Skip to main content Accessibility help
×
  • Cited by 111
Publisher:
Cambridge University Press
Online publication date:
March 2015
Print publication year:
2015
Online ISBN:
9781107477254

Book description

Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

Reviews

'Nonlinear Optical Systems achieves an unmatched coverage in a field that has grown into many sub-disciplines in a very clear and coherent manner. This is a beautiful and self-contained book that starts with the fundamentals and goes on to cover the dynamical phenomena and optical pattern formation in quantum optical systems. Written by the leading lights of the field, [it] is a ‘must have’ for any serious student and researcher in the field of quantum optics, nonlinear optics and laser physics.'

M. Suhail Zubairy - Texas A&M University

'This is an excellent book that covers a large variety of nonlinear optical phenomena with a unified view and notation. Of particular significance and novelty is the exhaustive treatment of spatial and temporal instabilities inside laser and laser-like systems.'

Vittorio Degiorgio - University of Pavia

'This book is truly a wonderful reference for beginning graduate students, teachers and active researchers in the field of laser science, quantum electronics and nonlinear dynamics of optical systems. Written by internationally recognized and award-winning scientists, [it] is a fabulous overview of these broad areas of research from the 1960s (and earlier) to modern times. The authors have presented a range of material with enough detail for the reader to gain deep insight into the physics being discussed, yet relegated enough of the technical details to the extensive reference list so as not to distract the reader. The book is divided into three sections with a logical progression: steady state and propagation, dynamical phenomena and transverse effects. It is an excellent review of these fields, a great pedagogical tool and a 'must-have-on-your-desk' reference.'

Frank A. Narducci - Naval Air Systems Command

'The reader will gain an in-depth familiarity with the field. This book can be used as a rich research resource and as a complementary text. It is suitable for graduate students as well as researchers in the field.'

A. Zakery Source: Optics and Photonics News

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
[1] A., Einstein, Zur Quantentheorie der Strahlung, Phys. Z. 18, 121 (1917)
[2] M., Planck, Über eine Verbesserung der Wienschen Spektralgleichung, Verhandl. Dtsch. Phys. Ges. 2, 202 (1900); Zur Theorie des Gesetzes der Energieverteilung im Normalspekrum, Verhandl. Dtsch. Phys. Ges.2, 237 (1900)
[3] C., Cohen-Tannoudji, B., Diu, and F., Laloë, Quantum Mechanics, Vols. 1 and 2 (Paris: Wiley and Hermann, 1977)
[4] C., Cohen-Tannoudji, J., Dupont-Roc, and G., Grynberg, Photons and Atoms, Introduction to Quantum Electrodynamics, (New York: Wiley, 1989)
[5] C., Cohen-Tannoudji, J., Dupont-Roc, and G., Grynberg, Atom–Photon Interactions: Basic Processes and Applications (New York: Wiley, 1992)
[6] O., Svelto, Principles of Lasers (New York: Plenum, 1989)
[7] H., Haken, Laser Theory in S., Flugge and L., Genzel (eds.), Handbuch der Physik (Encyclopedia of Physics) vol. XXV/2C (Berlin: Springer, 1970)
[8] M., Sargent III, M. O., Scully, and W., Lamb, Jr., Laser Physics (Reading, MA: Addison-Wesley, 1974)
[9] A., Yariv, Quantum Electronics (New York: Wiley, 1975)
[10] A., Yariv, Optical Electronics (New York: Wiley, 1977)
[11] H., Haken, Light, Vols. 1 and 2 (Amsterdam: North-Holland, 1981)
[12] M., Bertolotti, Masers and Lasers (Bristol: Adam Hilger, 1983)
[13] P. L., KnightQuantum Electronics and Electro-optics (New York: Wiley, 1983)
[14] A. E., Siegman, Lasers (Mill Valley, CA: University Science Books, 1986)
[15] A. N., Oraevski, Research on Laser Theory (Commack, NY: Nova, 1988)
[16] P. M., Milonni and J. H., Eberly, Lasers (New York: Wiley, 1986)
[17] K., Shimoda, Introduction to Laser Physics (Berlin: Springer, 1981)
[18] G., Grynberg, A., Aspect, and C., Fabre, Introduction to Quantum Optics (Cambridge: Cambridge University Press, 2010)
[19] D., Meschede, Light and Lasers (Weinheim: Wiley-VCH, 2004)
[20] B. E. A., Saleh and N. C., Teich, Fundamentals of Photonics, 2nd edn. (New York: Wiley, 2007)
[21] V., Degiorgio and I., Cristiani, Photonics. A Short Course (Springer, Berlin, 2014)
[22] M. O., Scully and M. S., Zubairy, Quantum Optics (Cambridge: Cambridge University Press, 2001)
[23] L., Allen and J. H., Eberly, Optical Resonance & Two-Level Atoms (New York: Wiley, 1975), reprinted in 1987 (New York: Dover)
[24] L., Mandel and E., Wolf, Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press, 1995)
[25] W. P., Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2005)
[26] J., von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton, MA: Princeton University Press, 1955)
[27] I. I., Rabi, Space quantization in a gyrating magnetic field, Phys. Rev. 51, 652 (1937)
[28] F., Bloch, Nuclear induction, Phys. Rev. 60, 460 (1946)
[29] P., Mandel, Nonlinear Optics, An Analytical Approach (Weinheim: VCH Verlagsgesellschaft, 2010)
[30] M., Lax, W. H., Louisell, and W. B., McKnight, From Maxwell to paraxial wave optics, Phys. Rev. A 11, 1365 (1975)
[31] O., Hess, Spatio-Temporal Dynamics of Semiconductor Lasers (Berlin: Wissenschaft und Technik Verlag, 1993)
[32] F. T., Arecchi and R., Bonifacio, Theory of optical maser amplifiers, IEEE J. Quantum Electron. 1, 169 (1965)
[33] A., Icsevgi and W. E., Lamb, Jr., Propagation of light pulses in a laser amplifier, Phys. Rev. 195, 517 (1969)
[34] S. L., McCall and E. L., Hahn, Self-induced transparency, Phys. Rev. 183, 457 (1969)
[35] R. H., Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93, 99 (1954)
[36] N., ERehler and J. H., Eberly, Superradiance, Phys. Rev. A 3, 1735 (1971)
[37] R., Bonifacio, P., Schwendimann, and F., Haake, Quantum statistical theory of super-radiance. Parts I and II, Phys. Rev. A 4, 302, 854 (1971)
[38] F. T., Arecchi and E., Courtens, Cooperative phenomena in resonant electromagnetic propagation, Phys. Rev. A 2, 1730 (1970)
[39] H. M., Gibbs, Q. H. F., Vrehen, and H. M. J., Hikspoors, Single-pulse superfluorescence in cesium, Phys. Rev. Lett. 39, 547 (1977)
[40] R., Bonifacio and L. A., Lugiato, Cooperative radiation processes in two-level systems: Superfluorescence, Phys. Rev. A 11, 1507 (1975)
[41] N., Skribanowitz, I. P., Herman, J. C., MacGillivray, and M. S., Feld, Observation of Dicke superradiance in optically pumped HF gas, Phys. Rev. Lett. 30, 309 (1973)
[42] R., Bonifacio and G., Preparata, Coherent spontaneous emission, Phys. Rev. A 2, 336 (1970)
[43] M., Tavis and F. W., Cummings, Exact solution for an N-molecule-radiation-field Hamiltonian, Phys. Rev. 170, 379 (1968)
[44] E. T., Jaynes and F. W., Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51, 89 (1963)
[45] P., Goy, J. M., Raimond, M., Gross, and S., Haroche, Observation of cavity-enhanced single-atom spontaneous emission, Phys. Rev. Lett. 50, 1903 (1983)
[46] D., Meschede, H., Walther, and G., Müller, One-atom maser, Phys. Rev. Lett. 54, 551 (1985)
[47] B. R., Mollow, Power spectrum of light scattered by two-level systems, Phys. Rev. 188, 1969 (1969)
[48] E. V., Goldstein and P., Meystre, Dipole–dipole interaction in optical cavities, Phys. Rev. A 56, 5135 (1997)
[49] P., Meystre and M., Sargent III, Elements of Quantum Optics (Berlin: Springer, 1990)
[50] J. D., Jackson, Classical Electrodynamics, 3rd edn. (New York: Wiley, 1998)
[51] P. A., Franken, A. E., Hill, C. W., Peters, and G., Weinreich, Generation of optical harmonics, Phys. Rev. Lett. 7, 118 (1961)
[52] J. A., Armstrong, N., Bloembergen, J., Ducuing, and P. S., Persham, Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918 (1962)
[53] N., Bloembergen and P. S., Pershan, Light waves at the boundary of nonlinear media, Phys. Rev. 128, 606 (1962)
[54] N., Bloembergen and Y. R., Shen, Quantum-theoretical comparison of nonlinear susceptibilities in parametric media, lasers, and Raman lasers, Phys. Rev. A 133, 37 (1964)
[55] A. C., Newell and J. V., Moloney, Nonlinear Optics (Reading, MA: Addison-Wesley, 1992)
[56] N., Bloembergen, Nonlinear Optics (Singapore: World Scientific, 1996)
[57] R., Menzel, Photonics – Linear and Nonlinear Interactions of Laser Light and Matter (Berlin: Springer, 2001)
[58] Y. R., Shen, The Principles of Nonlinear Optics (New York: Wiley, 2002)
[59] R. W., Boyd, Nonlinear Optics (Amsterdam: Elsevier, 2008)
[60] G. I., Stegeman and R. A., Stegeman, Nonlinear Optics: Phenomena, Materials and Devices (New York: Wiley, 2012)
[61] V. G., Dmitriev, G. G., Gurzadyan, and N., Nikogosyan, Handbook of Nonlinear Optical Crystals (Berlin: Springer, 1991)
[62] R., Loudon, The Quantum Theory of Light (Oxford: Oxford University Press, 2000)
[63] G., Milburn and D. F., Walls, Quantum Optics, 2nd edn. (Berlin: Springer, 2008)
[64] C. C., Gerry and P. L., Knight, Introductory Quantum Optics (Cambridge: Cambridge University Press, 2005)
[65] G., Grynberg, A., Aspect, and C., Fabre, Introduction to Lasers and Quantum Optics (Cambridge: Cambridge University Press, 2010)
[66] G. S., Agarwal, Quantum Optics (Cambridge: Cambridge University Press, 2012)
[67] A., Gatti, E., Brambilla and L. A., Lugiato, Quantum imaging, in E., Wolf (ed.) Progress in Optics vol. LI (Amsterdam: Elsevier, 2008)
[68] V. E., Zacharov and A. B., Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34, 62 (1972)
[69] L. F., Mollenauer, R. H., Stolen, and J. P., Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett. 45, 1095 (1980)
[70] A. A., Barthelemy, S., Maneuf, and C., Froelich, Soliton propagation and self confinement of laser beams by Kerr optical nonlinearity, Opt. Commun. 55, 201 (1985)
[71] J. S., Aitchison, Y., Silberberg, A. M., Weiner et al., Spatial optical solitons in planar glass waveguides, J. Opt. Soc. Am. B 8, 1290 (1991)
[72] J. E., Bjorkholm and A., Ashkin, CW self-focusing and self-trapping of light in sodium vapor, Phys. Rev. Lett. 32, 129 (1974)
[73] B., Crosignani, M., Segev, D., Engin et al. Self-trapping of optical beams in photorefractive media, J. Opt. Soc. Am. B 10, 446 (1993)
[74] G. L., Lamb, Elements of Soliton Theory (New York: Wiley, 1980)
[75] G. P., Agrawal and R. W., Boyd, Contemporary Nonlinear Optics (New York: Academic Press, 1992)
[76] J. R., Taylor, Optical Solitons, Theory and Experiment (Cambridge: Cambridge University Press, 1992)
[77] N. N., Akhmediev and A., Ankiewicz, Solitons: Nonlinear Pulses and Beams (London: Chapman and Hall, 1997)
[78] A. V., Buryak, P., Di Trapani, D. V., Skryabin, and S., Trillo, Optical Solitons due to quadratic nonlinearities: from basic physics to futuristic applications, Phys. Rep. 370, 63 (2002)
[79] Y. S., Kivshar and G. P., Agrawal, Optical Solitons: From Fiber to Photonic Crystals (Amsterdam: Academic–Elsevier Science, 2003)
[80] F., Abelès, Sur la propagation des ondes dans les milieux stratifiés, Nuovo Cim. 9, Issue 3 Supplement, 214 (1952)
[81] K., Ishiguro and T., Kato, The reflection and transmission of a multi-layer film, J. Phys. Soc. Japan 8, 77 (1953)
[82] V., Degiorgio, Phase shift between the transmitted and the reflected optical fields of a semireflecting lossless mirror is π/2, Am. J. Phys. 48, 81 (1980)
[83] A., Zeilinger, General properties of lossless beam splitters in interferometry, Am. J. Phys. 49, 882 (1981)
[84] Yu. V., Troitskii, The energy conservation law for optical two-port devices, Opt. Spectrosc. 92, 555 (2002)
[85] R., Bonifacio and L. A., Lugiato, Bistable absorption in a ring cavity, Lett. Nuovo Cim. 21, 505 (1978)
[86] L. A., Lugiato, Theory of optical bistability, in E., Wolf (ed.) Progress in Optics vol. XXI (Amsterdam: North-Holland, 1984), p. 69
[87] L. A., Lugiato, L. M., Narducci, E. V., Eschenazi, D. K., Bandy, and N. B., Abraham, Multimode instabilities in a homogeneously broadened ring laser, Phys. Rev. A 32, 1563 (1985)
[88] L. M., Narducci, J. R., Tredicce, L. A., Lugiato, N. B., Abraham, and D. K., Bandy, Mode–mode competition and unstable behavior in a homogeneously broadened ring laser, Phys. Rev. A 33, 1842 (1986)
[89] V., Degiorgio and M. O., Scully, Analogy between the laser threshold region and a second-order phase transition, Phys. Rev. A 2, 1170 (1970)
[90] R., Graham and H., Haken, Laserlight – First example of a second order phase transition far from thermal equilibrium, Z. Phys. 237, 31 (1970)
[91] H., Haken, Synergetics – An Introduction (Heidelberg: Springer, 1983)
[92] H., Haken, Advanced Synergetics (Heidelberg: Springer, 1983)
[93] G.-L., Oppo and A., Politi, Center-manifold Reduction for Laser Equation with Detuning, Phys. Rev. A 40, 1422 (1989)
[94] T. H., Maiman, Stimulated optical radiation in ruby, Nature 187, 493 (1960)
[95] A., Szöke, V., Daneu, J., Goldhar, and N. A., Kurnit, Bistable optical element and its applications, Appl. Phys. Lett. 15, 376 (1969)
[96] R., Bonifacio and L. A., Lugiato, Cooperative effects and bistability for resonance fluorescence, Opt. Commun. 19, 172 (1976)
[97] R., Bonifacio and L. A., Lugiato, Optical bistability and cooperative effects in resonance fluorescence, Phys. Rev. A 18, 1129 (1978)
[98] R., Bonifacio, M., Gronchi, and L. A., Lugiato, Photon statistics of a bistable absorber, Phys. Rev. A 18, 2266 (1978)
[99] L. A., Lugiato, Optical bistability, Contemp. Phys. 24, 333 (1983)
[100] F. S., Felber and J. H., Marburger, Theory of nonresonant multistable optical devices, Appl. Phys. Lett. 28, 731 (1976)
[101] H. M., Gibbs, S. L., McCall, and T. N. C., Venkatesan, Differential gain and bistability using a sodium-filled Fabry–Perot interferometer, Phys. Rev. Lett. 36, 1135 (1976)
[102] R., Roy and M. S., Zubairy, Beyond the mean-field theory of dispersive optical bistability, Phys. Rev. A 21, 274 (1980)
[103] R., Bonifacio, M., Gronchi, and L. A., Lugiato, Dispersive bistability in homogeneously broadened systems, Nuovo Cim. B 53, 311 (1979)
[104] R., Bonifacio and L. A., Lugiato, Mean field model for absorptive and dispersive bistability with inhomogeneous broadening, Lett. Nuovo Cim. 21, 517 (1978)
[105] S. S., Hassan, P. D., Drummond, and D. F., Walls, Dispersive optical bistability in a ring cavity, Opt. Commun. 27, 480 (1978)
[106] G. P., Agrawal and H. J., Carmichael, Optical bistability through nonlinear dispersion and absorption, Phys. Rev. A 19, 2074 (1979)
[107] W. J., Sandle and A., Gallagher, Optical bistability by an atomic vapor in a focusing Fabry–Perot cavity, Phys. Rev. A 24, 2017 (1981)
[108] E., Arimondo, A., Gozzini, L., Lovich, and E., Pistelli, Microwave dispersive bistability in a confocal Fabry–Perot microwave cavity, in C. M., Bowden, M., Ciftan, and H. R., Robl (eds.) Optical Bistability, Proc. Int. Conf. on Optical Bistability, Asheville (New York: Plenum, 1980)
[109] H. M., Gibbs, Optical Bistability: Controlling Light by Light (New York: Academic Press, 1985)
[110] A., Joshi and Min, Xiao, Controlling Steady–state and Dynamical Properties of Atomic Optical Bistability (Singapore: World Scienific, 2012)
[111] S. L., McCall, Instabilities in continuous-wave light propagation in absorbing media, Phys. Rev. A 9, 1515 (1974)
[112] P., Meystre, On the use of the mean-field theory in optical bistability, Opt. Commun. 26, 277 (1978)
[113] E., Abraham, R. K., Bullough, and S. S., Hassan, Space and time-dependent effects in optical bistability, Opt. Commun. 29, 109 (1979)
[114] E., Abraham, S. S., Hassan, and R. K., Bullough, Dispersive optical bistability in a Fabry–Perot cavity, Opt. Commun. 33, 93 (1980)
[115] E., Abraham and S. S., Hassan, Effects of inhomogeneous broadening on optical bistability in a Fabry–Perot cavity, Opt. Commun. 35, 291 (1980)
[116] R., Roy and M. S., Zubairy, Analytic solutions of the optical bistability equations for a standing wave cavity, Opt. Commun. 32, 163 (1980)
[117] H. J., Carmichael, The mean-field approximation and validity of a truncated Bloch hierarchy in absorptive bistability, Opt. Acta 27, 147 (1980)
[118] J. A., Hermann, Spatial effects in optical bistability, Opt. Acta 27, 159 (1980)
[119] H. J., Carmichael and J. A., Hermann, Analytic description of optical bistability including spatial effects, Z. Phys. B 38, 365 (1980)
[120] K. G., Weyer, H., Wiedenmann, M., Rateike et al., Observation of absorptive optical bistability in a Fabry–Perot cavity containing multiple atomic beams, Opt. Commun. 37, 426 (1981)
[121] V., Benza and L. A., Lugiato, Dressed mode description of optical bistability, Z. Phys. B 35, 383 (1979)
[122] L. A., Lugiato, Many-mode quantum statistical theory of optical bistability, Z. Phys. B 41, 85 (1981)
[123] L. M., Narducci, J. R., Tredicce, L. A., Lugiato, N. B., Abraham, and D. K., Bandy, Multimode laser with an injected signal: Steady-state and linear stability analysis, Phys. Rev. A 32, 1588 (1985)
[124] H., Risken and R., Nummedal, Self-pulsing in lasers, J. Appl. Phys. 39, 4662 (1968)
[125] M. B., Spencer and W. E., Lamb, Jr., Laser with a transmitting window, Phys. Rev. A 5, 884 (1972)
[126] L. A., Lugiato, Instabilities in the laser with injected signal and laser-phase transition analogy, Lett. Nuovo Cim. 23, 609 (1978)
[127] R., Salomaa and S., Stenholm, Gas laser with saturable absorber. I. Single-mode characteristics, Phys. Rev. A 8, 2695 (1973); Gas laser with saturable Absorber. II. Single-mode stability, Phys. Rev. A 8, 2711 (1973)
[128] L. A., Lugiato, P., Mandel, S. T., Dembinski, and A., Kossakowsi, Semiclassical and quantum theories of bistability in lasers containing saturable absorbers, Phys. Rev. A 18, 238 (1978)
[129] S. T., Dembinski, A., Kossakowski, P., Pepłowski, L. A., Lugiato, and P., Mandel, Laser instability below threshold, Phys. Lett. A 68, 20 (1978)
[130] N. B., Abraham, P., Mandel, and L. M., Narducci, Dynamical instabilities and pulsations in lasers in E., Wolf (ed.) Progress in Optics vol. XXV (Amsterdam: North-Holland, 1988), p. 1
[131] P. H., Lee, P. B., Schaefer, and W. B., Barker, Single-mode power from 6328Å laser incorporating neon absorption, Appl. Phys. Lett. 13, 373 (1968)
[132] V. N., Lisitsyn and V. P., Chebotaev, Hysteresis and hard excitation in a gas laser, JETP Lett. 7, 1 (1968)
[133] S., Ruschin and S. H., Bauer, Bistability hysteresis and critical behavior of CO2 laser, with SF6 intracavity as a saturable absorber, Chem. Phys. Lett. 66, 100 (1979)
[134] S., Ruschin and S. H., Bauer, Bistability of a CO2 laser with SF6 intracavity as an absorber: Transient effects, Appl. Phys. 24, 45 (1981)
[135] E., Arimondo, F., Casagrande, L. A., Lugiato, and P., Glorieux, Repetitive passive Q-switching and bistability in lasers with saturable absorber, Appl. Phys. B 30, 57 (1983)
[136] M., Brambilla, F., Castelli, L. A., Lugiato, F., Prati, and G., Strini, Nondegenerate four-wave mixing in a cavity: instabilities and quantum noise reduction, Opt. Commun. 83, 367 (1991)
[137] P. D., Drummond, K. J., McNeil, and D. F., Walls, Non-equilibrium transitions in sub/second harmonic generation, I. Semiclassical theory, Opt. Acta 27, 321 (1980)
[138] P. D., Drummond, K. J., McNeil, and D. F., Walls, Non-equilibrium transitions in sub/second harmonic generation II. Quantum theory, Opt. Acta 28, 211 (1981)
[139] L. A., Lugiato, C., Oldano, C., Fabre, E., Giacobino, and R. J., Horowicz, Bistability, self-pulsing and chaos in optical parametric oscillators, Nuovo Cim. D 10, 959 (1988)
[140] C., Richy, K. I., Petsas, E., Giacobino, C., Fabre, and L. A., Lugiato, Observation of bistability and delayed bifurcation in a triply resonant optical parametric oscillator, J. Opt. Soc. Am. B 12, 456 (1994)
[141] L. A., Lugiato and L. M., Narducci, Nonlinear dynamics in a Fabry–Perot cavity, Z. Phys. 71, 129 (1988)
[142] W. E., Lamb, Theory of an optical maser, Phys. Rev. A 134, 1429 (1964)
[143] C. L., Tang, H., Statz, and G., DeMars, Spectral output and spiking behaviour of solid-state lasers, J. Appl. Phys. 34, 2289 (1963)
[144] H. J., Carmichael, Multimode instability for a standing wave cavity containing a saturable absorber, Opt. Commun. 53, 122 (1985)
[145] K., Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun. 30, 257 (1979)
[146] K., Ikeda, H., Daido, and O., Akimoto. Optical turbulence: Chaotic behavior of transmitted light from a ring cavity, Phys. Rev. Lett. 45, 709 (1980)
[147] K., Ikeda and M., Mizuno, Modeling of nonlinear Fabry–Perot resonators by difference-differential equations, IEEE J. Quantum Electron. 21, 1429 (1985)
[148] L. A., Lugiato and F., Prati, Difference differential equations for a resonator with a very thin nonlinear medium, Phys. Rev. Lett. 104, 233902 (2010)
[149] F., Prati and L. A., Lugiato, Instabilities for a coherently driven Fabry–Perot cavity with a very thin absorber, Eur. Phys. J. Special Topics 203, 117 (2012)
[150] J., Mulet and S., Balle, Mode-locking dynamics in electrically driven vertical-external-cavity surface-emitting lasers, IEEE J. Quantum Electron. 41, 1148 (2005)
[151] N. B., Abraham, L. A., Lugiato, P., Mandel, L. M., Narducci, and D. K., Bandy, Steady-state and unstable behaviour of a single-mode inhomogeneously broadened laser, J. Opt. Soc. Am. B 2, 35 (1985)
[152] P., Mandel, Properties of a Lorentz-broadened single-mode unidirectional ring laser, J. Opt. Soc. Am. B 2, 112 (1985)
[153] G. H. B., Thompson, Physics of Semiconductor Laser Devices (New York: Wiley, 1980)
[154] J. E., Carrol, Rate Equations in Semiconductor Electronics (Cambridge: Cambridge University Press, 1985)
[155] P. A., Markovich, The Stationary Semiconductor Device (Berlin: Springer, 1986)
[156] G. P., Agrawal, Long Wavelength Semiconductor Lasers (New York: Van Nostrand Reinhold, 1986)
[157] B., Mroziewicz, M., Bugajski, and W., Nakwaski, Physics of Semiconductor Lasers (Amsterdam: North-Holland, 1991)
[158] J., Buus, Single Frequency Semiconductor Lasers (Bellingham, WA: SPIE, 1991)
[159] M., Ohtsu, Highly Coherent Semiconductor Lasers (Boston, MA: Artech House, 1992)
[160] W. W., Chow, S. W., Koch, and M., Sargent III, Semiconductor-Laser Physics (Berlin: Springer, 1994)
[161] C. F., Klingshirn, Semiconductor Optics (Berlin: Springer, 1995)
[162] W. W., Chow and S. W., Koch, Semiconductor Laser Fundamentals (Berlin: Springer, 1999)
[163] J., Ohtsubo, Semiconductor Lasers – Stability, Instability and Chaos (Berlin: Springer, 2005)
[164] C. H., Henry, Theory of the linewidth of semiconductor lasers, IEEE J. Quantum Electron. 18, 259 (1982)
[165] C., Wilmsen, H., Temkin, and L. A., Coldren (eds.), Vertical-Cavity Surface-Emitting Lasers (Cambridge: Cambridge University Press, 1999)
[166] M. San, Miguel, Q., Feng, and J. V., Moloney, Light-polarization dynamics in surface-emitting semiconductor lasers, Phys. Rev. A, 52, 1728 (1995)
[167] K., Panajotov and F., Prati, Polarization dynamics of VCSELs, in R., Michalzik (ed.) VCSELs (Berlin: Springer-Verlag, 2012) p. 181
[168] J., Mompart and R., Corbalan, Lasing without inversion, J. Opt. B 2, R7 (2000)
[169] E., Arimondo, Coherent population trapping in laser spectroscopy, in E., Wolf (ed.) Progress in Optics vol. XXXV (Amsterdam: North-Holland, 1996), p. 257
[170] G., Alzetta, A., Gozzini, L., Moi, and G., Orriols, An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour, Nuovo Cim. B 36, 5 (1976)
[171] E., Arimondo and G., Orriols, Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping, Lett. Nuovo Cim. 17, 333 (1976)
[172] R. M., Whitley and C. R., Stroud, Jr., Double optical resonance, Phys. Rev. A 14, 1498 (1976)
[173] H. R., Gray, R. M., Whitley and C. R., Stroud, Jr., Coherent trapping of atomic populations, Opt. Lett. 3, 218 (1978)
[174] G., Alzetta, L., Moi, and G., Orriols, Nonabsorption hyperfine resonances in a sodium vapour irradiated by a multimode dye-laser, Nuovo Cim. B 52, 209 (1979)
[175] J. D., Stettler, C. M., Bowden, N. M., Witriol, and J. H., Eberly, Population trapping during laser induced molecular excitation and dissociation, Phys. Lett. A 73, 171 (1979)
[176] R. J., Dalton and P. L., Knight, Population trapping and ultranarrow Raman lineshapes induced by phase-fluctuating fields, Opt. Commun. 42, 411 (1982)
[177] S., Swain, Conditions for population trapping in a three-level system, J. Phys. B 15, 3405 (1982)
[178] P. M., Radmore and P. L., Knight, Population trapping and dispersion in a three-level system, J. Phys. B 15, 561 (1981); Two-photon ionisation: Interference and population trapping, Phys. Lett. A 102, 180 (1984)
[179] G. S., Agarwal and N., Nayak, Effects of long-lived incoherences on coherent population trapping, J. Phys. B 19, 3375 (1986)
[180] K., Zaheer and M. S., Zubairy, Phase sensitivity in atom–field interaction via coherent superposition, Phys. Rev. A 39, 2000 (1989)
[181] S. E., Harris, J. E., Field, and A., Imamoğlu, Nonlinear optical processes using electromagnetically induced transparency, Phys. Rev. Lett. 64, 1107 (1990)
[182] K. H., Hahn, D. A., King, and S. E., Harris, Nonlinear generation of 104.8-nm radiation within an absorption window in zinc, Phys. Rev. Lett. 65, 2777 (1990)
[183] K., Hakuta, L., Marmet, and B., Stoicheff, Electric-field-induced 2nd-harmonic generation with reduced absorption in atomic-hydrogen, Phys. Rev. Lett. 66, 596 (1991)
[184] K.-J., Boller, A., Imamoğlu, and S. E., Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett. 66, 2593 (1991)
[185] J. E., Field, K. H., Hahn, and S. E., Harris, Observation of electromagnetically induced transparency in collisionally broadened lead vapor, Phys. Rev. Lett. 67, 3062 (1991)
[186] A., Javan, Theory of a three-level maser, Phys. Rev. 107, 1579 (1956)
[187] T. W., Hansch and P. E., Toschek, Theory of a three-level gas laser amplifier, Z. Phys. 236, 213 (1970)
[188] V., Arkhipkin and Yu., Heller, Radiation amplification without population inversion at transitions to autoionizing states, Phys. Lett. A 98, 12 (1983)
[189] O., Kocharovskaya and Ya. I., Khanin, Coherent amplification of an ultrashort pulse in a 3-level medium without a population-inversion, JETP Lett. 48, 630 (1988)
[190] S. E., Harris, Lasers without inversion – Interference of lifetime-broadened resonances, Phys. Rev. Lett. 62, 1033 (1989)
[191] M. O., Scully, S.-Y., Zhu, and A., Gavrielides, Degenerate quantum-beat laser – Lasing without inversion and inversion without lasing, Phys. Rev. Lett. 62, 2813 (1989)
[192] S. E., Harris and J. H., Macklin, Lasers without inversion – Single-atom transient-response, Phys. Rev. A 40, 4135 (1989)
[193] A., Imamoğlu, Interference of radiatively broadened resonances, Phys. Rev. A 40, 2835 (1989)
[194] A., Lyras, X., Tang, P., Lambropoulos, and J., Zhang, Radiation amplification through auto-ionizing resonances without population-inversion, Phys. Rev. A 40, 4131 (1989)
[195] O., Kocharovskaya and P., Mandel, Amplification without inversion – The double-lambda scheme, Phys. Rev. A 42, 523 (1990)
[196] E. E., Fill, M. O., Scully, and S.-Y., Zhu, Lasing without inversion via the lambda-quantum-beat laser in the collision-dominated regime, Opt. Commun. 77, 36 (1990)
[197] O., Kocharovskaya, R.-D., Li, and P., Mandel, Lasing without inversion – The double-lambda scheme, Opt. Commun. 77, 215 (1990)
[198] V. R., Blok and G. M., Krochik, Theory of lasers without inversion, Phys. Rev. A 41, 1517 (1990)
[199] G. S., Agarwal, S., Ravi, and J., Cooper, DC-field-coupled autoionizing states for laser action without population-inversion, Phys. Rev. A 41, 4721 (1990); Lasers without inversion – Raman transitions using autoionizing resonances, Phys. Rev. A 41, 4727 (1990)
[200] S., Basile and P., Lambropoulos, Radiation amplification without population-inversion in discrete 3-level systems, Opt. Commun. 78, 163 (1990)
[201] A., Imamoğlu, J. E., Field, and S. E., Harris, Lasers without inversion – A closed lifetime broadened system, Phys. Rev. Lett. 66, 1154 (1991)
[202] G. S., Agarwal, Origin of gain in systems without inversion in bare or dressed states, Phys. Rev. A 44, R28 (1991)
[203] L. M., Narducci, H. M., Doss, P., Ru, M. O., Scully, and C., Keitel, A simple model of a laser without inversion, Opt. Commun. 81, 379 (1991)
[204] J. A., Bergou and P., Bogár, Quantum theory of a noninversion laser with injected atomic coherence, Phys. Rev. A 43, 4889 (1991)
[205] O., Kocharovskaya, Amplification and lasing without inversionPhys. Rep. 219, 175 (1992)
[206] M. O., Scully, From lasers and masers to phaseonium and phasersPhys. Rep. 219, 191 (1992)
[207] M. O., Scully, S.-Y., Zhu, and H., Fearn, Lasing without inversion. I. Initial atomic coherence, Z. Phys. D 22, 471 (1992); Lasing without inversion. II. Raman process created atomic coherence, Z. Phys. D 22, 483 (1992)
[208] M., Fleischhauer, C. H., Keitel, L. M., Narducci et al., Lasing without inversion – Interference of radiatively broadened resonances in dressed atomic systems, Opt. Commun. 94, 599 (1992)
[209] M. O., Scully, Resolving conundrums in lasing without inversion via exact solutions to simple models, Quantum Optics 6, 203 (1994)
[210] O., Kocharovskaya and P., Mandel, Basic models of lasing without inversion – General form of amplification condition and problem of self-consistency, Quantum Optics 6, 217 (1994)
[211] N. B., Abraham, L. A., Lugiato, and L. M., Narducci (eds.), Feature Issue on Instabilities in Active Optical Media, J. Opt. Soc. Am. B 2 (January 1985)
[212] D. K., Bandy, A. N., Oraevsky, and J. R., Tredicce (eds.), Feature Issue on Nonlinear Dynamics of Lasers, J. Opt. Soc. Am. B 5 (May 1988)
[213] R. W., Boyd, M. G., Raymer, and L. M., Narducci (eds.), Optical Instabilities (Cambridge: Cambridge University Press, 1986)
[214] J., Chrostowsky and N. B., Abraham (eds.), Optical Chaos (Bellingham, MA: SPIE, 1986)
[215] E. R., Pike and S., Sarkar (eds.), Frontiers of Quantum Optics (Bristol: Hilger, 1986)
[216] F. T., Arecchi and R. G., Harrison (eds.), Instabilities and Chaos in Quantum Optics (Berlin: Springer, 1987)
[217] E. R., Pike and L. A., Lugiato (eds.), Chaos, Noise and Fractals (Bristol: Hilger, 1987)
[218] N. B., Abraham, F. T., Arecchi, and L. A., Lugiato (eds.), Instabilities and Chaos in Quantum Optics II (New York: Plenum Press, 1988)
[219] E. J., Quel, J. R., Tredicce, and L. M., Narducci (eds.), Laser Physics and Quantum Optics (Singapore: World Scientific, 1990)
[220] P. W., Milonni, J., Akerhalt, and M.-L., Shih, Chaos in Laser–Matter Interactions (Singapore: World Scientific, 1987)
[221] L. M., Narducci and N. B., Abraham, Laser Physics and Laser Instabilities (Singapore: World Scientific, 1988)
[222] C. O., Weiss and R., Vilaseca, Dynamics of Lasers (Weinheim: VCH, 1991)
[223] R. G., Harrison and D. J., Biswas, Pulsating instabilities and chaos in lasers, Prog. Quantum Electron. 10, 147 (1985)
[224] J. R., Ackerhalt, P. W., Milonni, and M.-L., Shih, Chaos in quantum opticsPhys. Rep. (Phys. Lett. C) 128, 205 (1985)
[225] C. O., Weiss, Chaotic laser dynamics, Opt. Quantum Electron. 20, 1 (1988)
[226] J. C., Englund, R. R., Snapp, and W. C., Schieve, Fluctuations, instabilities and chaos in the laser-driven nonlinear ring cavity in E., Wolf (ed.) Progress in Optics vol. XXI (Amsterdam: North-Holland, 1984), p. 355
[227] R., Vilaseca and R., Corbalan, Nonlinear Dynamics and Quantum Phenomena in Optical Systems (Berlin: Springer, 1991)
[228] L. A., Lugiato and L. M., Narducci, Multistability, chaos and spatio-temporal dynamics, in J., Dalibard, J. M., Raymond, and J., Zinn-Justin (eds.) Fundamental Systems in Quantum Optics, Les Houches, Session LIII, 1990 (Amsterdam: Elsevier, 1992)
[229] R. G., Harrison and J. S., Uppal (Eds), Nonlinear Dynamics and Spatial Complexity in Optical Systems (Bristol and Philadelphia: Scottish University Summer School in Physics and Institute of Physics Publishing, 1993)
[230] Ya. I., Khanin, Principles of Laser Dynamics (Amsterdam: North-Holland, 1995)
[231] K., Otsuka, Nonlinear Dynamics in Optical Complex Systems (Dordrecht: Kluwer Academic, 1999)
[232] P., Mandel, Theoretical Problems in Cavity Nonlinear Optics (Cambridge: Cambridge University Press, 2005)
[233] T., Erneux and P., Glorieux, Laser Dynamics (Cambridge: Cambridge University Press, 2010)
[234] G., Nicolis and I., Prigogine, Self-organization in Non-Equilibrium Systems,(New York: Wiley, 1974)
[235] G., Nicolis, Introduction to Nonlinear Science (Cambridge: Cambridge University Press, 1995)
[236] M., Marsden, The Geometry of the Zeros of a Polynomial in a Complex Variable (Providence, RI: American Mathematical Society, 1949)
[237] J. D., Farmer, Chaotic attractors of an infinite-dimensional dynamical system, Physica D 4, 366 (1982)
[238] P., Grassberger and I., Procaccia, Characterization of strange attractors, Phys. Rev. Lett. 50, 346 (1983)
[239] E., Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130 (1963)
[240] H., Haken, Analogy between higher instabilities in fluids and lasers, Phys. Lett. A 53, 77 (1975)
[241] J. P., Eckmann, Roads to turbulence in dissipative dynamical systems, Rev. Mod. Phys. 53, 643 (1981)
[242] R., Thom, Stabilité structurelle et morphogenèse (Paris: Interéditions, 1972)
[243] G. P., Puccioni, F. T., Arecchi, G.-L., Lippi, and J. R., Tredicce, Deterministic chaos in laser with injected signal, Opt.|Commun. 51, 308 (1984)
[244] G.-L., Oppo and A., Politi, Toda potential in laser equations, Z. Phys. B 59, 111 (1985)
[245] L. W., Casperson, Stability criteria for high-intensity lasers, Phys. Rev. A 21, 911 (1980)
[246] S. T., Hendow and M., Sargent III, The role of population pulsation in single-mode laser instabilities, Opt. Commun. 40, 385 (1982)
[247] L. W., Hillman, R. W., Boyd, and C. R., Stroud, Jr., Natural modes for the analysis of optical bistability and laser instability, Opt. Lett. 7, 426 (1982)
[248] Y., Silberberg and I., Bar-Joseph, The mechanism of instabilities in an optical cavity, Opt. Commun. 48, 53 (1983)
[249] W. J., Firth, E. M., Wright, and E., Cummins, Connection between Ikeda instabilities and phase conjugation in C. R., Bowden, H. M., Gibbs, and S. L., McCall (eds.) Optical Bistability 2 (New York: Plenum Press, 1984), p. 111
[250] L. A., Lugiato and L. M., Narducci, Single-mode and multimode instabilities in lasers and related optical systems, Phys. Rev. A 32, 1576 (1985)
[251] B. R., Mollow, Stimulated emission and absorption near resonance for driven systems, Phys. Rev. A 5, 2217 (1972)
[252] A. M., Bonch-Bruevich, V. A., Khodovoi, and N. A., Chigir, Changes in the absorption spectrum and of dispersion of a two-level system in a rotating monochromatic radiation field, Sov. Phys. JETP 40, 1027 (1975)
[253] F. Y., Wu, S., Ezekiel, M., Ducloy, and B. R., Mollow, Observation of amplification in a strongly driven two-level atomic system at optical frequencies, Phys. Rev. Lett. 38, 1077 (1977)
[254] M. J., Feigenbaum, Quantitative universality for a class of non-linear transformations, J. Statist. Phys. 19, 25 (1978); The universal metric properties of nonlinear transformations, J. Statist. Phys.21, 669 (1979)
[255] C. O., Weiss and J., Brock, Evidence for Lorenz-type chaos in a laser, Phys. Rev. Lett. 57, 2804 (1986)
[256] J., Pujol, F., Laguarta, R., Vilaseca, and R., Corbalan, Influence of pump coherence on the dynamic behavior of a laser, J. Opt. Soc. Am. B 5, 1004 (1988)
[257] R., Graham and H., Haken, Quantum theory of light propagation in a fluctuating laser-active medium, Z. Phys. 213, 420 (1968)
[258] E. M., Pessina, G., Bonfrate, L. A., Lugiato, and F., Fontana, Experimental observation of the Risken–Nummedal–Graham–Haken multimode laser instability, Phys. Rev. A 56, 4086 (1997)
[259] E. M., Pessina, F., Prati, J., Redondo, E., Roldán, and G. J. de, Valcárcel, Multimode instability in a ring fiber laser, Phys. Rev. A 60, 2517 (1999)
[260] T., Voigt, M. O., Lenz, and F., Mitschke, Risken–Nummedal–Graham–Haken instability finally confirmed experimentally, Proc. SPIE 4429, 112 (2001)
[261] E., Roldán, G. J. de, Valcárcel, F., Prati, F., Mitschke, and T., Voigt, Multilongitudinal mode emission in ring cavity class B lasers, in O. G., Calderon and J. M., Guerra (eds.) Trends in Spatiotemporal Dynamics in Lasers, Instabilities, Polarization Dynamics, and Spatial Structures (Kerala: Research Signpost, 2005), p. 1
[262] P., Gerber and M., Buttiker, Stability domain of coherent laser waves, Z. Phys. B 33, 219 (1979)
[263] S. T., Hendow and M., Sargent III, Theory of single-mode laser instabilities, J. Opt. Soc. Am. B 2, 84 (1985)
[264] J. R., Tredicce, L. M., Narducci, D. K., Bandy, L. A., Lugiato, and N. B., Abraham, Experimental evidence of mode competition leading to optical bistability in homogeneously broadened lasersOpt. Commun. 56, 435 (1986)
[265] A., Gordon, C. Y., Wang, L., Diehl et al., Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning, Phys. Rev. A 77, 053804 (2008)
[266] D. K., Bandy, L. M., Narducci, L. A., Lugiato, and N. B., Abraham, Time-dependent behaviour of a unidirectional ring laser with inhomogeneous broadening, J. Opt. Soc. Am. B 2, 56 (1985)
[267] E., Roldán, G. J. de, Valcárcel, F., Silva, and F., Prati, Multimode emission in inhomogeneously broadened lasers, J. Opt. Soc. Am. B 18, 1601 (2001)
[268] J. Y., Zhang, H., Haken, and H., Ohno, Self–pulsing instability in inhomogeneously broadened traveling-wave lasers, J. Opt. Soc. Am. B 2, 141 (1985)
[269] L. W., Casperson, Spontaneous coherent pulsations in laser oscillators, IEEE J. Quantum Electron. 14, 756 (1978)
[270] J., Bentley and N. B., Abraham, Mode-pulling, mode-splitting and pulsing in a high gain He–Xe laser, Opt. Commun. 41, 52 (1982)
[271] R., Bonifacio and P., Meystre, Critical slowing down in optical bistability, Opt. Commun. 27, 147 (1979)
[272] V., Benza and L. A., Lugiato, Analytical treatment of the transient in absorptive optical bistability, Lett. Nuovo Cim. 26, 405 (1979)
[273] S., Barbarino, A., Gozzini, I., Longo, F., Maccarrone, and R., Stampacchia, Critical slowing-down in microwave absorptive bistability, Nuovo Cim. B 71, 183 (1982)
[274] E., Garmire, J. H., Marburger, S. D., Allen, and H. G., Winful, Transient response of hybrid bistable optical devices, Appl. Phys. Lett. 34, 374 (1979)
[275] F., Mitsche, R., Deserno, J., Mlynek, and W., Lange, Transients in all-optical bistability using transverse optical pumping: Observation of critical slowing down, Opt. Commun. 46, 135–140 (1983)
[276] G., Broggi and L. A., Lugiato, Transient noise-induced optical bistability, Phys. Rev. A 29, 2949 (1984)
[277] F., Mitschke, R., Deserno, J., Mlynek, and W., Lange, Transients in optical bistability: Experiments with external noise, IEEE J. Quantum Electron. 21, 1435–1440 (1985)
[278] R., Bonifacio and L. A., Lugiato, Instabilities for a coherently driven absorber in a ring cavity, Lett. Nuovo Cim. 21, 510 (1978)
[279] R., Bonifacio, M., Gronchi, and L. A., Lugiato, Self-pulsing in bistable absorption, Opt. Commun. 30, 129 (1979)
[280] L. A., Lugiato, Self pulsing in dispersive optical bistability, Opt. Commun. 33, 108 (1980)
[281] B., Segard and B., Macke, Self-pulsing in intrinsic optical bistability with two-level molecules, Phys. Rev. Lett. 69, 412 (1988)
[282] B., Segard, B., Macke, L. A., Lugiato, F., Prati, and M., Brambilla, The multimode instability in optical bistability, Phys. Rev. A 39, 703 (1989)
[283] A. J. van, Wonderen and L. G., Suttorp, Instabilities for absorptive optical bistability in a nonideal Fabry–Perot cavity, Phys. Rev. A 40, 7104 (1989)
[284] M. Le, Berre, E., Ressayre, and A., Tallet, Physics in counterpropagating light-beam devices: Phase-conjugation and gain concepts in multiwave mixing, Phys. Rev. A 44, 5958 (1991)
[285] H. M., Gibbs, F. A., Hopf, D. L., Kaplan, and R. L., Shoemaker, Observation of chaos in optical bistability, Phys. Rev. Lett. 46, 474 (1981)
[286] L. A., Lugiato, M. L., Asquini, and L. M., Narducci, The relation between the Bonifacio–Lugiato and the Ikeda instabilities in optical bistability, Opt. Commun. 41, 450 (1982)
[287] R. R., Snapp, H. J., Carmichael, and W. C., Schieve, Period doubling and chaos in the optical bistability, Opt. Commun. 40, 68 (1981)
[288] H. J., Carmichael, R. R., Snapp, and W. C., Schieve, Oscillatory instabilities leading to optical turbulence in a bistable ring cavity, Phys. Rev. A 26, 3408 (1982)
[289] L. A., Lugiato, L. M., Narducci, and M. F., Squicciarini, Exact linear stability analysis of the plane-wave Maxwell–Bloch equations for a ring laser, Phys. Rev. A 34, 3101 (1986)
[290] K., Ikeda and O., Akimoto, Instability leading to periodic and chaotic self-pulsations in a bistable optical cavity, Phys. Rev. Lett. 48, 617 (1982)
[291] L. A., Lugiato, L. M., Narducci, D. K., Bandy, and C. A., Pennise, Self-pulsing and chaos in a mean field model of optical bistability, Opt. Commun. 43, 281 (1982)
[292] L. A., Orozco, A. T., Rosenberger, and H. J., Kimble, Intrinsic dynamical instability in optical bistability with two-level atoms, Phys. Rev. Lett. 53, 2547 (1984)
[293] L. A., Orozco, H. J., Kimble, A. T., Rosenberger et al., Single-mode instability in optical bistability, Phys. Rev. A 39, 1235 (1989)
[294] L. A., Lugiato, L. M., Narducci, D. K., Bandy, and C. A., Pennise, Breathing, spiking, and chaos in a laser with injected signal, Opt. Commun. 46, 64 (1983)
[295] J. R., Tredicce, F. T., Arecchi, G.-L., Lippi, and G. P., Puccioni, Instabilities in lasers with an injected signal, J. Opt. Soc. Am. B 2, 173 (1985)
[296] D. K., Bandy, L. M., Narducci, and L. A., Lugiato, Coexisting attractors in a laser with an injected signal, J. Opt. Soc. Am. B 2, 148 (1985)
[297] J. C., Boulnois, P., Cottin, A. Van, Lenberghe, F. T., Arecchi, and G. P., Puccioni, Self-pulsing in a CO2 ring laser with an injected signal, Opt. Commun. 58, 124 (1986)
[298] E., Brun, B., Derighetti, D., Meier, R., Holzner, and M., Ravani, Observation of order and chaos in a nuclear spin-flip laser, J. Opt. Soc. Am. B 2, 156 (1985)
[299] J. C., Antoranz, L. L., Bonilla, J., Gea, and M. G., Velarde, Bistable limit cycles in a model for a laser with a saturable absorber, Phys. Rev. Lett. 49, 35 (1982)
[300] P., Mandel and T., Erneux, Stationary, harmonic, and pulsed operations of an optically bistable laser with saturable absorber, Phys. Rev. A 30, 1893 (1984)
[301] H. T., Powell and G. J., Wolga, Repetitive passive Q-switching of single-frequency lasers, IEEE J. Quantum Electron. 7, 213 (1971)
[302] O. R., Wood and S. E., Schwartz, Passive Q-switching of a CO2 laser, Appl. Phys. Lett. 11, 88 (1967)
[303] F., de Tomasi, D., Hennequin, B., Zambon, and E., Arimondo, Instabilities and chaos in an infrared laser with saturable absorber. Experiments and vibro-rotational model,J. Opt. Soc. Am. B 6, 45 (1989)
[304] F. L., Hong, M., Tachikawa, T., Oda, and T., Shimizu, Chaotic passive Q-switching pulsation in N2O laser with a saturable absorber, J. Opt. Soc. Am. B 6, 1378 (1989)
[305] B., Zambon, Theoretical investigations of models for the laser with saturable absorber. A case of homoclinic tangency to a periodic orbit, Phys. Rev. A 44, 688 (1991)
[306] L. A., Lugiato, Transverse nonlinear optics: Introduction and review, Chaos, Solitons and Fractals 4, 1251 (1994)
[307] L. A., Lugiato and R., Lefever, Spatial dissipative structures in passive optical systems, Phys. Rev. Lett. 58, 2209 (1987)
[308] L. A., Lugiato and C., Oldano, Stationary spatial patterns in passive optical systems: Two level atoms, Phys. Rev. A 37, 3896 (1988)
[309] L. A., Lugiato, C., Oldano, and L. M., Narducci, Cooperative frequency locking and stationary spatial structures in lasers, J. Opt. Soc. Am. B 5, 879 (1988)
[310] W. J., Firth, Spatial instabilities in a Kerr medium with with a single feedback mirror, J. Mod. Opt. 37, 151 (1990)
[311] G. P., D'Alessandro and W. J., Firth, Hexagonal spatial patterns for a Kerr slice with a feedback mirror, Phys. Rev. A 46, 537 (1992)
[312] F. T., Arecchi, Space–time complexity in nonlinear optics, Physica D 51, 450 (1991)
[313] L. A., Lugiato, Spatio-temporal structures. Part I, Phys. Rep. 219, 293 (1992)
[314] C. O., Weiss, Spatio-temporal structures. Part II. Vortices and defects in lasers. Phys. Rep. 219, 311 (1992)
[315] F. T., Arecchi, Optical morphogenesis: Pattern formation and competition in nonlinear optics, Nuovo Cim. A 107, 1111 (1994)
[316] W. J., Firth, Pattern formation in passive nonlinear optical systems, in M., Vorontsov and W. B., Miller (eds.) Self-organization in Optical Systems and Application to Informaton Technology (Berlin: Springer, 1995)
[317] N. N., Rosanov, Transverse patterns in wide-aperture nonlinear optical systems, in E., Wolf (ed.), Progress in Optics vol. XXXV (Amsterdam: North-Holland, 1996), p. 1
[318] L. A., Lugiato, M., Brambilla, and A., Gatti, Optical pattern formation, in B., Bederson and H., Walther (eds.), Adv. Mol. Opt. Phys. 40, 229 (1999)
[319] F. T., Arecchi, S., Boccaletti, and P.-L., Ramazza, Pattern formation and competition in nonlinear optics, Phys. Rep. 318, 1 (1999)
[320] N. N., Rosanov, Spatial Hysteresis and Optical Patterns (Berlin: Springer, 2002)
[321] K., Staliunas and V. J., Sanchez-Morcillo, Transverse Patterns in Nonlinear Optical Resonators (Berlin: Springer, 2003)
[322] C., Denz, M., Schwob, and C., Weilnau, Transverse Pattern Formation in Photorefractive Optics (Berlin: Springer-Verlag, 2003)
[323] P., Mandel and M., Tlidi, Transverse dynamics in cavity nonlinear optics (2000–2003), J. Opt. B 6, R60 (2004)
[324] N. B., Abraham and W. J., Firth (eds.), Feature issues on transverse effects in nonlinear optics and transverse effects in nonlinear optical systems, J. Opt. Soc. Am. B 7(6, 7) (1990)
[325] M., Saffman and Y., Wang, Collective focussing and modulational instability of light and cold atoms, in N., Akhmediev and A., Ankiewicz (eds.) Dissipative Solitons: From Optics to Biology and Medicine (Berlin: Springer, 2008)
[326] H. A., Haus, Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall, 1984)
[327] P., Ru, L. M., Narducci, J. R., Tredicce, D. K., Bandy, and L. A., Lugiato, The Gauss–Laguerre modes of a ring resonator, Opt. Commun. 63, 310 (1987)
[328] W. J., Firth and A. J., Scroggie, Spontaneous pattern formation in an absorptive system, Europhys. Lett. 26, 521 (1994)
[329] L. A., Lugiato and R., Lefever, Diffractive stationary patterns in passive optical systems, in Interaction of Radiation with Matter, a volume in honour of Adriano Gozzini (Pisa: Quaderni della Scuola Normale Superiore, 1987), p. 311
[330] G.-L., Oppo, M., Brambilla, and L. A., Lugiato, Formation and evolution of roll patterns in optical parametric oscillators, Phys. Rev. A 49, 2028 (1994)
[331] A. M., Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London B 237, 37 (1952)
[332] G., Grynberg, E. Le, Bihan, P., Verkerk et al., Observation of instabilities due to mirrorless four-wave mixing oscillation in sodium, Opt. Commun. 67, 363 (1988)
[333] W. H., Press, S. A., Teukolsky, W. T., Vetterling, and B. P., Flannery, Numerical Recipes (Cambridge: Cambridge University Press, 2002)
[334] P., Manneville, Dissipative Structures and Weak Turbolence (San Diego, CA: Academic Press, 1990)
[335] P. K., Jakobsen, J. V., Moloney, A. C., Newell, and R., Indik, Space-time dynamics of wide-gain-section lasers, Phys. Rev. A 45, 8129 (1992)
[336] T. P., Dawling, M. O., Scully, and F. De, Martini, Radiative patterns of a classical dipole in a cavity, Opt. Commun. 82, 415 (1991)
[337] P. K., Jakobsen, J., Lega, Q., Feng et al., Nonlinear transverse modes of large aspect ratio, homogeneously broadened laser I. Analysis and numerical simulation, Phys. Rev. A 49, 4189 (1994)
[338] J., Lega, P. K., Jakobsen, J. V., Moloney, and A. C., Newell, Nonlinear transverse modes of large aspect ratio homogeneously broadened lasers II. Pattern analysis near and beyond threshold, Phys. Rev. A 49, 4201 (1994)
[339] W. J., Firth and C., Paré, Transverse modulational instabilities for counterpropagating beams in Kerr media, Opt. Lett. 13, 1096 (1988)
[340] M., Haelterman and G., Vitrant, Drift instability and spatiotemporal dissipative structures in a nonlinear Fabry–Perot resonator under oblique incidence, J. Opt. Soc. Am. B 9, 1563 (1992)
[341] P. La, Penna and G., Giusfredi, Spatiotemporal instabilities in a Fabry–Perot resonator filled with sodium vapor, Phys. Rev. A 48, 2299 (1993)
[342] A., Petrossian, L., Dambly, and G., Grynberg, Drift instability for a laser beam transmitted through a rubidium cell with feedback mirror, Europhys. Lett. 29, 209 (1995)
[343] J. P., Seipenbusch, T., Ackemann, B., Schapers, B., Berge, and W., Lange, Drift instability and locking behaviour of optical patterns, Phys. Rev. A 56, R4401 (1997)
[344] Yu. A., Logvin, B. A., Samson, A. A., Afanasév, A. M., Samson, and N. A., Loiko, Triadic Hopf-static structures in two-dimensional optical pattern formation, Phys. Rev. A 54, R4548 (1996)
[345] G., Giusfredi, J. F., Valley, R., Pon, G., Khitrova, and H. M., Gibbs, Optical instabilities in sodium vapor, J. Opt. Soc. Am. B 5, 1181 (1988)
[346] F., Papoff, G., D'Alessandro, G.-L., Oppo and W. J., Firth, Local and global effects of boundaries on optical-pattern formation in Kerr media, Phys. Rev. A 48, 634 (1993)
[347] T., Ackemann, Yu. A., Logvin, A., Heuer, and W., Lange, Transition between positive and negative hexagons in optical pattern formation, Phys. Rev. Lett. 75, 3450 (1995)
[348] M., Brambilla, L. A., Lugiato, V., Penna et al., Transverse laser patterns II. Variational principle for pattern selection, spatial multistability and laser hydrodynamics, Phys. Rev. A 43, 5114 (1991)
[349] S. A., Akhmanov, R. V., Khoklov, and A. P., Suchkorukov, Self-focusing, self-defocusing and self-modulation of laser beams, in F. T., Arecchi and E. O., Schultz-DuBois (eds.), Laser Handbook (Amsterdam: North-Holland, 1972), p. 1151
[350] L., Allen, M. W., Beijenbergen, R. J., Spreeuw and J. P., Woerdman, Orbital angular momentum of light and the trasformation of Laguerre–Gaussian laser modes, Phys. Rev. A 45, 8185 (1992)
[351] M. V., Berry, Singularities in waves and rays, in R., Balian, M., Kléman, and J.-P., Poirier (eds.), Physics of Defects, Les Houches, Session XXXV (North-Holland, 1981), p. 453 and references cited therein
[352] M. V., Berry, J. F., Nye, and F. J., Wright, The elliptic umbilic diffraction catastrophe, Phil. Trans. Roy. Soc. Lond. 291, 453 (1979)
[353] P., Coullet, L., Gil, and F., Rocca, Optical vortices, Opt. Commun. 73, 403 (1989)
[354] M., Brambilla, F., Battipede, L. A., Lugiato et al., Transverse laser patterns. I. Phase singularity crystals, Phys. Rev. A 43, 5090 (1991)
[355] F. T., Arecchi, G., Giacomelli, P.-L., Ramazza, and S., Residori, Vortices and defect statistics in optical chaos, Phys. Rev. Lett. 67, 3749 (1991)
[356] S., Mertens, G., Dewel, P., Borckmans, and R., Engelhardt, Pattern selection in bistable systems, Europhys. Lett. 37, 109 (1997)
[357] G.-L., Oppo, Formation and control of Turing patterns and phase fronts in photonics and chemistry, J. Math. Chem. 45, 95 (2009)
[358] J. V., Moloney in F. T., Arecchi and R. G., Harrison (eds.) Instabilities and Chaos in Quantum Optics (Berlin: Springer, 1987), p. 139 and references cited therein
[359] W. J., Firth and C. O., Weiss, Cavity and feedback solitons, Optics Photonics News 13, 54 (2002)
[360] H., Haelterman, S., Trillo, and S., Wabnitz, Dissipative modulation instability in a nonlinear dispersive ring cavity, Opt. Commun. 91, 401 (1992)
[361] R., Lefever, L. A., Lugiato, Wang, Kaige, and N. B., Abraham, Phase dynamics of transverse diffraction patterns in the laser, Phys. Lett. A 135, 254 (1989); Wang Kaige, N. B. Abraham, and L. A. Lugiato, Leading role of the optical phase instabilities in the formation of certain laser transverse patterns, Phys. Rev. A 47, 1263 (1993)
[362] S., Longhi, Transverse patterns in a laser with an injected signal, Phys. Rev. A 56, 2397 (1997)
[363] S., Longhi and A., Geraci, Roll–hexagon transition in an active optical system, Phys. Rev. A 57, R2281 (1998)
[364] W. J., Firth, A. J., Scroggie, G. S., McDonald, and L. A., Lugiato, Hexagonal patterns in optical bistability, Phys. Rev. A 46, 3609 (1992); A. J. Scroggie, W. J. Firth, G. S. McDonald et al., Pattern formation in a passive Kerr cavity, Chaos, Solitons and Fractals4, 1323 (1994)
[365] W. J., Firth, G. K., Harkness, A., Lord et al., Dynamical properties of two-dimensional Kerr cavity solitons, J. Opt. Soc. Am. B 19, 747 (2002)
[366] D., Gomila and P., Colet, Dynamics of hexagonal patterns in a self-focussing Kerr cavity, Phys. Rev. E 76, 016217 (2007)
[367] W. J., Firth, Temporal cavity solitons – Buffering optical data, Nature Photon. 4, 415 (2010)
[368] S., Coen, M., Haelterman, Ph., Emplit et al., Bistable switching induced by modulational instability in a normally dispersive all-fibre optical cavity, J. Opt. B 1, 36 (1999)
[369] S., Coen and M., Haelterman, Competition between modulational instability and switching in optical bistability, Opt. Lett. 24, 80 (1999)
[370] S., Coen and M., Haelterman, Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity, Opt. Lett. 26, 39 (2001)
[371] S., Coen, Passive Nonlinear Optical Fiber Resonators – Fundamentals and Applications, Thèse de doctorat, Université Libre de Bruxelles (2000)
[372] F., Leo, S., Coen, P., Kockaert et al., Temporal cavity solitons in one-dimensional media as bits in an all-optical buffer, Nature Photon. 4, 471 (2010)
[373] F., Leo, L., Gelens, Ph., Emplit, M., Haelterman, and S., Coen, Dynamics of one-dimensional Kerr cavity solitons, Opt. Express 21, 9180 (2013)
[374] P., Del'Haye, A., Schliesser, O., Arcizet et al., Optical frequency comb generation from a monolithic microresonator, Nature 450, 1214 (2007)
[375] S., Coen, H. G., Randle, Th., Sylvestre, and M., Erkintalo, Modeling of octave-spanning Kerr frequency combs using a generalized Lugiato–Lefever model, Opt. Lett. 38, 37 (2013)
[376] F., Leo, P., Kockaert, Ph., Emplit et al., Experimental generation of 1.6-THz repetition-rate pulse-trains in a passive optical fiber resonator, in Proceedings of Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum Electronics and Laser Science. CLEO/QELS (2009); doi: 10.1364/CLEO. 2009.JTuD111
[377] L. A., Lugiato, G.-L., Oppo, J. R., Tredicce, L. M., Narducci, and M. A., Pernigo, Instabilities and spatial complexity in a laser, J. Opt. Soc. Am. B 7, 1019 (1990)
[378] L. A., Lugiato, F., Prati, L. M., Narducci et al., Role of transverse effects in laser instabilities, Phys. Rev. A 37, 3847 (1988)
[379] L. A., Lugiato, Wang, Kaige, and N. B., Abraham, Spatial pattern formation in resonators with nonlinear dispersive media, Phys. Rev. A 49, 2049 (1994)
[380] P. D., Drummond, Optical bistability in a radially varying mode, IEEE J. Quantum Electron. 17, 301–306 (1981)
[381] L. A., Lugiato and M., Milani, Effects of Gaussian averaging on laser instabilities, J. Opt. Soc. Am. B 2, 15 (1985)
[382] L. A., Lugiato, G.-L., Oppo, M. A., Pernigo et al., Spontaneous spatial pattern-formation in lasers and cooperative frequency locking, Opt. Commun. 68, 63 (1988)
[383] J. R., Tredicce, E. J., Quel, A. M., Ghazzawi et al., Spatial and temporal instabilities in a CO2 laser, Phys. Rev. Lett. 62, 1274 (1989)
[384] C., Tamm, Frequency locking of two transverse optical modes of a laser, Phys. Rev. A 38, 5960 (1988)
[385] F., Prati, M., Brambilla, and L. A., Lugiato, Pattern formation in lasers, Riv. Nuovo Cim. 17, 1 (1994)
[386] L. A., Lugiato, F., Prati, L. M., Narducci, and G.-L., Oppo, Spontaneous breaking of the cylindrical symmetry in lasers, Opt. Commun. 69, 387 (1989)
[387] P., Colet, M. San, Miguel, M., Brambilla, and L. A., Lugiato, Fluctuations in transverse laser patterns, Phys. Rev. A 43, 3862 (1991)
[388] A. B., Coates, C. O., Weiss, C., Green et al., Dynamical transverse laser patterns, II. Experiments, Phys. Rev. A 49, 1452 (1994)
[389] I., Boscolo, A., Bramati, M., Malvezzi, and F., Prati, Three-mode rotating pattern in aCO2 laser with high cylindrical symmetry, Phys. Rev. A 55, 738 (1997)
[390] N. N., Rosanov and G. V., Khodova, Autosolitons in bistable interferometers, Opt. Spectrosc. 65, 449 (1988)
[391] N. N., Rosanov and G. V., Khodova, Diffractive autosolitons in nonlinear interferometers, J. Opt. Soc. Am. B 7, 1057 (1990)
[392] N. N., Rosanov, V. A., Smirnov, and N. V., Vyssotina, Numerical simulations of interaction of bright spatial solitons in medium with saturable nonlinearity, Chaos, Solitons and Fractals 4, 1767 (1994)
[393] D. W., McLaughlin, J. V., Moloney, and A. C., Newell, New class of instabilities in passive optical cavities, Phys. Rev. Lett. 51, 75 (1983)
[394] S., Fauve and O., Thual, Localised structures generated by subcritical instability, J. Physique. 49, 1829 (1988)
[395] L. Y., Glebsky and L. M., Lerman, On small stationary localized solutions for the generalized Swift–Hohenberg equation, Chaos 5, 424 (1995)
[396] P. B., Umbanhowar, F., Melo, and H. L., Swinney, Localised excitations in a vertical vibrated granular layer, Nature 382, 793 (1986)
[397] K. A., Gorshkov, L. N., Korzinov, M. I., Rabinovich, and L. S., Tsimring, Random pinning of localized states and the birth of deterministic disorder within gradient models, J. Statist. Phys. 74, 1033 (1994)
[398] O., Lioubashevski, H., Arbell, and J., Fineberg, Dissipative solitary states in driven surface waves, Phys. Rev. Lett. 76, 3959 (1996)
[399] L. S., Tsimring and I., Aranson, Cellular and localized structures in a vibrated granular layer, Phys. Rev. Lett. 79, 213 (1997)
[400] J., Dewel, P., Borckmans, A. De, Wit et al., Pattern selection and localized structures in reaction–diffusion systems, Physica A 213, 181 (1995)
[401] G. S., McDonald and W. J., Firth, Spatial solitary wave optical memory, J. Opt. Soc. Am. B 7, 1328 (1990)
[402] C. I., Christov and M. G., Velarde, Dissipative solitonsPhysica D 86, 323 (1995)
[403] N., Akhmediev and A., Ankiewicz (eds.) Dissipative Solitons (Berlin: Springer, 2005)
[404] N., Akhmediev and A., Ankiewicz (eds.) Dissipative Solitons: From Optics to Biology and Medicine (Berlin: Springer, 2008)
[405] E. A., Ultanir, G. J., Stegeman, D., Michaelis, C. H., Lange, and F., Lederer, Stable dissipative solitons in semiconductor optical amplifiers, in N., Akhmediev and A., Ankiewicz (eds.) Dissipative Solitons: From Optics to Biology and Medicine (Berlin: Springer, 2008) p. 37
[406] W. J., Firth and G. K., Harkness, Cavity solitons, Asian J. Phys. 7, 665 (1998)
[407] W. J., Firth, Theory of cavity solitons, in A. D., Boardman and A. P., Sukhorukov (eds.), Soliton-driven Photonics (London: Kluwer, 2001), p. 459
[408] L. A., Lugiato, Introduction to the feature section on cavity solitons: An overview, IEEE J. Quantum Electron. 39, 193 (2003)
[409] L. A., Lugiato, F., Prati, G., Tissoni et al., Cavity solitons in semiconductor devices, in N., Akhmediev and A., Ankiewicz (eds.) Dissipative Solitons: From Optics to Biology and Medicine (Berlin: Springer, 2008), p. 978
[410] Th., Ackemann, W. J., Firth, and G.-L., Oppo, Fundamentals and applications of spatial dissipative solitons in photonic devices, in P. R., Berman, E., Arimondo, and Chun C., Lin (eds.) Advances in Atomic, Molecular and Optical Physics vol. 57 (Amsterdam: Elsevier, 2009), p. 323
[411] S., Barbay, R., Kuszelewicz, and J. R., Tredicce, Cavity solitons in VCSEL devices, Adv. Opt. Technol.628761 (2011)
[412] M., Brambilla, L. A., Lugiato, and M., Stefani, Interaction and control of optical localised structures, Europhys. Lett. 34, 109 (1996)
[413] M., Tlidi, P., Mandel, and R., Lefever, Localised structures and localised patterns in optical bistability, Phys. Rev. Lett. 73, 640 (1994)
[414] W. J., Firth and A. J., Scroggie, Optical bullet holes: Robust controllable localised states of a nonlinear cavity, Phys. Rev. Lett. 76, 1623 (1996)
[415] T., Maggipinto, M., Brambilla, G. K., Harkness, and W. J., Firth, Cavity solitons in semiconductor microresonators: Existence, stability, and dynamical properties, Phys. Rev. E 62, 8726 (2000)
[416] G.-L., Oppo, A. J., Scroggie, and W. J., Firth, From domain walls to localized structures in degenerate optical parametric oscillators, J. Opt. B 1, 133 (1999)
[417] C., Etrich, D., Michaelis, and F., Lederer, Bifurcation, stability and multistability of cavity solitons in parametric downconversion, J. Opt. Soc. Am. B 19, 792 (2002)
[418] A. G., Vladimirov, J. M., McSloy, D. V., Skryabin, and W. J., Firth, Two-dimensional clusters of solitary structures in driven optical cavities, Phys. Rev. E 65, 0046606 (2002)
[419] B., Schaepers, Th., Ackemann, and W., Lange, Properties of feedback solitons in a single-mirror experiment, IEEE J. Quantum Electron. 39, 227 (2003)
[420] F., Pedaci, P., Genevet, S., Barland, M., Giudici, and J. R., Tredicce, Positioning cavity solitons with a phase mask, Appl. Phys. Lett. 89, 221111 (2006)
[421] J. L., Oudar, T., Rivera, R., Kuszelewicz, and F., Ladan, Etched arrays of quantum well optical bistable microresonators, J. Physique III 4, 2361 (1994)
[422] L., Spinelli, G., Tissoni, L. A., Lugiato, and M., Brambilla, Thermal effects and transverse structures in semiconductor microcavities with population inversion, Phys. Rev. A 66, 023817 (2002)
[423] A. J., Scroggie, J. M., McSloy, and W. J., Firth, Self-propelled cavity solitons in semiconductor microcavities, Phys. Rev. E 66, 036607 (2002)
[424] R., Kheradmand, L. A., Lugiato, G., Tissoni, M., Brambilla, and H., Tajalli, Cavity soliton mobility in semiconductor microresonators, Math. Computing Simulations 69, 346 (2005)
[425] G., Tissoni, L., Spinelli, M., Brambilla et al., Cavity solitons in bulk semiconductor microcavities: microscopic model and modulational instabilities, J. Opt. Soc. Am. B 16, 2083 (1999); Cavity solitons in bulk semiconductor microcavities: dynamical properties and control, J. Opt. Soc. Am. B 16, 2095 (1999)
[426] M., Brambilla, L. A., Lugiato, F., Prati, L., Spinelli, and W. J., Firth, Spatial soliton pixels in semiconductor devices, Phys. Rev. Lett. 79, 2042 (1997)
[427] L., Spinelli, G., Tissoni, M., Brambilla, F., Prati, and L. A., Lugiato, Spatial solitons in semiconductor microcavities, Phys. Rev. A 58, 2542 (1998)
[428] X., Hachair, F., Pedaci, E., Caboche et al., Cavity solitons in a driven VCSEL above threshold, IEEE J. Sel. Top. Quantum Electron. 12, 339 (2006)
[429] S., Barland, J. R., Tredicce, M., Brambilla et al., Cavity solitons as pixels in semiconductors, Nature 419, 699 (2002)
[430] E., Caboche, S., Barland, M., Giudici et al., Cavity soliton motion in presence of device defects, Phys. Rev. A 80, 053814 (2009)
[431] M., Brambilla, L., Columbo, T., Maggipinto, and G., Patera, 3D cavity light bullets in a nonlinear optical resonator, Phys. Rev. Lett. 93, 203901 (2004)
[432] M., Tlidi and P., Mandel, Three-dimensional optical crystals and localized structures in cavity second harmonic generation, Phys. Rev. Lett. 83, 4995 (1999)
[433] S. D., Jenkins, F., Prati, L. A., Lugiato, L., Columbo, and M., Brambilla, Cavity light bullets in a dispersive Kerr medium, Phys. Rev. A 80, 033832 (2009)
[434] Y., Tanguy, Th., Ackemann, W. J., Firth, and R., Jaeger, Realization of a semiconductor-based cavity soliton laser, Phys. Rev. Lett. 100, 013907 (2008)
[435] P., Genevet, S., Barland, M., Giudici, and J. R., Tredicce, Cavity soliton laser based on mutually coupled semiconductor microresonators, Phys. Rev. Lett. 101, 123905 (2008)
[436] T., Elsass, K., Gauthron, G., Beaudoin et al., Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber, Appl. Phys. B 98, 307 (2010)
[437] N. N., Rozanov and S. V., Fedorov, Diffraction switching waves and autosolitons in a laser with saturable absorption, Opt. Spectrosc. 72, 782 (1992)
[438] S. V., Fedorov, A. G., Vladimirov, G. V., Khodova, and N. N., Rosanov, Effect of frequency detunings and finite relaxation rates on laser localized structures, Phys. Rev. E 61, 5814 (2000)
[439] M., Bache, F., Prati, G., Tissoni et al., Cavity soliton laser based on VCSEL with saturable absorber, Appl. Phys. B 81, 913 (2005)
[440] F., Prati, P., Caccia, G., Tissoni et al., Effects of carrier radiative recombination on a VCSEL-based cavity soliton laser, Appl. Phys. B 88, 405 (2007)
[441] G., Tissoni, K. M., Aghdami, F., Prati, M., Brambilla, and L. A., Lugiato, Cavity soliton laser based on a VCSEL with saturable absorber, in O., Descalzi, M., Clerc, S., Residori, and G., Assanto (eds.) Localized States in Physics: Solitons and Patterns (Berlin: Springer, 2011), p. 187
[442] K. M., Aghdami, F., Prati, P., Caccia et al., Comparison of different switching techniques in a cavity soliton laser, Eur. Phys. J. D 47, 447 (2008)
[443] S. V., Fedorov, N. N., Rosanov, and N. A., Shatsev, Two-dimensional solitons in B-class lasers with saturable absorption, Opt. Spectrosc. 102, 449 (2007)
[444] F., Prati, G., Tissoni, L. A., Lugiato, K. M., Aghdami, and M., Brambilla, Spontaneously moving solitons in a cavity soliton laser with circular section, Eur. Phys. J. D 59, 73 (2010)
[445] F., Prati, L. A., Lugiato, G., Tissoni, and M., Brambilla, Cavity soliton billiards, Phys. Rev. A 84, 053852 (2011)
[446] Y., Couder, S., Protiere, E., Fort, and A., Boudaoud, Dynamical phenomena: Walking and orbiting droplets, Nature 437, 208 (2005)
[447] A., Eddi, E., Fort, F., Moisy, and Y., Couder, Unpredictable tunneling of a classical wave–particle association, Phys. Rev. Lett. 102, 240401 (2009)
[448] F., Pedaci, G., Tissoni, S., Barland, M., Giudici, and J. R., Tredicce, Mapping local defects of extended media using localized structures, Appl. Phys. Lett. 93, 111104 (2008)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.