Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T23:20:36.762Z Has data issue: false hasContentIssue false

Chapter 7 - Medicinal chemistry challenges in the design of next generation antidepressants

Published online by Cambridge University Press:  19 October 2021

Chad E. Beyer
Affiliation:
University of Colorado School of Medicine
Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

Monoamine-based strategies and targets have provided a useful variety of therapeutic agents with beneficial activity in the treatment of depression. However, this approach has some limitations, including a delayed onset of efficacy and treatment resistance. As a result, there is significant interest in non-monoamine targets and their potential as antidepressants. This search for new treatment modalities has been aided by better understanding of the neurochemical pathways involved in mood. This chapter will review medicinal chemistry advances in a selection of non-monoamine targets of current interest in the field.

Type
Chapter
Information
Next Generation Antidepressants
Moving Beyond Monoamines to Discover Novel Treatment Strategies for Mood Disorders
, pp. 102 - 118
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kelly, J., Curr. Med. Chem. Cent. Nerv. Syst. Agents, 2003, 3, 311.CrossRefGoogle Scholar
Butler, S. G., Meegan, M. J. Curr. Med. Chem., 2008, 15, 1737.Google Scholar
Abramets, I. I., Evdokimov, D. V., Talalaenko, A. N., Neurophysiology, 2007, 39, 184.CrossRefGoogle Scholar
Demyttenaere, K., De Fruyt, J., Stahl, S. M., Int. J. Neuropsychopharmacol., 2005, 8, 93.CrossRefGoogle Scholar
Katz, M. M., Tekell, J. L., Bowden, C. L., Brannan, S., Houston, J. P., Berman, N., Neuropsychopharmacology, 2004, 29, 566.CrossRefGoogle Scholar
Posternak, M. A., Zimmerman, M., J. Clin. Psychiatry, 2005, 66, 148.CrossRefGoogle Scholar
Blier, P., Montigny, C., Biol. Psychiatry, 1998, 44, 213.CrossRefGoogle Scholar
Manji, H. K., Chen, G., Mol. Psychiatry, 2002, 7, S46.CrossRefGoogle Scholar
Wong, M. L., Licinio, J., Nat. Rev. Drug Discov., 2004, 3, 136.CrossRefGoogle Scholar
Xu, H., Richardson, J. S., Li, X. M., Neuropsychopharmacology, 2003, 28, 53.Google Scholar
Gonul, A. S., Doksat, K., Eker, C., Eker, O. D., Trends Serotonin Uptake Inhibitor Res, 2005, 1.Google Scholar
Manji, H. K., Drevets, W. C., Chamey, D. S., Nat. Med., 2001, 7, 541.Google Scholar
Coyle, J. T., Duman, R. S., Neuron, 2003, 38, 157.CrossRefGoogle Scholar
Rosenzweig-Lipson, S., Beyer, C. E., Hughes, Z., et al., Pharmacol. Ther., 2007, 113, 134.Google Scholar
Cipriani, A., Barbui, C., Brambilla, P., Furukawa, T. A., Hotopf, M., Geddes, J. R., J. Clin. Psychiatry, 2006, 67, 850.Google Scholar
Thase, M. E., J. Clin. Psychiatry, 1998, 59, 502.CrossRefGoogle Scholar
DeMontigny, C., Chaput, I., Blier, P., J. Clin. Psychopharmacol., 1987, 7, 24.Google Scholar
Romero, L., Hervás, I., Artegas, F., Neurosci. Lett., 1996, 219, 123.Google Scholar
Duxon, M. S., Starr, K. R., Upton, N., Br. J. Pharmacol., 2000, 130, 1713.CrossRefGoogle Scholar
Takeuchi, K., Kohn, T. J., Honigschmidt, N. A., et al., Bioorg. Med. Chem. Lett., 2003, 13, 1903.CrossRefGoogle Scholar
Takeuchi, K., Kohn, T. J., Honigschmidt, N. A., et al., Bioorg. Med. Chem. Lett., 2006, 16, 2347.Google Scholar
Hatzenbuhler, N. T., Evrard, D. A., Harrison, B. L., et al., J. Med. Chem., 2006, 49, 4785.CrossRefGoogle Scholar
Hatzenbuhler, N. T., Baudy, R., Evrard, D. A., et al., J. Med. Chem., 2008, 51, 6980.CrossRefGoogle Scholar
Kreiss, D. S., Lucki, I., J. Pharmacol. Exp. Ther., 1995, 274, 866.Google Scholar
Atkinson, P. J., Bromidge, S. M., Duxon, M. S., et al., Bioorg. Med. Chem. Lett., 2005, 15, 737.CrossRefGoogle Scholar
Scott, C., Soffin, E. M., Hill, M., et al., Eur. J. Pharmacol., 2006, 536, 54.CrossRefGoogle Scholar
Starr, K. R., Price, G. W., Watson, J. M., et al., Neuropsychopharmacology, 2007, 32, 2163.CrossRefGoogle Scholar
Skolnick, P., Popik, P, Janowsky, A., Beer, B., Lippa, A. S., Eur. J. Pharmacol., 2003, 461, 99.CrossRefGoogle Scholar
D’Aquila, P. S., Collu, M., Gessa, G. L., Serra, G., Eur. J. Pharmacol., 2000, 405, 365.Google Scholar
Naranjo, C., Tremblay, L. K., Busto, U. E., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25, 781.Google Scholar
Skolnick, P., Popik, P., Janowsky, A., Beer, B., Lippa, A. S., Life Sci., 2003, 73, 3175.Google Scholar
Ben-Jonathan, N., Hnasko, R., Endocr. Rev., 2001, 22, 724.Google Scholar
Breuer, M. E., Chan, J. S. W., Oosting, R. S., et al., Eur. Neuropsychopharmacol., 2008, 18, 908.Google Scholar
Carlier, P. R., Lo, M. M., Lo, P. C., et al., Bioorg. Med. Chem. Lett., 1998, 8, 487.Google Scholar
Liang, Y., Shaw, A. M., Boules, M., et al., J. Pharmacol. Exp. Ther., 2008, 327, 573.CrossRefGoogle Scholar
Aluisio, L., Lord, B., Barbier, A., et al., Eur. J. Pharmacol., 2008, 587, 141.Google Scholar
Bannwart, L. M., Carter, D. S., Cai, H. Y., et al., Bioorg. Med. Chem. Lett., 2008, 18, 6062.CrossRefGoogle Scholar
Trullas, R., Skolnick, P., Eur. J. Pharmacol., 1990, 185, 1.Google Scholar
Paul, I. A., Layer, R. T., Skolnick, P, Nowak, G., Eur. J. Pharmacol., 1993, 247, 305.CrossRefGoogle Scholar
Paul, I. A., Nowak, G., Layer, R. T., Skolnick, P., J. Pharmacol. Exp. Ther., 1994, 269, 95.Google Scholar
Nowak, G., Legutko, B., Skolnick, P., Popik, P., Eur. J. Pharmacol., 1998, 342, 367.Google Scholar
Zarate, C. A., Singh, J. B., Carlson, P. J., et al., Arch. Gen. Psychiatry, 2006, 63, 856.Google Scholar
Pilc, A., Chaki, S., Nowak, G., Witkin, J. M., Biochem. Pharmacol., 2008, 75, 997.Google Scholar
Lea, P. M., Faden, A. I., CNS Drug Rev., 2006, 12, 149.CrossRefGoogle Scholar
Li, X., Need, A. B., Baez, M., Witkin, J. M., J. Pharmacol. Exp. Ther., 2006, 319, 254.Google Scholar
Sharma, S., Rodriguez, A. L., Conn, J. P., Lindsley, C. W., Bioorg. Med. Chem. Lett., 2008, 18, 4098.Google Scholar
Porter, R. H. P., Jaeschke, G., Spooren, W., et al., J. Pharmacol. Exp. Ther., 2005, 315, 711.Google Scholar
Rodriguez, A. L., Nong, Y., Sekaran, N. K., Alagille, D., Tamagnan, G. D., Conn, P. J., Mol. Pharmacol., 2005, 68, 793.Google Scholar
Milbank, J. B. J., Knauer, C. S., Augelli-Szafran, C. E., et al., Bioorg. Med. Chem. Lett., 2007, 17, 4415.CrossRefGoogle Scholar
Bach, P., Nilsson, K., Svensson, T., et al., Bioorg. Med. Chem. Lett., 2006, 16, 4788.Google Scholar
Ohishi, H., Shigemoto, R., Nakanishi, S., Mizuno, N., Neuroscience, 1993, 53, 1009.CrossRefGoogle Scholar
Tanabe, Y., Nomura, A., Masu, M., Shigemoto, R., Mizuno, N., J. Neurosci., 1993, 13, 1372.Google Scholar
Shigemoto, R., Kinoshita, A., Wada, E., et al., J. Neurosci., 1997, 17, 7503.CrossRefGoogle Scholar
Ohishi, H., Shigemoto, R., Nakanishi, S., Mizuno, N., J. Comp. Neurol., 1993, 335, 252.Google Scholar
Spinelli, S., Ballard, T., Gatti-McArthur, S., et al., Psychopharmacology, 2005, 179, 292.Google Scholar
Higgins, G. A., Ballard, T. M., Kew, J. N. C., et al., Neuropharmacology, 2004, 46, 907.Google Scholar
Woltering, T. J., Adam, G., Alanine, A., et al., Bioorg. Med. Chem. Lett., 2007, 17, 6811.Google Scholar
Woltering, T. J., Adam, G., Wichmann, J., et al., Bioorg. Med. Chem. Lett., 2008, 18, 1091.Google Scholar
Nakazato, A., Sakagami, K., Yasuhara, A., et al., J. Med. Chem., 2004, 47, 4570.CrossRefGoogle Scholar
Yasuhara, A., Nakamura, M., Sakagami, K., et al., Bioorg. Med. Chem., 2006, 14, 4193.CrossRefGoogle Scholar
Reinschied, R., CNS Neurol Disord Drug Targets, 2006, 5, 219.Google Scholar
Jenck, F., Wichmann, J., Dautzenberg, F. M., et al., Proc. Natl Acad. Sci., 2000, 97, 4938.CrossRefGoogle Scholar
Varty, G. B., Lu, S. X., Morgan, C. A., et al., J. Pharmacol. Exp. Ther., 2008, 326, 672.Google Scholar
Spagnolo, B., Carrà, G., Fantin, M., et al., J. Pharmacol. Exp. Ther., 2007, 321, 961.CrossRefGoogle Scholar
Rizzi, A., Gavioli, E. C., Marzola, G., et al., J. Pharmacol. Exp. Ther., 2007, 321, 968.Google Scholar
Schatzberg, A. F., Rothschild, A. J., Langlais, P. J., Bird, E. D., Cole, J. O., J. Psychiatr. Res., 1985, 19, 57.CrossRefGoogle Scholar
Marshall, R. D., Blanco, C., Printz, D., Liebowitz, M. R., Klein, D. F., Coplan, J., Psychiatry Res., 2002, 110, 219.Google Scholar
Zobel, A. W., Nickel, T., Sonntag, A., Uhr, M., Holsboer, F., Ising, M., J. Psychiatr. Res., 2001, 35, 83.CrossRefGoogle Scholar
Thomson, F., Craighead, M., Neurochem. Res., 2008, 33, 691.Google Scholar
Erickson, K., Drevets, W., Schulkin, J., Neurosci. Biobehav. Rev., 2003, 27, 233.CrossRefGoogle Scholar
Ray, N. C., Clark, R. D., Clark, D. E., et al., Bioorg. Med. Chem. Lett., 2007, 17, 4901.Google Scholar
Clark, R. D., Ray, N. C., Williams, K., et al., Bioorg. Med. Chem. Lett., 2008, 18, 1312.Google Scholar
Shah, N., Scanlan, T., Bioorg. Med. Chem. Lett., 2004, 14, 5199.Google Scholar
Spiga, F., Harrison, L. R., Wood, S. A., et al., J. Neuroendocrinology, 2007, 19, 891.CrossRefGoogle Scholar
Bachmann, C. G., Bilang-Bleuel, A., De Carli, S, Linthorst, A. C. E., Reul, J. M. H. M., Neuroendocrinology, 2005, 81, 129.CrossRefGoogle Scholar
de Winter, R. F., van Hemert, A. M., DeRijk, R. H., et al., Neuropsychopharmacology, 2003, 28, 140.Google Scholar
van Londen, L., Goekoop, J. G., van Kempen, G. M., et al., Neuropsychopharmacology, 1993, 17, 284Google Scholar
Purba, J. S., Hoogendijk, W. J., Hofman, M. A., Swaab, D. F., Arch. Gen. Psychiatry, 1996, 53, 137.Google Scholar
Serradeil-Le Gal, C., Wagnon, J., Simiand, J., et al., J. Pharmacol. Exp. Ther., 2002, 300, 1122.Google Scholar
Griffante, C., Green, A., Curcuruto, O., Haslam, C. P., Dickinson, B. A., Arban, R., Br. J. Pharmacol., 2005, 146, 744.Google Scholar
Iijima, M., Chaki, S., Prog. Neuropsychopharmacol. Biol. Psych., 2007, 31, 622.Google Scholar
Louis, C., Cohen, C., Depoortére, R., Griebel, R., Neuropsychopharmacology, 2006, 31, 2180.CrossRefGoogle Scholar
Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerly, R. B., Cone, R. D., Mol. Endocrinol. 1994, 8, 1298.Google Scholar
Chhajlani, V., Biochem. Mol. Biol. Int., 1996, 38, 73.Google Scholar
Adan, R. A., Szklarczyk, A. W., Oosterom, J., et al., Eur. J. Pharmacol., 1999, 378, 249.CrossRefGoogle Scholar
Yamano, Y., Yoshioka, M., Toda, Y., et al., J. Vet. Med. Sci., 2004, 66, 1323.Google Scholar
Chaki, S., Hirota, S., Funakoshi, T., et al., J. Pharmacol. Exp. Ther., 2003, 304, 818.CrossRefGoogle Scholar
Nozawa, D., Okubo, T., Ishii, T., et al., Bioorg. Med. Chem., 2007, 15, 1989.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×