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Prikladnaia Biokhimiia i Mikrobiologiia, 45(5), pp. 550–4.Google Scholar
Tsavkelova, E. A., Botvinko, I. V., Kudrin, V. S. and Oleskin, A. V., 2000. Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Doklady Biochemistry and Biophysics, 372(1–6), pp. 115–17.Google ScholarPubMed
Lyte, M., 2013. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathogens, 9(11), p. e1003726.CrossRefGoogle ScholarPubMed
Lyte, M., 2014. Microbial endocrinology and the microbiota-gut-brain axis. Advances in Experimental Medicine and Biology, 817, pp. 324.CrossRefGoogle ScholarPubMed
Bravo, J. A., Forsythe, P., Chew, M. V., et al., 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 108(38), pp. 16050–5.Google Scholar
Dhakal, R., Bajpai, V. K. and Baek, K.-H., 2012. Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Brazilian Journal of Microbiology, 43(4), pp. 1230–41.Google Scholar
Zareian, M., Ebrahimpour, A., Bakar, F. A., et al., 2012. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods. International Journal of Molecular Sciences, 13(5), pp. 5482–97.Google Scholar
Smith, K. T., Singh, B. and Elliott, J. F., 1992. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. Journal of Bacteriology, 174(18), pp. 5820–6.Google Scholar
Strandwitz, P., Kim, K. H., Terekhova, D., et al., 2019. GABA-modulating bacteria of the human gut microbiota. Nature Microbiology, 4(3), pp. 396403.Google Scholar
Barrett, E., Ross, R. P., O’Toole, P. W., et al., 2012. γ-Aminobutyric acid production by culturable bacteria from the human intestine. Journal of Applied Microbiology, 113(2), pp. 411–17.CrossRefGoogle ScholarPubMed
Pokusaeva, K., Johnson, C., Luk, B., et al., 2017. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterology and Motility, 29(1).Google Scholar
Foster, J. A., Rinaman, L. and Cryan, J. F., 2017. Stress and the gut-brain axis: regulation by the microbiome. Neurobiology of Stress, 7, pp. 124–36.Google Scholar
Beaver, M. H. and Wostmann, B. S., 1962. Histamine and 5-hydroxytryptamine in the intestinal tract of germ-free animals, animals harbouring one microbial species and conventional animals. British Journal of Pharmacology and Chemotherapy, 19, pp. 385–93.Google Scholar
Yano, J. M., Yu, K., Donaldson, G. P., et al., 2015. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161(2), pp. 264–76.Google Scholar
Reigstad, C. S., Salmonson, C. E., Rainey, J. F., 3rd, et al., 2015. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. The FASEB Journal, 29(4), pp. 13951403.CrossRefGoogle ScholarPubMed
Mohammadi, A. A., Jazayeri, S., Khosravi-Darani, K., et al., 2016. The effects of probiotics on mental health and hypothalamic–pituitary–adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutritional Neuroscience, 19(9), pp. 387–95.Google Scholar
Pugin, B., Barcik, W., Westermann, P., et al., 2017. A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microbial Ecology in Health and Disease, 28(1), p. 1353881.Google Scholar
Kim, S. H., Ben-Gigirey, B., Barros-Velazquez, J., Price, R. J. and An, H., 2000. Histamine and biogenic amine production by Morganella morganii isolated from temperature-abused albacore. Journal of Food Protection, 63(2), pp. 244–51.CrossRefGoogle ScholarPubMed
Behling, A. R. and Taylor, S. L., 1982. Bacterial histamine production as a function of temperature and time of incubation. Journal of Food Science, 47(4), pp. 13111314.Google Scholar
Ferstl, R., Frei, R., Schiavi, E., et al., 2014. Histamine receptor 2 is a key influence in immune responses to intestinal histamine-secreting microbes. The Journal of Allergy and Clinical Immunology, 134(3), pp. 744–6.CrossRefGoogle ScholarPubMed
Gao, C., Major, A., Rendon, D., et al., 2015. Histamine H2 Receptor-mediated suppression of intestinal inflammation by probiotic Lactobacillus reuteri. mBio, 6(6), pp. e01358–15.Google Scholar
Donovan, M. H. and Tecott, L. H., 2013. Serotonin and the regulation of mammalian energy balance. Frontiers in Neuroscience, 7, p. 36.CrossRefGoogle ScholarPubMed
Mawe, G. M. and Hoffman, J. M., 2013. Serotonin signalling in the gut: functions, dysfunctions and therapeutic targets. Nature Reviews Gastroenterology & Hepatology, 10(8), pp. 473–86.Google Scholar
Shajib, M. S., Baranov, A. and Khan, W. I., 2017. Diverse effects of gut-derived serotonin in intestinal inflammation. ACS Chemical Neuroscience, 8(5), pp. 920–31.Google Scholar
Burokas, A., Arboleya, S., Moloney, R. D., et al., 2017. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biological Psychiatry, 82(7), pp. 472–87.Google Scholar
Savignac, H. M., Corona, G., Mills, H., et al., 2013. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochemistry International, 63(8), pp. 756–64.CrossRefGoogle ScholarPubMed
Vazquez, E., Barranco, A., Ramirez, M., et al., 2016. Dietary 2’-fucosyllactose enhances operant conditioning and long-term potentiation via gut-brain communication through the vagus nerve in rodents. Plos One, 11(11), p. e0166070.Google Scholar
Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J. and Dinan, T. G., 2008. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. Journal of Psychiatric Research, 43(2), pp. 164–74.Google Scholar
Chung, Y.-C., Jin, H.-M., Cui, Y., et al., 2014. Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. Journal of Functional Foods, 10, pp. 465–74.CrossRefGoogle Scholar
Allen, H. W., Borre, Y. E., Kennedy, P. J., et al., 2016. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Translational Psychiatry, 6(11), p. e939.Google Scholar
Romijn, A. R., Rucklidge, J. J., Kuijer, R. G. and Frampton, C., 2017. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Australian & New Zealand Journal of Psychiatry, 51(8), pp. 810–21.Google Scholar
Nelson, E. E. and Panksepp, J., 1998. Brain substrates of infant–mother attachment: contributions of opioids, oxytocin, and norepinephrine. Neuroscience & Biobehavioral Reviews, 22(3), pp. 437–52.Google Scholar
Carter, C. S., 2014. Oxytocin pathways and the evolution of human behavior. Annual Review of Psychology, 65, pp. 1739.CrossRefGoogle ScholarPubMed
Donaldson, Z. R. and Young, L. J., 2008. Oxytocin, vasopressin, and the neurogenetics of sociality. Science, 322(5903), pp. 900–4.CrossRefGoogle ScholarPubMed
Feldman, R., Monakhov, M., Pratt, M. and Ebstein, R. P., 2016. Oxytocin pathway genes: evolutionary ancient system impacting on human affiliation, sociality, and psychopathology. Biological Psychiatry, 79(3), pp. 174–84.CrossRefGoogle ScholarPubMed
Crockford, C., Deschner, T., Ziegler, T. E. and Wittig, R. M., 2014. Endogenous peripheral oxytocin measures can give insight into the dynamics of social relationships: a review. Frontiers in Behavioral Neuroscience, 8, p. 68.Google Scholar
Erdman, S. and Poutahidis, T., 2016. Microbes and oxytocin: benefits for host physiology and behavior. International Review of Neurobiology, 131, pp. 91126.CrossRefGoogle ScholarPubMed
Sgritta, M., Dooling, S. W., Buffington, S. A., et al., 2019. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron, 101(2), pp. 246–59.Google Scholar
Berthoud, H. R., Blackshaw, L. A., Brookes, S. J. and Grundy, D., 2004. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterology and Motility, 16(suppl. 1), pp. 2833.Google Scholar
Egerod, K. L., Petersen, N., Timshel, P. N., et al., 2018. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Molecular Metabolism, 12, pp. 6275.Google Scholar
Stilling, R. M., Dinan, T. G. and Cryan, J. F., 2014. Microbial genes, brain and behaviour: epigenetic regulation of the gut-brain axis. Genes, Brain and Behavior, 13(1), pp. 6986.Google Scholar
Hao, Z., Wang, W., Guo, R. and Liu, H., 2019. Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behavior in rats. Psychoneuroendocrinology, 104, pp. 132–42.Google Scholar
El Aidy, S., Dinan, T. G. and Cryan, J. F., 2014. Immune modulation of the brain-gut-microbe axis. Frontiers in Microbiology, 5, p. 146.Google Scholar
Dinan, T. G. and Cryan, J. F., 2012. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37(9), pp. 1369–78.Google Scholar
Dantzer, R., Cohen, S., Russo, S. J. and Dinan, T. G., 2018. Resilience and immunity. Brain, Behavior, and Immunity, 74, pp. 2842.Google Scholar
O’Mahony, L., McCarthy, J., Kelly, P., et al., 2005. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology, 128(3), pp. 541–51.Google Scholar
Torii, A., Torii, S., Fujiwara, S., et al., 2007. Lactobacillus Acidophilus strain L-92 regulates the production of Th1 cytokine as well as Th2 cytokines. Allergology International: Official Journal of the Japanese Society of Allergology, 56(3), pp. 293301.Google Scholar
Smith, C. J., Emge, J. R., Berzins, K., et al., 2014. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 307(8), pp. G793802.Google Scholar
Erny, D., Hrabe de Angelis, A. L., Jaitin, D., et al., 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18(7), pp. 965–77.Google Scholar
D’Mello, C., Le, T. and Swain, M. G., 2009. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. Journal of Neuroscience, 29(7), pp. 2089–102.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×