Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-16T22:14:33.728Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2012

Bas Lemmens
Affiliation:
University of Kent, Canterbury
Roger Nussbaum
Affiliation:
Rutgers University, New Jersey
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M., Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds. Research and Lecture Notes in Mathematics, Rende, Mediterranean Press, 1989.
[2] M.A., Akcoglu and U., Krengel, Nonlinear models of diffusion on a finite space. Probab. Theory Related Fields 76(4), (1987), 411–20.
[3] M., Akian and S., Gaubert, Spectral theorem for convex monotone homogeneous maps, and ergodic control. Nonlinear Anal. 52(2), (2003), 637–79.Google Scholar
[4] M., Akian, S., Gaubert, and B., Lemmens, Stability and convergence in discrete convex monotone dynamical systems. J. Fixed Point Theory Appl. 9(2), (2011), 295–325.Google Scholar
[5] M., Akian, S., Gaubert, B., Lemmens, and R.D., Nussbaum, Iteration of order preserving subhomogeneous maps on a cone. Math. Proc. Cambridge Philos. Soc. 140(1), (2006), 157–76.Google Scholar
[6] M., Akian, S., Gaubert, and R., Nussbaum, A Collatz–Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones, preprint. arXiv:1112.5968, 2012.Google Scholar
[7] M., Akian, S., Gaubert, and R., Nussbaum, Uniqueness of the fixed point of nonexpansive semidifferentiable maps, preprint. arXiv:1201.1536, 2012.Google Scholar
[8] P., Alexandroff and H., Hopf, Topologie.Berlin, Springer Verlag, 1935.Google Scholar
[9] J.C. Álvarez, Paiva, Hilbert's fourth problem in two dimensions. In MASS Selecta: Teaching and Learning Advanced Undergraduate Mathematics. S., Katok, A., Sossinsky, and S., Tabachnikov, eds., Providence, RI, American Mathematical Society, 2003, pp. 165–83.Google Scholar
[10] N., Aronszajn and P., Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces. Pacific J. Math. 6, (1956), 405Ɖ439.Google Scholar
[11] F., Baccelli, G., Cohen, G.J., Olsder, and J.P., Quadrat, Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley Series in Probability and Statistics, Chichester, Wiley, 1992.Google Scholar
[12] W., Ballmann, Lectures on Spaces of Nonpositive Curvature. DMV Seminar, 25, Basel, Birkhäuser Verlag, 1995.Google Scholar
[13] S., Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund. Math. 3, (1922), 133–80.Google Scholar
[14] R., Bapat, D1 AD2 theorems for multidimensional matrices. Linear Algebra Appl. 48, (1982), 437–42.Google Scholar
[15] R.B., Bapat and T.E.S., Raghavan, Nonnegative Matrices and Applications. Encyclopedia of Mathematics and its Applications, 64, Cambridge, Cambridge University Press, 1997.Google Scholar
[16] G.P., Barker and R.E.L., Turner, Some observations on the spectra of conepreserving maps. Linear Algebra Appl. 6, (1973), 149–53.Google Scholar
[17] F.L., Bauer, An elementary proof of the Hopf inequality for positive operators. Numer. Math. 7, (1965), 331–7.Google Scholar
[18] A.F., Beardon, Iteration of contractions and analytic maps. J. Lond. Math. Soc. (2) 41(1), (1990), 141–50.Google Scholar
[19] A.F., Beardon, The dynamics of contractions. Ergodic Theory Dynam. Systems 17(6), (1997), 1257–66.Google Scholar
[20] A.F., Beardon, The Klein, Hilbert and Poincaré metrics of a domain. J. Comput. Appl. Math. 105(1–2), (1999), 155–62.Google Scholar
[21] R., Bellman, Dynamic Programming. Princeton, NJ, Princeton University Press, 1957.Google Scholar
[22] A., Berman and R.J., Plemmons, Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics, New York, Academic Press, 1979.Google Scholar
[23] T., Bewley and E., Kohlberg, The asymptotic theory of stochastic games. Math. Oper. Res. 1(3), (1976), 197–208.Google Scholar
[24] R., Bhatia, Matrix Analysis. Graduate Texts in Mathematics, 169, New York, Springer Verlag, 1996.Google Scholar
[25] G., Birkhoff, Extensions of Jentzsch's theorem. Trans. Amer. Math. Soc. 85(1), (1957), 219–27.Google Scholar
[26] G., Birkhoff, Uniformly semi-primitive multiplicative processes. Trans. Amer. Math. Soc. 104, (1962), 37–51.Google Scholar
[27] A., Blokhuis and H.A., Wilbrink, Alternative proof of Sine's theorem on the size of a regular polygon in ℝk with the ℓ∞-metric. Discrete Comput. Geom. 7(4), (1992), 433–4.Google Scholar
[28] B., Bollobás, Combinatorics. Cambridge, Cambridge University Press, 1989.Google Scholar
[29] F.F., Bonsall, Sublinear functionals and ideals in partially ordered vector spaces. Proc. Lond. Math. Soc. 4, (1954). 402–18.Google Scholar
[30] F.F., Bonsall, Endomorphisms of partially ordered vector spaces. J. Lond. Math. Soc. 30, (1955), 133–44.Google Scholar
[31] F.F., Bonsall, Endomorphisms of partially ordered vector spaces without order unit. J. Lond. Math. Soc. 30, (1955), 145–53.Google Scholar
[32] F.F., Bonsall, Linear operators in complete positive cones. Proc. Lond. Math. Soc. 8(3), (1958), 53–75.Google Scholar
[33] J.M., Borwein and P.B., Borwein, The arithmetic-geometric mean and fast computation of elementary functions. SIAM Rev. 26(3), (1984), 351–66.Google Scholar
[34] J.M., Borwein and A.S., Lewis, Decomposition of multivariate functions. Canad. J. Math. 44(3), (1992), 463–82.Google Scholar
[35] J.M., Borwein, A.S., Lewis, and R.D., Nussbaum, Entropy minimization, DAD problems, and doubly stochastic kernels. J. Funct. Anal. 123(2), (1994), 264–307.Google Scholar
[36] T., Bousch and J., Mairesse, Finite-range topical functions and uniformly topical functions. Dyn. Syst. 21(1), (2006), 73–114.Google Scholar
[37] M.R., Bridson and A., Haefliger, Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften, 319, Berlin, Springer Verlag, 1999.Google Scholar
[38] R.A., Brualdi, The DAD theorem for arbitrary row sums. Proc. Amer. Math. Soc. 45(2), (1974), 189–94.Google Scholar
[39] R.A., Brualdi, S.V., Parter, and H., Schneider, The diagonal equivalence of a nonnegative matrix to a stochastic matrix. J. Math. Anal. Appl. 16, (1966), 31–50.Google Scholar
[40] R.E., Bruck, Jr., Properties of fixed-point sets of nonexpansive mappings in Banach spaces. Trans. Amer. Math. Soc. 179, (1973), 251–62.Google Scholar
[41] A.D., Burbanks, R.D., Nussbaum, and C., Sparrow, Extension of order-preserving maps on a cone. Proc. Roy. Soc. Edinburgh Sect. A 133A, (2003), 35–59.Google Scholar
[42] H., Busemann, The Geometry of Geodesics. Pure and Applied Mathematics, 6, New York, Academic Press, 1955.Google Scholar
[43] P.J., Bushell, Hilbert's projective metric and positive contraction mappings in a Banach space. Arch. Ration. Mech. Anal. 52, (1973), 330–8.Google Scholar
[44] P.J., Bushell, On the projective contraction ratio for positive linear mappings. J. Lond. Math. Soc. 6, (1973), 256–8.Google Scholar
[45] P.J., Bushell, On solutions of the matrix equation T′ AT = A2. Linear Algebra Appl. 8, (1974), 465–9.Google Scholar
[46] P.J., Bushell, The Cayley-Hilbert metric and positive operators. Linear Algebra Appl. 84, (1986), 271–80.Google Scholar
[47] P., Butkovic, Max-linear Systems: Theory and Algorithms. Springer Monographs in Mathematics, Berlin, Springer Verlag, 2010.Google Scholar
[48] A., Całka, On a condition under which isometries have bounded orbits. Colloq. Math. 48, (1984), 219–27.Google Scholar
[49] B.C., Carlson, Algorithms involving arithmetic and geometric means. Amer. Math. Monthly 78, (1971), 496–505.Google Scholar
[50] I., Csiszár, I-divergence geometry of probability distributions and minimization problems. Ann. Probability 3, (1975), 146–58.Google Scholar
[51] J., Cochet-Terrasson, S., Gaubert, and J., Gunawardena, A constructive fixed-point theorem for min-max functions. Dynam. Stability Systems 14(4), (1999), 407–33.Google Scholar
[52] L., Collatz, Einschliessungs satz für die charakteristischen Zahlen von Matrizen. Math. Z. 48, (1942), 221–6.Google Scholar
[53] D.A., Cox, The arithmetic-geometric mean of Gauss. Enseign. Math. (2) 30(3–4), (1984), 275–330.Google Scholar
[54] M.G., Crandall and L., Tartar, Some relations between nonexpansive and order preserving mappings. Proc. Amer. Math. Soc. 78(3), (1980), 385–90.Google Scholar
[55] C.M., Dafermos and M., Slemrod, Asymptotic behavior of nonlinear contraction semigroups. J. Funct. Anal. 13, (1973), 97–106.Google Scholar
[56] A., Denjoy, Sur l'itération des fonctions analytiques. C. R. Acad. Sc. Paris, Seriel 182, (1926), 255–7.Google Scholar
[57] W.F., Donoghue, Jr., Monotone Matrix Functions and Analytic Continuation. Grundlehren der Mathematischen Wissenschaften, 207, New York, Springer Verlag, 1974.Google Scholar
[58] N., Dunford and J.T., Schwartz. Linear Operators. Wiley Classics Library, New York, John Wiley & Sons, 1988.Google Scholar
[59] B.C., Eaves, A.J., Hoffman, U.G., Rothblum, and H., Schneider, Line-sumsymmetric scalings of square nonnegative matrices. Math. Programming Stud. 25, (1985), 124–41.Google Scholar
[60] M., Edelstein, On non-expansive mappings of Banach spaces. Proc. Cambridge Philos. Soc. 60, (1964), 439–47.Google Scholar
[61] S.P., Eveson and R.D., Nussbaum, An elementary proof of the Birkhoff–Hopf theorem. Math. Proc. Cambridge Philos. Soc. 117, (1995), 31–55.Google Scholar
[62] S.P., Eveson and R.D., Nussbaum, Applications of the Birkhoff–Hopf theorem to the spectral theory of positive linear operators. Math. Proc. Cambridge Philos. Soc. 117, (1995), 491–512.Google Scholar
[63] J., Faraut and A., Korányi, Analysis on Symmetric Cones. Oxford, Clarendon Press, 1994.Google Scholar
[64] M., Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 17(1), (1923), 228–49.Google Scholar
[65] S.E., Fienberg, An iterative procedure for estimation in contingency tables. Ann. Math. Statist. 41, (1970), 907–17.Google Scholar
[66] T., Foertsch and A., Karlsson, Hilbert metrics and Minkowski norms. J. Geom. 83(1–2), (2005), 22–31.Google Scholar
[67] J., Franklin and J., Lorenz, On the scaling of multidimensional matrices. Linear Algebra Appl. 114/115, (1989), 717–35.Google Scholar
[68] H., Freudenthal and W., Hurewicz, Dehnungen, Verkürzungen, Isometrien. Fund. Math. 26 (1936), 120–2.Google Scholar
[69] S., Friedland and H., Schneider, The growth of powers of a nonnegative matrix. SIAM J. Algebraic Discrete Methods 1, (1980), 185–200.Google Scholar
[70] G., Frobenius, Über Matrizen aus positiven Elementen. S.-B. Preuss. Akad. Wiss (Berlin), (1908), 471–6.Google Scholar
[71] G., Frobenius, Über Matrizen aus positiven Elementen, II. S.-B. Preuss. Akad. Wiss (Berlin), (1908), 514–18.Google Scholar
[72] G., Frobenius, Über Matrizen aus nicht negativen Elementen. S.-B. Preuss. Akad. Wiss (Berlin), (1912), 456–77.Google Scholar
[73] F.R., Gantmacher, The Theory of Matrices, Vols. 1, 2. New York, Chelsea, 1959.Google Scholar
[74] S., Gaubert and J., Gunawardena, The Perron–Frobenius theory for homogeneous, monotone functions. Trans. Amer. Math. Soc. 356(12), (2004), 4931–50.Google Scholar
[75] S., Gaubert and G., Vigeral, A maximin characterization of the escape rate of nonexpansive mappings in metrically convex spaces, Math. Proc. Cambridge Phil. Soc., in press. arXiv: 1012.4765, 2010. DOI: 10.1017/S0305004111000673, 2011.Google Scholar
[76] K., Goebel and W.A., Kirk, Some problems in metric fixed point theory. J. Fixed Point Theory Appl. 4(1), (2008), 13–25.Google Scholar
[77] K., Goebel and S., Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Monographs and Textbooks in Pure and Applied Mathematics, 83, New York, Marcel Dekker, 1984.Google Scholar
[78] M., Gromov, Hyperbolic manifolds, groups and actions. In Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, NY, 1978), Annals of Mathematics Studies, 97, Princeton, NJ, Princeton University Press, 1981, pp. 183–213.Google Scholar
[79] J., Gunawardena, An introduction to idempotency. In Idempotency (Bristol, 1994), J., Gunawardena, ed., Publications of the Newton Institute, 11, Cambridge, Cambridge University Press, 1998, pp. 1–49.
[80] J., Gunawardena, From max-plus algebra to nonexpansive mappings: A nonlinear theory for discrete event systems. Theoret. Comput. Sci. 293(1), (2003), 141–67.Google Scholar
[81] J., Gunawardena and C., Walsh, Iterates of maps which are non-expansive in Hilbert's projective metric. Kybernetika (Prague) 39(2), (2003), 193–204.Google Scholar
[82] G.H., Hardy, J.E., Littlewood, and G., Pólya, Inequalities. Cambridge Mathematical Library, Cambridge, Cambridge University Press, 1988.Google Scholar
[83] P., de la Harpe, On Hilbert's metric for simplices. In Geometric Group Theory, Vol. 1, Niblo, G.A., et al., eds., Lecture Note Series, 181, London Mathematical Society, 1993, pp. 97–119.Google Scholar
[84] T., Hawkins, Continued fractions and the origins of the Perron–Frobenius theorem. Arch. Hist. Exact Sci. 62(6), (2008), 655–717.Google Scholar
[85] M., Hervé, Quelques proprietés des applications analytiques d'une boule à m dimensions dans elle-même. J. Math. Pures Appl. 42, (1963), 117–47.Google Scholar
[86] D., Hilbert, Über die gerade Linie als kürzeste Verbindung zweier Punkte. Math. Ann. 46, (1895), 91–6Google Scholar
[87] M.W., Hirsch, Stability and convergence in strongly monotone dynamical systems. J. Reine Angew. Math. 383, (1988), 1–53.Google Scholar
[88] M.W., Hirsch, Positive equilibria and convergence in subhomogeneous monotone dynamics. In Comparison Methods and Stability Theory, X., Liu and D., Siegel, eds., Lecture Notes in Pure and Applied Mathematics, 162, New York, Marcel Dekker, 1994, pp. 169–88.Google Scholar
[89] M.W., Hirsch and H., Smith, Monotone dynamical systems. In Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, Amsterdam, Elsevier, 2005, pp. 239–357.Google Scholar
[90] E., Hopf, An inequality for positive integral operators. J. Math. Mech 12, (1963), 683–92.Google Scholar
[91] E., Hopf, Remarks on my paper “An inequality for positive integral operators.”J. Math. Mech. 12, (1963), 889–92.Google Scholar
[92] R.A., Howard, Dynamic Programming and Markov Processes. New York, John Wiley & Sons, 1960.Google Scholar
[93] G., Jameson, Ordered Linear Spaces. Lecture Notes in Mathematics, 141, Berlin, Springer Verlag, 1970.Google Scholar
[94] P., Jordan, J., von Neumann, and E., Wigner, On an algebraic generalization of the quantum mechanical formalism. Ann. of Math. (2) 35(1), (1934), 29–64.Google Scholar
[95] B., Kalantari and L., Khachiyan, On the complexity of nonnegative-matrix scaling. Linear Algebra Appl. 240, (1996), 87–103.Google Scholar
[96] J., Kapeluszny, T., Kuczumow, and S., Reich, The Denjoy–Wolff theorem in the open unit ball of a strictly convex Banach space. Adv. Math. 143(1), (1999), 111–23.Google Scholar
[97] J., Kapeluszny, T., Kuczumow, and S., Reich, The Denjoy–Wolff theorem for condensing holomorphic mappings. J. Funct. Anal. 167(1), (1999), 79–93.Google Scholar
[98] S., Karlin and L., Nirenberg, On a theorem of P. Nowosad. J. Math. Anal. Appl. 17, (1967), 61–7.Google Scholar
[99] A., Karlsson, Nonexpanding maps and Busemann functions. Ergodic Theory Dynam. Systems 21(5), (2001), 1447–57.Google Scholar
[100] A., Karlsson, V., Metz, and G.A., Noskov, Horoballs in simplices and Minkowski spaces. Int. J. Math. Math. Sci. 2006, Article ID 23656, (2006), 20 pages.Google Scholar
[101] A., Karlsson and G.A., Noskov, The Hilbert metric and Gromov hyperbolicity. Enseign. Math. (2) 48(1–2), (2002), 73–89.Google Scholar
[102] T., Kato, Perturbation Theory for Linear Operators. Grundlehren der Mathematischen Wissenschaften, 132, Berlin, Springer Verlag, 1976.Google Scholar
[103] P.E., Kloeden and A.M., Rubinov, A generalization of the Perron–Frobenius theorem. Nonlinear Anal. 41(1–2), (2000), 97–115.Google Scholar
[104] E., Kohlberg, Invariant half-lines of nonexpansive piecewise-linear transformations. Math. Oper. Res. 5(3), (1980), 366–72.Google Scholar
[105] E., Kohlberg, The Perron–Frobenius theorem without additivity. J. Math. Econom. 10, (1982), 299–303.Google Scholar
[106] E., Kohlberg and A., Neyman, Asymptotic behavior of nonexpansive mappings in normed linear spaces. Israel J. Math. 38(4), (1981), 269–75.Google Scholar
[107] E., Kohlberg and J.W., Pratt, The contraction mapping approach to the Perron–Frobenius theory: Why Hilbert's metric?Math. Oper. Res. 7(2), (1982), 198–210.Google Scholar
[108] K., Koufany, Application of Hilbert's projective metric on symmetric cones. Acta Math. Sin. (Engl. Ser.) 22(5), (2006), 1467–72.Google Scholar
[109] M.A., Krasnosel'skii, Positive Solutions of Operator Equations. Groningen, Noordhoff, 1964.Google Scholar
[110] M.A., Krasnosel'skii, J. A., Lifshits, and A.V., Sobolev, Positive Linear Systems: The Method of Positive Operators. Sigma Series in Applied Mathematics, 5, Lemgo, Heldermann Verlag, 1989.Google Scholar
[111] M.A., Krasnosl'skii and A.V., Sobolev, Spectral clearance of a focussing operator. Funct. Anal. Appl. 17, (1983), 58–9.Google Scholar
[112] U., Krause, A nonlinear extension of the Birkhoff-Jentzsch theorem. J. Math. Anal. Appl. 114(2), (1986), 552–68.Google Scholar
[113] U., Krause, Relative stability for ascending and positively homogeneous operators on Banach spaces. J. Math. Anal. Appl. 188(1), (1994), 182–202.Google Scholar
[114] U., Krause and R.D., Nussbaum, A limit set trichotomy for self-mappings of normal cones in Banach spaces. Nonlinear Anal. 20(7), (1993), 855–70.Google Scholar
[115] U., Krause and P., Ranft, A limit set trichotomy for monotone nonlinear dynamical systems. Nonlinear Anal. 19(4), (1992), 375–92.Google Scholar
[116] M.G., Kreĭn and D., Milman, On the extreme points of regularly convex sets. Studia Math. 9, (1940), 133–8.Google Scholar
[117] M.G., Kreĭn and M.A., Rutman, Linear operators leaving invariant a cone in a Banach space. Amer. Math. Soc. Translation 1950 26, (1950), 199–325.Google Scholar
[118] E., Landau, Handbuch der Lehre von der Verteilung der Primzahlen, I, 2nd ed. New York, Chelsea, 1953.Google Scholar
[119] B., Lemmens, Nonexpansive mappings on Hilbert's metric spaces. Topol. Methods Nonlinear Anal. 38(1), (2011), 45–58.Google Scholar
[120] B., Lemmens and R., Nussbaum, Continuity of the cone spectral radius. Proc. Amer. Math. Soc.,in press. arXiv: 1107.4532, 2011.Google Scholar
[121] B., Lemmens, R.D., Nussbaum, and S.M. Verduyn, Lunel, Lower and upper bounds for ω-limit sets of nonexpansive maps. Indag. Math. (N.S.) 12(2), (2001), 191–211.Google Scholar
[122] B., Lemmens and M., Scheutzow, A characterization of the periods of periodic points of 1-norm nonexpansive maps. Selecta Math. (N.S.) 9(4), (2003), 557–78.Google Scholar
[123] B., Lemmens and M., Scheutzow, On the dynamics of sup-norm nonexpansive maps. Ergodic Theory Dynam. Systems 25(3), (2005), 861–71.Google Scholar
[124] B., Lemmens and C., Sparrow, A note on periodic points of order preserving subhomogeneous maps. Proc. Amer. Math. Soc. 134(5), (2006), 1513–17.Google Scholar
[125] B., Lemmens, C., Sparrow, and M., Scheutzow, Transitive actions of finite abelian groups of sup-norm isometries. European J. Combin. 28(4), (2007), 1163–79.Google Scholar
[126] B., Lemmens and O.W., van Gaans, Periods of order-preserving nonexpansive maps on strictly convex normed spaces. J. Nonlinear Convex Anal. 4(3), (2003), 353–63.Google Scholar
[127] B., Lemmens and O.W., van Gaans, On non-expansive maps dynamics on strictly convex Banach spaces. Israel J. Math. 171, (2009), 425–42.Google Scholar
[128] Y., Lim, Hilbert's projective metric on Lorentz cones and Birkhoff formula for Lorentzian compressions. Linear Algebra Appl. 423(2–3), (2007), 246–54.Google Scholar
[129] N., Linial, A., Samorodnitsky, and A., Wigderson, A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents. Combinatorica 20(4), (2000), 545–68.Google Scholar
[130] B., Lins, Asymptotic Behavior and Denjoy–Wolff Theorems for Hilbert Metric Nonexpansive Maps. PhD. thesis, Rutgers University, New Brunswick, NJ, 2007.
[131] B., Lins, A Denjoy–Wolff theorem for Hilbert metric nonexpansive maps on a polyhedral domain. Math. Proc. Cambridge. Philos. Soc. 143(1), (2007), 157–64.Google Scholar
[132] B., Lins, Asymptotic behavior of nonexpansive mappings in finite-dimensional normed spaces. Proc. Amer. Math. Soc. 137(7), (2009), 2387–92.Google Scholar
[133] B., Lins and R., Nussbaum, Iterated linear maps on a cone and Denjoy–Wolff theorems. Linear Algebra Appl. 416(2–3), (2006), 615–26.Google Scholar
[134] B., Lins and R., Nussbaum, Denjoy–Wolff theorems, Hilbert metric nonexpansive maps and reproduction-decimation operators. J. Funct. Anal. 254(9), (2008), 2365–86.Google Scholar
[135] K., Löwner, Über monotone Matrixfunktionen. Math. Z. 38, (1934), 177–216.Google Scholar
[136] D., Lubell, A short proof of Sperner's lemma. J. Combin. Theory 1, (1966), 299.Google Scholar
[137] R., Lyons and R.D., Nussbaum, On transitive and commutative finite groups of isometries. In Fixed Point Theory and Applications, K.-K., Tan, ed., Singapore, World Scientific, 1992, pp. 189–228.Google Scholar
[138] J., Mallet-Paret and R.D., Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators. Discrete Contin. Dyn. Syst. 8 (2002), 519–63.Google Scholar
[139] J., Mallet-Paret and R.D., Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index. J. Fixed Point Theory Appl. 7(1), (2010), 103–43.Google Scholar
[140] P., Martus, Asymptotic Properties of Nonstationary Operator Sequences in the Nonlinear Case. PhD. thesis, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany, 1989.
[141] J.-P., Massias, Majoration explicite de l'ordre maximum d'un élément du groupe symétrique. Ann. Fac. Sci. Toulouse Math. (5) 6(3–4), 269–81, 1984.Google Scholar
[142] P., Mellon, A general Wolff theorem for arbitrary Banach spaces. Math. Proc. R. Ir. Acad. 104A(2), (2004), 127–42.Google Scholar
[143] M.V., Menon, Reduction of a matrix with positive elements to a doubly stochastic matrix. Proc. Amer. Math. Soc. 18, (1967), 244–7.Google Scholar
[144] M.V., Menon, Some spectral properties of an operator associated with a pair of nonnegative matrices. Trans. Amer. Math. Soc. 132, (1968), 369–75.Google Scholar
[145] M.V., Menon and H., Schneider, The spectrum of a nonlinear operator associated with a matrix. Linear Algebra Appl. 2, (1969), 321–34.Google Scholar
[146] L.D., Meshalkin, Generalization of Sperner's theorem on the number of subsets of a finite set (in Russian). Teor. Veroyatn. Primen. 8, (1963), 219–20.Google Scholar
[147] W., Miller, The maximum order of an element of a? nite symmetric group. Amer. Math. Monthly 94(6), (1987), 497–506.Google Scholar
[148] H., Minc, Nonnegative Matrices. Wiley-Interscience Series in Discrete Mathematics and Optimization, New York, John Wiley & Sons, 1988.Google Scholar
[149] M., Misiurewicz, Rigid sets in finite-dimensional l1-spaces. Technical Report 45, Mathematica Göttingensis Schriftenreihe des Sonderforschungsbereichs Geometrie und Analysis, Göttingen, Mathematisches Institut, George-August-Universität Göttingen, 1987.Google Scholar
[150] M., Morishima. Equilibrium, Stability and Growth. Oxford, Clarendon Press, 1964Google Scholar
[151] B., de Sz.Nagy, Sur les lattis linéaires de dimension finie. Comment. Math. Helv. 17, (1945), 209–13.Google Scholar
[152] A., Neyman, Stochastic games and nonexpansive maps. In Stochastic Games and Applications (Stony Brook, NY, 1999), A., Neyman and S., Sorin, eds., NATO Science Series C: Mathematical and Physical Sciences, 570, Dordrecht, Kluwer Academic Publishers, 2003, pp. 397–415.Google Scholar
[153] P., Nowosad, On the integral equation kf = 1/f arising in a problem in communication. J. Math. Anal. Appl. 14, (1966), 484–92.Google Scholar
[154] R.D., Nussbaum, A generalization of the Ascoli theorem and an application to functional differential equations. J. Math. Anal. Appl. 35, (1971), 600–10.Google Scholar
[155] R.D., Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem. In Fixed Point Theory, E., Fadell and G., Fournier, eds., Lecture Notes in Mathematics, 886, Berlin, Springer Verlag, 1981, pp. 309–331.Google Scholar
[156] R.D., Nussbaum, Convexity and log convexity for the spectral radius. Linear Algebra Appl. 73, (1986), 59–122.Google Scholar
[157] R.D., Nussbaum, Iterated nonlinear maps and Hilbert's projective metric: A summary. In Dynamics of Infinite-Dimensional Systems (Lisbon, 1986), NATO Advanced Science Institutes Series F: Computer and Systems Science, 37, Berlin, Springer Verlag, 1987, pp. 231–248.Google Scholar
[158] R.D., Nussbaum, Hilbert's projective metric and iterated nonlinear maps. Mem. Amer. Math. Soc. 391, (1988), 1–137.Google Scholar
[159] R.D., Nussbaum, Iterated nonlinear maps and Hilbert's projective metric, II, Mem. Amer. Math. Soc. 401, (1989), 1–118.Google Scholar
[160] R. D., Nussbaum, Omega limit sets of nonexpansive maps: Finiteness and cardinality estimates. Differential Integral Equations 3(3), (1990), 523–40.Google Scholar
[161] R.D., Nussbaum, Estimates of the periods of periodic points of nonexpansive operators. Israel J. Math. 76(3), (1991), 345–80.Google Scholar
[162] R.D., Nussbaum, Convergence of iterates of a nonlinear operator arising in statistical mechanics. Nonlinearity 4(4), (1991), 1223–40.Google Scholar
[163] R.D., Nussbaum, Entropy minimization, Hilbert's projective metric, and scaling integral kernels. J. Funct. Anal. 115(1), (1993), 45–99.Google Scholar
[164] R.D., Nussbaum, Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations. Differential Integral Equations 7(5–6), (1994), 1649–1707.Google Scholar
[165] R.D., Nussbaum, Lattice isomorphisms and iterates of nonexpansive maps. Nonlinear Anal. 22(8), (1994), 945–70.Google Scholar
[166] R.D., Nussbaum, Eigenvectors of order-preserving linear operators. J. Lond. Math. Soc. 58, (1998), 480–96.Google Scholar
[167] R.D., Nussbaum, Periodic points of positive linear operators and Perron–Frobenius operators. Integral Equations Operator Theory 39, (2001), 41–97.Google Scholar
[168] R.D., Nussbaum, Fixed Point Theorems and Denjoy–Wolff Theorems for Hilbert's Projective Metric in Infinite Dimensions. Topol. Methods Nonlinear Anal. 29(2), (2007), 199–250.Google Scholar
[169] R.D., Nussbaum and M., Scheutzow, Admissible arrays and a generalization of Perron-Frobenius theory. J. Lond. Math. Soc. 58(2), (1998), 526–44.Google Scholar
[170] R.D., Nussbaum, M., Scheutzow, and S.M. Verduyn, Lunel, Periodic points of nonexpansive maps and nonlinear generalizations of the Perron–Frobenius theory. Selecta Math. (N.S.) 4(1), (1998), 1–41.Google Scholar
[171] R.D., Nussbaum and S.M. Verduyn, Lunel, Generalizations of the Perron–Frobenius theorem for nonlinear maps. Mem. Amer. Math. Soc. 138(659), (1999), 1–98.Google Scholar
[172] R.D., Nussbaum and S.M. Verduyn, Lunel, Asymptotic estimates for the periods of periodic points of non-expansive maps. Ergodic Theory Dynam. Systems 23, (2003), 1199–1226.Google Scholar
[173] R.D., Nussbaum and B.J., Walsh, Approximations by polynomials with nonnegative coefficients and the spectral theory of positive operators. Trans. Amer. Math. Soc. 350, (1998), 2367–91.Google Scholar
[174] Y., Oshime, An extension of Morishima's nonlinear Perron–Frobenius theorem. J. Math. Kyoto Univ. 23(4), (1983), 803–30.Google Scholar
[175] A.M., Ostrowski, On positive matrices. Math. Ann. 150, (1963), 276–84.Google Scholar
[176] A.M., Ostrowski, Positive matrices and functional analysis. In Recent Advances in Matrix Theory, Madison, WI, University of Wisconsin Press, 1964, pp. 81–101.Google Scholar
[177] A., Papadopoulos, Metric Spaces, Convexity and Nonpositive Curvature. IRMA Lectures in Mathematics and Theoretical Physics, 6, Zürich, European Mathematical Society Publishing House, 2005.Google Scholar
[178] B.N., Parlett and T.L., Landis, Methods for scaling to doubly stochastic form. Linear Algebra Appl. 48, (1982), 53–79.Google Scholar
[179] O., Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64, (1907), 1–76.Google Scholar
[180] O., Perron, Zur Theorie der Über Matrizen. Math. Ann. 64, (1907), 248–63.Google Scholar
[181] B.B., Phadke, A triangular world with hexagonal circles. Geom. Dedicata 3, (1975), 511–20.Google Scholar
[182] P., Poláčik and I., Tereščak, Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems. Arch. Ration. Mech. Anal. 116(4), (1992), 339–60.Google Scholar
[183] A.J.B., Potter, Applications of Hilbert's projective metric to certain classes of non- homogeneous operators. Quart. J. Math. Oxford Ser. (2) 28, (1977), 93–9.Google Scholar
[184] H., Rademacher, Über partielle und totale Differenzierbarkeit von Funktionenmehrerer Variabeln und über die Transformation der Doppelintegrale. Math. Ann. 79, 340–59.
[185] C.E., Rickart, General Theory of Banach Algebras. University Series in Higher Mathematics, Princeton, NJ, van Nostrand, 1960Google Scholar
[186] R.T., Rockafellar, Convex Analysis. Princeton Landmarks in Mathematics, Princeton, NJ, Princeton University Press, 1997.Google Scholar
[187] R.T., Rockafellar and R. J.-B., Wets, Variational Analysis. Grundlehren der Mathematischen Wissenschaften, 317, Berlin, Springer Verlag, 1998.Google Scholar
[188] U.G., Rothblum, Generalized scalings satisfying linear equations. Linear Algebra Appl. 114/115, (1989), 765–83.Google Scholar
[189] U.G., Rothblum, H., Schneider, and M.H., Schneider, Scaling matrices to prescribed row and column maxima. SIAM J. Matrix Anal. Appl. 15(1), (1994), 1–14.Google Scholar
[190] W., Rudin, Functional Analysis. International Series in Pure and Applied Mathematics, New York, McGraw-Hill, 1991.Google Scholar
[191] W., Rudin, Real and Complex Analysis. Series in Higher Mathematics, New York, McGraw-Hill, 1966.Google Scholar
[192] H., Samelson, On the Perron–Frobenius theorem. Michigan Math. J. 4, (1957), 57–9.Google Scholar
[193] H.H., Schaefer, Positive Transformationen in lokalkonvexen halbgeordneten Vektorräumen. Math. Ann. 129, (1955), 323–9.Google Scholar
[194] H.H., Schaefer, On nonlinear positive operators. Pacific J. Math. 9(3), (1959), 847–60.Google Scholar
[195] H.H., Schaefer, Some spectral properties of positive linear operators. Pacific J. Math. 10, (1960), 1009–19.Google Scholar
[196] H.H., Schaefer, Banach Lattices and Positive Operators. Grundlehren der Mathematischen Wissenschaften, 215, New York, Springer Verlag, 1974.Google Scholar
[197] M., Scheutzow, Periods of nonexpansive operators on finite l1-spaces. European J. Combin. 9, (1988), 73–8.Google Scholar
[198] M., Scheutzow, Corrections to periods of nonexpansive operators on finite l1- spaces. European J. Combin. 12(2), (1991), 183.Google Scholar
[199] M.H., Schneider, Matrix scaling, entropy minimization, and conjugate duality, I: Existence conditions. Linear Algebra Appl. 114/115, (1989), 785–813.Google Scholar
[200] M.H., Schneider, Matrix scaling, entropy minimization, and conjugate duality, II: The dual problem. Math. Programming (Ser. B) 48(1), (1990), 103–24.Google Scholar
[201] A., Schrijver, Theory of Linear and Integer Programming. Chichester, John Wiley & Sons, 1986.Google Scholar
[202] E., Seneta, Nonnegative Matrices and Markov Chains, 2nd edn. Springer Series in Statistics, New York, Springer Verlag, 1981.Google Scholar
[203] L.S., Shapley, Stochastic games. Proc. Natl. Acad. Sci. USA 39, (1953), 1095–1100.Google Scholar
[204] R., Sine, A nonlinear Perron–Frobenius theorem. Proc. Amer. Math. Soc. 109(2), (1990), 331–6.Google Scholar
[205] R., Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Statist. 35, (1964), 876–9.Google Scholar
[206] R., Sinkhorn and P., Knopp, Concerning nonnegative matrices and doubly stochastic matrices. Pacific J. Math. 21. (1967), 343–8.Google Scholar
[207] H.L., Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, 41, Providence, RI, American Mathematical Society, 1995.Google Scholar
[208] S., Sorin, A First Course on Zero-Sum Repeated Games. Mathématiques et Applications, 37, Berlin, Springer Verlag, 2002.Google Scholar
[209] E., Sperner, Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27, (1928), 544–8.Google Scholar
[210] S., Straszewicz, Über exponierte Punkte abgeschlossener Punktmengen. Fund. Math. 24, (1935), 139–43.Google Scholar
[211] P., Takác, Asymptotic behavior of discrete-time semigroups of sublinear, strongly increasing mappings with applications to biology. Nonlinear Anal. 14(1), (1990), 35–42.Google Scholar
[212] P., Takác, Convergence in the part metric for discrete dynamical systems in ordered topological cones. Nonlinear Anal. 26(11), (1996), 1753–77.Google Scholar
[213] B.-S., Tam, On the distinguished eigenvalues of a cone-preserving map. Linear Algebra Appl. 131, (1990), 17–37.Google Scholar
[214] B.-S., Tam, A cone-theoretic approach to the spectral theory of positive linear operators: The finite-dimensional case. Taiwanese J. Math. 5(2), (2001), 207–77.Google Scholar
[215] A.E., Taylor, Introduction to Functional Analysis. London, John Wiley & Sons, 1958.Google Scholar
[216] A.C., Thompson, Generalizations of the Perron–Frobenius Theorem to Operators Mapping a Cone into Itself. PhD. thesis, Newcastle upon Tyne, UK, 1963.
[217] A.C., Thompson, On certain contraction mappings in a partially ordered vector space. Proc. Amer. Math. Soc. 14, (1963), 438–43.Google Scholar
[218] A.C., Thompson, On the eigenvalues of some not-necessarily-linear transformations. Proc. Lond. Math. Soc. 15(3), (1965), 577–98.Google Scholar
[219] J.S., Vandergraft, Spectral properties of matrices which have invariant cones. SIAM J. Appl. Math. 16, (1968), 1208–22.Google Scholar
[220] C., Walsh, The horofunction boundary of finite-dimensional normed spaces. Math. Proc. Cambridge Philos. Soc. 142(3), (2007), 497–507.Google Scholar
[221] C., Walsh, The horofunction boundary of the Hilbert geometry. Adv. Geom. 8(4), (2008), 503–29.Google Scholar
[222] D., Weller, Hilbert's Metric, Part Metric and Self-Mappings of a Cone. PhD. thesis, Universität Bremen, Germany, 1987.
[223] J.H., Wells and L.R., Williams, Embeddings and Extensions in Analysis. Ergebnisse Mathematik und ihrer Grenzgebiete, 84, Berlin, Springer Verlag, 1975.Google Scholar
[224] P., Whittle, Optimization Over Time. Vol. I. Dynamic Programming and Stochastic Control. Wiley Series in Probability and Statistics, Chichester, John Wiley & Sons, 1982.Google Scholar
[225] H., Wielandt, Unzerlegbare, nicht negative Matrizen. Math. Z. 52, (1950), 642–8.Google Scholar
[226] J., Wolff, Sur l'itération des fonctions bornées. C. R. Acad. Sc. Paris, Serie 1, 182, (1926), 200–1.Google Scholar
[227] J., Wolff, Sur une généralisation d'un théoreme de Schwartz. C. R. Acad. Sc. Paris, Serie 1, 183, (1926), 500–2.Google Scholar
[228] K., Wysocki, Behavior of directions of solutions of differential equations. Differential Integral Equations 5(2), (1992), 281–305.Google Scholar
[229] K., Yamamoto, Logarithmic order of free distributive lattice. J. Math. Soc. Japan 6, (1954), 343–53.Google Scholar
[230] P.P., Zabreiko, M.A., Krasnosel'skii, and Yu.V., Pokornyi, On a class of positive linear operators. Funct. Anal. Appl. 5, (1972), 57–70.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Bas Lemmens, University of Kent, Canterbury, Roger Nussbaum, Rutgers University, New Jersey
  • Book: Nonlinear Perron–Frobenius Theory
  • Online publication: 05 May 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139026079.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Bas Lemmens, University of Kent, Canterbury, Roger Nussbaum, Rutgers University, New Jersey
  • Book: Nonlinear Perron–Frobenius Theory
  • Online publication: 05 May 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139026079.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Bas Lemmens, University of Kent, Canterbury, Roger Nussbaum, Rutgers University, New Jersey
  • Book: Nonlinear Perron–Frobenius Theory
  • Online publication: 05 May 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139026079.014
Available formats
×