Skip to main content Accessibility help
×
Home
  • Print publication year: 2014
  • Online publication date: December 2014

9 - Synucleinopathies

References

1. M. H. Polymeropoulos, C. Lavedan, E. Leroy, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276: 2045–7.
2. M. G. Spillantini, M. L. Schmidt, V. M. Lee, et al. α-Synuclein in Lewy bodies. Nature 1997; 388: 839–40.
3. K. Wakabayashi, M. Yoshimoto, S. Tsuji, H. Takahashi. α-Synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett 1998; 249: 180–2.
4. R. Kruger, W. Kuhn, T. Muller, et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 1998; 18: 106–8.
5. J. J. Zarranz, J. Alegre, J. C. Gomez-Esteban, et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004; 55: 164–73.
6. S. Appel-Cresswell, C. Vilarino-Guell, M. Encarnacion, et al. α-Synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 2013; 6:811–3.
7. C. Proukakis, C. G. Dudzik, T. Brier, et al. A novel α-synuclein missense mutation in Parkinson disease. Neurology 2013; 80: 1062–4.
8. S. Lesage, M. Anheim, F. Letournel, et al. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 2013; 73: 459–71.
9. M. C. Chartier-Harlin, J. Kachergus, C. Roumier, et al. α-Synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004; 364: 1167–9.
10. P. Ibanez, A. M. Bonnet, B. Debarges, et al. Causal relation between α-synuclein gene duplication and familial Parkinson’s disease. Lancet 2004; 364:1169–71.
11. A. B. Singleton, M. Farrer, J. Johnson, et al. α-Synuclein locus triplication causes Parkinson’s disease. Science 2003; 302: 841.
12. A. Iwai, E. Masliah, M. Yoshimoto, et al. The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995; 14: 467–75.
13. W. J. Schulz-Schaeffer. The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 2010; 120: 131–43.
14. A. Sidhu, C. Wersinger, P. Vernier. Does α-synuclein modulate dopaminergic synaptic content and tone at the synapse? FASEB J 2004; 18: 637–47.
15. F. Mori, K. Tanji, M. Yoshimoto, H. Takahashi, K. Wakabayashi. Demonstration of α-synuclein immunoreactivity in neuronal and glial cytoplasm in normal human brain tissue using proteinase K and formic acid pretreatment. Exp Neurol 2002; 176: 98–104.
16. W. Tamo, T. Imaizumi, K. Tanji, et al. Expression of α-synuclein, the precursor of non-amyloid β component of Alzheimer’s disease amyloid, in human cerebral blood vessels. Neurosci Lett 2002; 326: 5–8.
17. V. Askanas, W. K. Engel, R. B. Alvarez, J. McFerrin, A. Broccolini. Novel immunolocalization of α-synuclein in human muscle of inclusion-body myositis, regenerating and necrotic muscle fibers, and at neuromuscular junctions. J Neuropathol Exp Neurol 2000; 59: 592–8.
18. E. C. Shin, S. E. Cho, D. K. Lee, et al. Expression patterns of α-synuclein in human hematopoietic cells and in Drosophila at different developmental stages. Mol Cells 2000; 10: 65–70.
19. F. Mori, C. Inenaga, M. Yoshimoto, et al. α-Synuclein immunoreactivity in normal and neoplastic Schwann cells. Acta Neuropathol 2002; 103: 145–51.
20. O. M. El-Agnaf, S. A. Salem, K. E. Paleologou, et al. α-Synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 2003; 17: 1945–7.
21. B. Mollenhauer, V. Cullen, I. Kahn, et al. Direct quantification of CSF α-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp Neurol 2008; 213: 315–25.
22. L. Maroteaux, J. T. Campanelli, R. H. Scheller. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 1988; 8: 2804–15.
23. M. Goedert. α-Synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001; 2: 492–501.
24. A. L. Biere, S. J. Wood, J. Wypych, et al. Parkinson’s disease-associated α-synuclein is more fibrillogenic than β- and γ-synuclein and cannot cross-seed its homologs. J Biol Chem 2000; 275: 34574–9.
25. K. Beyer, J. I. Lao, C. Carrato, et al. Differential expression of α-synuclein isoforms in dementia with Lewy bodies. Neuropath App Neurobiol 2004; 30: 601–7.
26. K. Beyer, J. Humbert, A. Ferrer, et al. Low α-synuclein 126 mRNA levels in dementia with Lewy bodies and Alzheimer disease. Neuroreport 2006; 17: 1327–30.
27. K. Beyer, M. Domingo-Sabat, J. I. Lao, et al. Identification and characterization of a new α-synuclein isoform and its role in Lewy body diseases. Neurogenetics 2008; 9: 15–23.
28. R. A. Crowther, R. Jakes, M. G. Spillantini, M. Goedert. Synthetic filaments assembled from C-terminally truncated α-synuclein. FEBS Lett. 1998; 436: 309–12.
29. I. V. Murray, B. I. Giasson, S. M. Quinn, et al. Role of α-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry 2003; 42: 8530–40.
30. H. Fujiwara, M. Hasegawa, N. Dohmae, et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 2002; 4: 160–4.
31. B. I. Giasson, J. E. Duda, I. V. Murray, et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 2000; 290: 985–9.
32. N. R. McFarland, Z. Fan, K. Xu, et al. α-Synuclein S129 phosphorylation mutants do not alter nigrostriatal toxicity in a rat model of Parkinson disease. J Neuropathol Exp Neurol 2009; 68: 515–24.
33. A. H. Coons, H. J. Creech, R. H. Jones. Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol Med 1941; 47: 200–2.
34. I. Alafuzoff, M. Pikkarainen, S. Al-Sarraj, et al. Interlaboratory comparison of assessments of Alzheimer disease-related lesions: a study of the BrainNet Europe Consortium. J Neuropathol Exp Neurol 2006; 65: 740–57.
35. I. Alafuzoff, L. Parkkinen, S. Al-Sarraj, et al. Assessment of α-synuclein pathology: a study of the BrainNet Europe Consortium. J Neuropathol Exp Neurol 2008; 67: 125–43.
36. I. Alafuzoff, M. Pikkarainen, T. Arzberger, et al. Inter-laboratory comparison of neuropathological assessments of β-amyloid protein: a study of the BrainNet Europe consortium. Acta Neuropathol 2008; 115: 533–46.
37. L. Aho, M. Pikkarainen, M. Hiltunen, V. Leinonen, I. Alafuzoff. Immunohistochemical visualization of amyloid-β protein precursor and amyloid-β in extra- and intracellular compartments in the human brain. J Alzheimers Dis 2010; 20:1015–28.
38. A. Seppänen, H. Autio-Harmainen, I. Alafuzoff, et al. Collagen XVII is expressed in human CNS neurons. Matrix Biol 2006; 25: 185–8.
39. E. Gelpi, M. Preusser, G. Bauer, H. Budka. Autopsy at 2 months after death: brain is satisfactorily preserved for neuropathology. Forensic Sci Int 2007; 168: 177–82.
40. M. Pikkarainen, P. Martikainen, I. Alafuzoff. The effect of prolonged fixation time on immunohistochemical staining of common neurodegenerative disease markers. J Neuropathol Exp Neurol 2010; 69: 40–52.
41. K. S. Laitinen, T. van Groen, H. Tanila, et al. Brain prolyl oligopeptidase activity is associated with neuronal damage rather than β-amyloid accumulation. Neuroreport.2001; 12: 3309–12.
42. C. Karlsson, M. G. Karlsson. Effects of long-term storage on the detection of proteins, DNA and mRNA in tissue microarray slide. J Histochem Cytochem 2011; 59: 1113–1121.
43. J. A. Ramos-Vara, M. A. Miller. When tissue antigen and antibodies get along: revisiting the technical aspects of immunohistochemistry – the red, brown and blue technique. Vet Pathol 2013; 51: 42–87.
44. TY-M. Leong, K. Cooper, AS-Y. Leong. Immunohistology – past, present and future Adv. Anat Pathol 2010; 17: 404–418.
45. D. Aarsland, E. Londos, C. Ballard. Parkinson’s disease dementia and dementia with Lewy bodies: different aspects of one entity. Int Psychogeriatr 2009; 21: 216–9.
46. G. J. Revuelta, C. F. Lippa. Dementia with Lewy bodies and Parkinson’s disease dementia may best be viewed as two distinct entities. Int Psychogeriatr 2009; 21: 213–6.
47. I. McKeith. Commentary: DLB and PDD: the same or different? Is there a debate? Int Psychogeriatr 2009; 21: 220–4.
48. E. Kövari, J. Horvath, C. Bouras. Neuropathology of Lewy body disorders. Brain Res Bull 2009; 80: 203–10.
49. I. McKeith, J. Mintzer, D. Aarsland, et al. International Psychogeriatric Association Expert Meeting on DLB. Dementia with Lewy bodies. Lancet Neurol 2004; 3: 19–28.
50. I. Alafuzoff. Alzheimer’s disease-related lesions. J Alzheimers Dis 2013; 33 Suppl 1: S173–9.
51. J. Jankovic. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79: 368–76.
52. B. Dubois, D. Burn, C. Goetz, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord 2007; 22: 2314–24.
53. M. Emre, D. Aarsland, R. Brown, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 2007; 22: 1689–707.
54. I. G. McKeith, D. W. Dickson, J. Lowe, et al. Consortium on DLB. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005; 65: 1863–72.
55. S. Sharma, C. S. Moon, A. Khogali, et al. Biomarkers in Parkinson’s disease (recent update). Neurochem Int 2013; 63: 201–29.
56. R. Barber, I. G. McKeith, C. Ballard, A. Gholkar, J. T. O’Brien. A comparison of medial and lateral temporal lobe atrophy in dementia with Lewy bodies and Alzheimer’s disease: magnetic resonance imaging volumetric study. Dement Geriatr Cogn Disord 2001; 12: 198–205.
57. S. Colloby, J. O’Brien. Functional imaging in Parkinson’s disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol 2004; 17: 158–63.
58. G. Ransmayr, K. Seppi, E. Donnemiller, et al. Striatal dopamine transporter function in dementia with Lewy bodies and Parkinson’s disease. Eur J Nucl Med 2001; 28: 1523–8.
59. S. J. Colloby, S. McParland, J. T. O’Brien, J. Attems. Neuropathological correlates of dopaminergic imaging in Alzheimer’s disease and Lewy body dementias. Brain 2012; 135: 2798–808.
60. C. D. Cnyrim, A. Kupsch, G. Ebersbach, K. T. Hoffmann. Diffusion tensor imaging in idiopathic Parkinson’s disease and multisystem atrophy (parkinsonian type). Neurodegener Dis 2014; 13: 1–8.
61. K. Tsukamoto, E. Matsusue, Y. Kanasaki, et al. Significance of apparent diffusion coefficient measurement for the differential diagnosis of multiple system atrophy, progressive supranuclear palsy, and Parkinson’s disease: evaluation by 3.0-T MR imaging. Neuroradiology 2012; 54: 947–55.
62. R. Watson, A. M. Blamire, S. J. Colloby, et al. Characterizing dementia with Lewy bodies by means of diffusion tensor imaging. Neurology 2012; 79: 906–14.
63. S. N. Gomperts, J. J. Locascio, M. Marquie, et al. Brain amyloid and cognition in Lewy body diseases. Mov Disord 2012; 27: 965–73.
64. E. R. Foster, M. C. Campbell, M. A. Burack, et al. Amyloid imaging of Lewy body-associated disorders. Mov Disord 2010; 25: 2516–23.
65. A. H. Schapira. Developments in biomarkers in Parkinson disease. Curr Opin Neurol 2013; 26: 395–400.
66. B. Mollenhauer, J. J. Locascio, W. Schulz-Schaeffer, et al. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 2011; 10: 230–40.
67. I. Devic, H. Hwang, J. S. Edgar, et al. Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain 2011; 134: e178.
68. M. J. Park, S. M. Cheon, H. R. Bae, S. H. Kim, J. W. Kim. Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naïve patients with Parkinson’s disease. J Clin Neurol 2011; 7: 215–22.
69. M. R. Sierks, G. Chatterjee, C. McGraw, et al. CSF levels of oligomeric α-synuclein and β-amyloid as biomarkers for neurodegenerative disease. Integr Biol (Camb) 2011; 3: 1188–96.
70. P. G. Foulds, J. D. Mitchell, A. Parker, et al. Phosphorylated α-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. FASEB J 2011; 5: 4127–37.
71. P. G. Foulds, P. Diggle, J. D. Mitchell, et al. A longitudinal study on α-synuclein in blood plasma as a biomarker for Parkinson’s disease. Sci Rep 2013; 3: 2540.
72. S. Y. Ma, J. O. Rinne, Y. Collan, M. Röyttä, U. K. Rinne. A quantitative morphometrical study of neuron degeneration in the substantia nigra in Parkinson’s disease. J Neurol Sci 1996; 140: 40–5.
73. N. Eriksen, A. K. Stark, B. Pakkenberg. Age and Parkinson’s disease-related neuronal death in the substantia nigra pars compacta. J Neural Transm Suppl 2009; 73: 203–13.
74. P. Damier, E. C. Hirsch, Y. Agid, A. M. Graybiel. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999; 122: 1437–48.
75. J. M. Fearnley, A. J. Lees, Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991; 114: 2283–2301.
76. F. H. Lewy. Paralysis agitans. I. Pathologissche Antomie. In Handbuch der Neurologie III. Springer, Berlin. 1912; 920–933.
77. E. Redlich. Uber das vorkommon von sogenannten “amyloidkörperchen” in den gangliezellen der substantia nigra beim metenzephalitischen Parkinsonismus. Monats-schr Psychitr Nurol 1930; 75: 129–37.
78. G. E. Dale, A. Probst, P. Luthert, et al. Relationships between Lewy bodies and pale bodies in Parkinson’s disease. Acta Neuropathol 1992; 83: 525–9.
79. H. Okazaki, L. E. Lipkin, S. M. Arosnon. Diffuse intracytoplasmic ganglionic inclusions (Lewy type) associated with progressive dementia and quadriparesis in flexion. J Neuropathol Exp Neurol 1961; 20: 237–44.
80. S. Kuzuhara, H. Mori, N. Izumiyama, M. Yoshimura, Y. Ihara. Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta Neuropathol 1988; 75: 345–53.
81. E. Kuusisto, L. Parkkinen, I. Alafuzoff. Morphogenesis of Lewy bodies: dissimilar incorporation of α-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol 2003; 62: 1241–53.
82. E. Kuusisto, T. Kauppinen, I. Alafuzoff. Use of p62/SQSTM1 antibodies for neuropathological diagnosis. Neuropathol Appl Neurobiol 2008; 34: 169–80.
83. G. G. Kovacs, U. Wagner, B. Dumont, et al. An antibody with high reactivity for disease-associated α-synuclein reveals extensive brain pathology. Acta Neuropathol 2012; 124: 37–50.
84. K. Kosaka, M. Yoshimura, K. Ikeda, H. Budka. Diffuse type of Lewy body disease: progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree – a new disease? Clin Neuropathol 1984; 3: 185–92.
85. H. Braak, E. Braak. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239–59.
86. I. G. McKeith, D. Galasko, K. Kosaka, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996; 47: 1113–24.
87. H. Braak, K. Del Tredici, U. Rüb, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24: 197–211.
88. C. M. Müller, R. A. de Vos, C. A. Maurage, et al. Staging of sporadic Parkinson disease-related α-synuclein pathology: inter- and intra-rater reliability. J Neuropathol Exp Neurol 2005; 64: 623–8.
89. J. B. Leverenz, R. Hamilton, D. W. Tsuang, et al. Empiric refinement of the pathologic assessment of Lewy-related pathology in the dementia patient. Brain Pathol 2008; 18: 220–4.
90. T. G. Beach, C. H. Adler, L. Lue, et al. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol 2009; 117: 613–34.
91. I. Alafuzoff, P. G. Ince, T. Arzberger, et al. Staging/typing of Lewy body related α-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathol 2009; 117: 635–52.
92. L. Parkkinen, T. Kauppinen, T. Pirttilä, et al. α-Synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 2005; 57: 82–91.
93. J. Zaccai, C. Brayne, I. McKeith, et al. Patterns and stages of α-synucleinopathy: Relevance in a population-based cohort. Neurology 2008; 70: 1042–8.
94. D. W. Dickson, H. Uchikado, H. Fujishiro, Y. Tsuboi. Evidence in favor of Braak staging of Parkinson’s disease. Mov Disord 2010; 24 (Suppl. 1): S78–82.
95. W. D. van de Berg, D. H. Hepp, A. A. Dijkstra, et al. Patterns of α-synuclein pathology in incidental cases and clinical subtypes of Parkinson’s disease. Parkinsonism Relat Disord 2012; 18 (Suppl. 1): S28–30.
96. T. J. Montine, C. H. Phelps, T. G. Beach, et al. National Institute on Aging; Alzheimer’s Association. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 2012; 123: 1–11.
97. B. T. Hyman, C. H. Phelps, T. G. Beach, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012; 8: 1–13.
98. H. Brunnström, E. Lindberg, E. Englund. Staging of Lewy-related pathology in dementia. Clin Neuropathol 2012; 31: 216–23.
99. L. Mu, S. Sobotka, J. Chen, et al. Parkinson disease affects peripheral sensory nerves in the pharynx. J Neuropathol Exp Neurol 2013; 72: 614–23.
100. L. Mu, S. Sobotka, J. Chen, et al. α-Synuclein pathology and axonal degeneration of the peripheral motor nerves innervating pharyngeal muscles in Parkinson disease. J Neuropathol Exp Neurol 2013; 72: 119–29.
101. T. G. Beach, C. H. Adler, L. I. Sue, et al. Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 2010; 119: 689–702.
102. T. G. Beach, C. H. Adler, B. N. Dugger, et al. Submandibular gland biopsy for the diagnosis of Parkinson disease. J Neuropathol Exp Neurol 2013; 72: 130–6.
103. K. Del Tredici, C. H. Hawkes, E. Ghebremedhin, H. Braak. Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinson’s disease. Acta Neuropathol 2010; 119: 703–13.
104. H. Braak, R. A. de Vos, J. Bohl, K. Del Tredici Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett. 2006; 396: 67–72.
105. J. Hardy. Expression of normal sequence pathogenic proteins for neurodegenerative disease contributes to disease risk: ‘permissive templating’ as a general mechanism underlying neurodegeneration. Biochem Soc Trans, 2005; 33: 578–81.
106. J. Y. Li, E. Englund, J. L. Holton, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 2008; 14: 501–3.
107. J. H. Kordower, Y. Chu, R. A. Hauser, T. B. Freeman, C. W. Olanow. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008; 14: 504–6.
108. K. C. Luk, V. Kehm, J. Carroll, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012; 338: 949–53.
109. K. C. Luk, V. M. Kehm, B. Zhang, et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med. 2012; 209: 975–86.
110. L. Parkkinen, H. Soininen, M. Laakso, I. Alafuzoff. α-Synuclein pathology is highly dependent on the case selection. Neuropathol Appl Neurobiol 2001; 27: 314–25.
111. H. Braak, U. Rüb, E. N. Jansen Steur, K. Del Tredici, R. A. de Vos. Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 2005; 64: 1404–10.
112. Y. Saito, N. N. Ruberu, M. Sawabe, et al. Lewy body-related α-synucleinopathy in aging. J Neuropathol Exp Neurol 2004; 63: 742–9.
113. L. Parkkinen, T. Pirttilä, I. Alafuzoff. Applicability of current staging/categorization of α-synuclein pathology and their clinical relevance. Acta Neuropathol. 2008; 115: 399–407.
114. J. Zaccai, C. Brayne, I. McKeith, et al. Patterns and stages of α-synucleinopathy: relevance in a population-based cohort. Neurology. 2008; 70: 1042–8.
115. L. Parkkinen, T. Pirttilä, M. Tervahauta, I. Alafuzoff. Widespread and abundant α-synuclein pathology in a neurologically unimpaired subject. Neuropathology 2005; 25: 304–14.
116. L. Aho, L. Parkkinen, T. Pirttilä, I. Alafuzoff. Systematic appraisal using immunohistochemistry of brain pathology in aged and demented subjects. Dement Geriatr Cogn Disord 2008; 25: 423–32.
117. M. E. Kalaitzakis, M. B. Graeber, S. M. Gentleman, R. K. Pearce. Striatal β-amyloid deposition in Parkinson disease with dementia. J Neuropathol Exp Neurol 2008; 67: 155–61.
118. K. A. Jellinger, J. Attems. Does striatal pathology distinguish Parkinson disease with dementia and dementia with Lewy bodies? Acta Neuropathol 2006; 112: 253–60.
119. G. M. Halliday, Y. J. Song, A. J. Harding. Striatal β-amyloid in dementia with Lewy bodies but not Parkinson’s disease. J Neural Transm 2011; 118: 713–9.
120. D. W. Dickson, H. Braak, J. E. Duda, et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 2009; 8: 1150–7.
121. G. M. Halliday, J. L. Holton, T. Revesz, D. W. Dickson. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 2011; 122: 187–204.
122. I. Alafuzoff, T. Arzberger, S. Al-Sarraj, et al. Staging of neurofibrillary pathology in Alzheimer’s disease: a study of the BrainNet Europe Consortium. Brain Pathol 2008; 18: 484–96.
123. I. Alafuzoff, D. R. Thal, T. Arzberger, et al. Assessment of β-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta Neuropathol. 2009; 117: 309–20.
124. Z. Walker, R. L. Allen, S. Shergill, E. Mullan, C. L. Katona. Three years survival in patients with a clinical diagnosis of dementia with Lewy bodies. Int J Geriatr Psychiatry 2000; 15: 267–73.
125. G. G. Kovacs, I. Alafuzoff, S. Al-Sarraj, et al. Mixed brain pathologies in dementia: the BrainNet Europe consortium experience. Dement Geriatr Cogn Disord 2008; 26: 343–50.
126. K. A. Jellinger. Pathology and pathogenesis of vascular cognitive impairment – a critical update. Front Aging Neurosci 2013; 5:17.
127. M. Colom-Cadena, E. Gelpi, S. Charif, et al. Confluence of α-synuclein, tau, and β-amyloid pathologies in dementia with Lewy bodies. J Neuropathol Exp Neurol 2013; 72: 1203–12.
128. V. Deramecourt. Vascular neuropathology and cognitive decline. Rev Neurol (Paris) 2013; 169: 765–71.
129. I. Alafuzoff, E. Gelpi, S. Al-Sarraj, et al. The need to unify neuropathological assessments of vascular alterations in the ageing brain: multicentre survey by the BrainNet Europe consortium. Exp Gerontol. 2012; 47: 825–33.
130. C. F. Lippa, H. Fujiwara, D. M. Mann, et al. Lewy bodies contain altered α-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am J Pathol 1998; 153: 1365–70.
131. R. L. Hamilton. Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using α-synuclein immunohistochemistry. Brain Pathol 2000; 10: 378–84.
132. C. F. Lippa, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski. Antibodies to α-synuclein detect Lewy bodies in many Down’s syndrome brains with Alzheimer’s disease. Ann Neurol 1999; 45: 353–7.
133. A. Popescu, C. F. Lippa, V. M. Lee, Q. Trojanowski. Lewy bodies in the amygdala: increase of α-synuclein aggregates in neurodegenerative diseases with tau-based inclusions. Arch Neurol 2004; 61: 1915–9.
134. H. Uchikado, W. L. Lin, M. W. DeLucia, D. W. Dickson. Alzheimer disease with amygdala Lewy bodies: a distinct form of α-synucleinopathy. J Neuropathol Exp Neurol 2006; 65: 685–97.
135. E. Masliah, E. Rockenstein, I. Veinbergs, et al. β-Amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci U S A 2001; 98: 12245–50.
136. B. I. Giasson, M. S. Forman, M. Higuchi, et al. Initiation and synergistic fibrillization of tau and α-synuclein. Science 2003; 300: 636–40.
137. L. K. Clinton, M. Blurton-Jones, K. Myczek, et al. Synergistic interactions between Aβ, tau, and α-synuclein: acceleration of neuropathology and cognitive decline. J Neuroscience 2010; 30: 7281–9.
138. H. Uchikado, A. DelleDonne, Z. Ahmed, D. W. Dickson. Lewy bodies in progressive supranuclear palsy represent an independent disease process. J Neuropathol Exp Neurol. 2006; 65: 387–95.
139. D. W. Dickson, C. Bergeron, S. S. Chin, et al. Office of Rare Diseases of the National Institutes of Health. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol. 2002; 61: 935–46.
140. K. A. Jellinger. Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. Neurodegener Dis 2008; 5: 118–121.
141. E. D. Louis. Essential tremor: evolving clinicopathological concepts in an era of intensive post-mortem enquiry. Lancet Neurol. 2010; 9: 613–22.
142. M. Yamazaki, Y. Arai, M. Baba, et al. α-Synuclein inclusions in amygdala in the brains of patients with the parkinsonism-dementia complex of Guam. J Neuropathol Exp Neurol. 2000; 59: 585–91.
143. Y. Kokubo, A. Taniguchi, M. Hasegawa, et al. α-Synuclein pathology in the amyotrophic lateral sclerosis/parkinsonism dementia complex in the Kii Peninsula, Japan. J Neuropathol Exp Neurol. 2012; 71: 625–30.
144. P. N. Leigh, H. Whitwell, O. Garofalo, et al. Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain. 1991; 114: 775–88.
145. J. E. Olsson, U. Brunk, B. Lindvall, O. Eeq-Olofsson. Dopa-responsive dystonia with depigmentation of the substantia nigra and formation of Lewy bodies. J Neurol Sci 1992; 112: 90–5.
146. J. R. Trivedi, G. I. Wolfe, S. P. Nations, et al. Adult polyglucosan body disease associated with Lewy bodies and tremor. Arch Neurol 2003; 60: 764–6.
147. A. Gregory, B. J. Polster, S. J. Hayflick. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 2009; 46: 73–80.
148. W. R. Gibb, A. J. Lees. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 1988; 51: 745–52.
149. D. W. Dickson, H. Fujishiro, A. DelleDonne, et al. Evidence that incidental Lewy body disease is pre-symptomatic Parkinson’s disease. Acta Neuropathol 2008; 115: 437–44.
150. R. Frigerio, H. Fujishiro, T. B. Ahn, et al. Incidental Lewy body disease: do some cases represent a preclinical stage of dementia with Lewy bodies? Neurobiol Aging 2011; 32: 857–63.
151. O. Goker-Alpan, R. Schiffmann, M. E. LaMarca, et al. Parkinsonism among Gaucher disease carriers. J Med Genet 2004; 41: 937–40.
152. E. Sidransky, M. A. Nalls, J. Q. Aasly, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009; 361: 1651–61.
153. J. Neumann, J. Bras, E. Deas, et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 2009; 132: 1783–94.
154. L. N. Clark, L. A. Kartsaklis, R. Wolf Gilbert, et al. Association of glucocerebrosidase mutations with dementia with Lewy bodies. Arch Neurol 2009; 66: 578–83.
155. N. Tayebi, J. Walker, B. Stubblefield, et al. Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 2003; 79: 104–9.
156. K. Wong, E. Sidransky, A. Verma, et al. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab 2004; 82: 192–207.
157. L. Parkkinen, J. Neumann, S. S. O’Sullivan, et al. Glucocerebrosidase mutations do not cause increased Lewy body pathology in Parkinson’s disease. Mol Genet Metab 2011; 103: 410–2.
158. E. D. Carstea, J. A. Morris, K. G. Coleman, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 1997; 277: 228–31.
159. S. Naureckiene, D. E. Sleat, H. Lackland, et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science 2000; 290: 2298–301.
160. Y. Saito, K. Suzuki, C. M. Hulette, S. Murayama. Aberrant phosphorylation of α-synuclein in human Niemann-Pick type C1 disease. J Neuropathol Exp Neurol 2004; 63: 323–8.
161. Y. Chiba, H. Komori, S. Takei, et al. Niemann-Pick disease type C1 predominantly involving the frontotemporal region, with cortical and brainstem Lewy bodies: an autopsy case. Neuropathology 2013; 34: 49–57.
162. B. Zhou, S. K. Westaway, B. Levinson, et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden–Spatz syndrome. Nat Genet 2001; 28: 345–9.
163. N. V. Morgan, S. K. Westaway, J. E. Morton, et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 2006; 38: 752–4.
164. A. Li, R. Paudel, R. Johnson, et al. Pantothenate kinase-associated neurodegeneration is not a synucleinopathy. Neuropathology and Applied Neurobiology 2013; 39: 121–31.
165. A. Gregory, B. J. Polster, S. J. Hayflick. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 2009; 46: 73–80.
166. C. Paisán-Ruiz, A. Li, S. A. Schneider, et al. Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging 2012; 33: 814–23.
167. M. I. Papp, J. E. Kahn, P. L. Lantos. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 1989; 94: 79–100.
168. K. Arima, K. Uéda, N. Sunohara, et al. NACP/α-synuclein immunoreactivity in fibrillary components of neuronal and oligodendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol 1998; 96: 439–44.
169. A. Schrag, Y. Ben-Shlomo, N. P. Quinn. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 1999; 354: 1771–5.
170. A. Schrag, G. K. Wenning, N. Quinn, Y. Ben-Sclomo. Survival in multiple system atrophy. Mov Disord 2008; 23: 294–6.
171. G. K. Wenning, C. Colosimo, F. Geser, W. Poewe. Multiple system atrophy. Lancet Neurol 2004; 3: 93–103. [Erratum: Lancet Neurol 2004; 3: 137.]
172. S. Gilman, G. K. Wenning, P. A. Low, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008; 71: 670–6.
173. F. Geser, G. K. Wenning, K. Seppi, et al. European MSA Study Group Progression of multiple system atrophy (MSA): a prospective natural history study by the European MSA Study Group (EMSA SG). Mov Disord 2006; 21: 179–86.
174. T. Ozawa, D. Paviour, N. P. Quinn, et al. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 2004; 127: 2657–71.
175. E. Matsusue, S. Fujii, Y. Kanasaki, et al. Putaminal lesion in multiple system atrophy: postmortem MR-pathological correlations. Neuroradiology 2008; 50: 559–67.
176. K. Sakurai, T. Kawaguchi, T. Kawai, et al. Usefulness of 3D-PRESTO imaging in evaluating putaminal abnormality in parkinsonian variant of multiple system atrophy. Neuroradiology 2010; 52: 809–14.
177. D. Gupta, J. Saini, C. Kesavadas, P. S. Sarma, A. Kishore. Utility of susceptibility-weighted MRI in differentiating Parkinson’s disease and atypical parkinsonism. Neuroradiology 2010; 52: 1087–94.
178. P. S. Wang, H. M. Wu, C. P. Lin, B. W. Soong. Use of diffusion tensor imaging to identify similarities and differences between cerebellar and Parkinsonism forms of multiple system atrophy. Neuroradiology 2011; 53: 471–81.
179. G. K. Wenning, N. Stefanova. Recent developments in multiple system atrophy. J Neurol. 2009; 256: 1791–808.
180. J. Q. Trojanowski, T. Revesz. Neuropathology Working Group on MSA. Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 2007; 33: 615–20.
181. T. Ozawa, M. Tada, A. Kakita, et al. The phenotype spectrum of Japanese multiple system atrophy. J Neurol Neurosurg Psychiatry 2010; 81: 1253–5.
182. L. Parkkinen, P. Hartikainen, I. Alafuzoff. Abundant glial α-synuclein pathology in a case without overt clinical symptoms. Clin Neuropathol 2007; 26: 276–83.
183. T. Rauramaa, M. Pikkarainen, E. Englund, et al. Consensus recommendations on pathologic changes in the hippocampus: a postmortem multicenter inter-rater study. J Neuropathol Exp Neurol 2013; 72: 452–61.