Skip to main content Accessibility help
×
Home
  • Cited by 1
  • Print publication year: 2014
  • Online publication date: December 2014

7 - Alzheimer’s disease

References1

1. U. Müller, P. Winter, M. B. Graeber. A presenilin 1 mutation in the first case of Alzheimer’s disease. Lancet Neurol 2013; 12: 129–30.
2. M. Goedert. Oskar Fischer and the study of dementia. Brain 2009; 132: 1102–11.
3. R. Terry, R. Katzman. Senile dementia of the Alzheimer type. Ann Neurol 1983; 14: 497.
4. B. Dubois, H. H. Feldman, C. Jacova, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6: 734–46.
5. G. M. McKhann, D. S. Knopman, H. Chertkow, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 263–9.
6. T. Jonsson, J. K. Atwal, S. Steinberg, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 2012; 488: 96–9.
7. C. Duyckaerts, M.-C. Potier, B. Delatour. Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 2008; 115: 5–38.
8. E. Genin, D. Hannequin, D. Wallon, et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry 2011; 16: 903–7.
9. G. G. Kovacs, G. Botond, H. Budka. Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 2010; 119: 389–408.
10. G. G. Glenner, C. W. Wong. Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 1984; 122: 1131–5.
11. F. Olsson, S. Schmidt, V. Althoff, et al. Characterization of intermediate steps in Aβ production under near-native conditions. J Biol Chem 2014; 289: 1540–50.
12. L. Wahlster, M. Arimon, N. Nasser-Ghodsi, et al. Presenilin-1 adopts pathogenic conformation in normal aging and in sporadic Alzheimer’s disease. Acta Neuropathol 2013; 125: 187–99.
13. T. Hashimoto, A. Serrano-Pozo, Y. Hori, et al. Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid peptide. J Neurosci 2012; 32: 15181–15192.
14. P. N. Lacor, M. C. Buniel, L. Chang, et al. Synaptic targeting by Alzheimer’s-related amyloid β oligomers. J Neurosci 2004; 24: 10191–200.
15. D. M. Walsh, I. Klyubin, J. V Fadeeva, et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416: 535–9.
16. P. Delaère, C. Duyckaerts, Y. He, F. Piette, J. J. Hauw. Subtypes and differential laminar distributions of βA4 deposits in Alzheimer’s disease: relationship with the intellectual status of 26 cases. Acta Neuropathol 1991; 81: 328–335.
17. C. Duyckaerts, B. Delatour, M.-C. Potier. Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009; 118: 5–36.
18. M. Panchal, J. Loeper, J. Cossec, et al. Quantification of free cholesterol in Alzheimer’s plaques by laser capture microdissection conbined with mass spectrometry. J Lipid Res 2010; 51: 1–22.
19. D. R. Thal, E. Capetillo-Zarate, C. Schultz, et al. Apolipoprotein E co-localizes with newly formed amyloid β-protein (Aβ) deposits lacking immunoreactivity against N-terminal epitopes of Aβ in a genotype-dependent manner. Acta Neuropathol 2005; 110: 459–471.
20. A. Guntert, H. Dobeli, B. Bohrmann. High sensitivity analysis of amyloid-β peptide composition in amyloid deposits from human and PS2APP mouse brain. Neuroscience 2006; 143: 461–475.
21. P. Rufenacht, A. Guntert, B. Bohrmann, A. Ducret, H. Döbeli.Quantification of the Aβ peptide in Alzheimer’s plaques by laser dissection microscopy combined with mass spectrometry. J Mass Spectrom 2005; 40: 193–201.
22. Y. M. Arends, C. Duyckaerts, J. M. Rozemuller, P. Eikelenboom, J. J. Hauw. Microglia, amyloid and dementia in Alzheimer disease. A correlative study. Neurobiol Aging 2000; 21: 39–47.
23. G. S. Paranjape, L. K. Gouwens, D. C. Osborn, M. R. Nichols. Isolated amyloid-β(1–42) protofibrils, but not isolated fibrils, are robust stimulators of microglia. ACS Chem Neurosci 2012; 3: 302–11.
24. T. Oide, T. Kinoshita, K. Arima. Regression stage senile plaques in the natural course of Alzheimer’s disease. Neuropathol Appl Neurobiol 2006; 32: 539–556.
25. W. Metsaars, J.-J. Hauw, M. Welsem, C. Duyckaerts. A grading system of Alzheimer disease lesions in neocortical areas. Neurobiol Aging 2003; 24: 563–572.
26. T. L. Spires-jones, M. Meyer-Luehmann, J. D. Osetek, et al. Impaired spine stability underlies plaque-related spine loss in an Alzheimer’s disease mouse model. Am J Pathol 2007; 171: 1–8.
27. L. M. Ittner, Y. D. Ke, F. Delerue, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 2010; 142: 387–97.
28. C. E. Shepherd, G. C. Gregory, J. C. Vickers, G. M. Halliday. Novel “inflammatory plaque” pathology in presenilin-1 Alzheimer’s disease. Neuropathol Appl Neurobiol 2005; 31: 503–511.
29. E. Y. Kimchi, S. Kajdasz, B. J. Bacskai, B. T. Hyman. Analysis of cerebral amyloid angiopathy in a transgenic mouse model of Alzheimer disease using in vivo multiphoton microscopy. J Neuropathol Exp Neurol 2001; 60: 274–9.
30. J. Attems, F. Lauda, K. A. Jellinger. Unexpectedly low prevalence of intracerebral hemorrhages in sporadic cerebral amyloid angiopathy: an autopsy study. J Neurol 2008; 255: 70–76.
31. D. R. Thal, W. S. Griffin, R. A. de Vos, E. Ghebremedhin. Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathol 2008; 115: 599–609.
32. R. O. Carare, C. A. Hawkes, M. Jeffrey, R. N. Kalaria, R. O. Weller. Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 2013; 39: 593–611.
33. D. R. Thal, E. Ghebremedhin, U. Rüb, et al. Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2002; 61: 282–293.
34. J. Attems, K. A. Jellinger. Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology – a pilot study. Acta Neuropathol 2004; 107: 83–90.
35. J. Attems, K. A. Jellinger, F. Lintner. Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol 2005; 110: 222–231.
36. D. M. Wilcock, C. A. Colton. Immunotherapy, vascular pathology, and microhemorrhages in transgenic mice. CNS Neurol Disord Drug Targets 2009; 8: 50–64.
37. C. Salvarani, G. G. Hunder, J. M. Morris, et al. A β-related angiitis: comparison with CAA without inflammation and primary CNS vasculitis. Neurology 2013; 81: 1596–1603.
38. C. Y. D. Lee, G. E. Landreth. The role of microglia in amyloid clearance from the AD brain. J Neural Transm 2010; 117: 949–60.
39. J. Koenigsknecht-Talboo, M. Meyer-Luehmann, M. Parsadanian, et al. Rapid microglial response around amyloid pathology after systemic anti-Aβ antibody administration in PDAPP mice. J Neurosci 2008; 28: 14156–64.
40. J. M. Basak, P. B. Verghese, H. Yoon, J. Kim, D. M. Holtzman. Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J Biol Chem 2012; 287: 13959–71.
41. L. Aho, M. Pikkarainen, M. Hiltunen, V. Leinonen, I. Alafuzoff. Immunohistochemical visualization of amyloid-β protein precursor and amyloid-β in extra- and intracellular compartments in the human brain. J Alzheimers Dis 2010; 20: 1015–28.
42. D. R. Thal, U. Rüb, M. Orantes, H. Braak. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 2002; 58: 1791–800.
43. H. Zempel, E. Thies, E. Mandelkow, E.-M. Mandelkow. Aβ oligomers cause localized Ca2+ elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 2010; 30: 11938–50.
44. D. J. Irwin, T. J. Cohen, M. Grossman, et al. Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies. Brain 2012; 135: 807–18.
45. A. de Calignon, L. M. Fox, R. Pitstick, et al. Caspase activation precedes and leads to tangles. Nature 2010; 464: 1201–4.
46. I. Alafuzoff, T. Arzberger, S. Al-Sarraj, et al. Staging of neurofibrillary pathology in Alzheimer’s disease: a study of the BrainNet Europe Consortium. Brain Pathol 2008; 18: 484–96.
47. I. Grundke-Iqbal, K. Iqbal, M. Quinlan, et al. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 1986; 261: 6084–6089.
48. J. P. Brion, H. Passareiro, J. Nunez, J. Flament-Durand. Mise en évidence immunologique de la protéine tau au niveau des lésions de dégénérescence neurofibrillaire de la maladie d’Alzheimer. Arch Biol (Brux) 1985; 95: 229–235.
49. K. V. Kuchibhotla, S. Wegmann, K. J. Kopeikina, et al. Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci U S A 2014; 111: 510–4.
50. K. M. Henkins, S. Sokolow, C. A. Miller, et al. Extensive p-tau pathology and SDS-stable p-tau oligomers in Alzheimer’s cortical synapses. Brain Pathol 2012; 22: 826–33.
51. B. Delatour, V. Blanchard, L. Pradier, C. Duyckaerts. Alzheimer pathology disorganizes cortico-cortical circuitry: direct evidence from a transgenic animal model. Neurobiol Dis 2004; 16: 41–47.
52. C. Duyckaerts, T. Uchihara, D. Seilhean, Y. He, J. J. Hauw. Dissociation of Alzheimer type pathology in a disconnected piece of cortex. Acta Neuropathol 1997; 93: 501–7.
53. F. Clavaguera, T. Bolmont, R. A. Crowther, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 2009; 11: 909–913.
54. H. Braak, E. Braak. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239–259.
55. H. Braak, I. Alafuzoff, T. Arzberger, H. Kretzschmar, K. Del Tredici. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006; 112: 389–404.
56. H. Braak, E. Braak. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 1997; 18: 351–357.
57. C. Duyckaerts, J.-J. Hauw. Prevalence, incidence and duration of Braak’s stages in the general population: can we know? Neurobiol Aging 1997; 18: 362–369.
58. H. Braak, D. R. Thal, E. Ghebremedhin, K. Del Tredici. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70: 960–9.
59. L. T. Grinberg, U. Rüb, R. E. L. Ferretti, et al. The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 2009; 35: 406–16.
60. T. H. Schauer, M. Lochner, G. G. Kovacs. Nigral Tau pathology and striatal amyloid-β deposition does not correlate with striatal dopamine deficit in Alzheimer’s disease. J Neural Transm 2012; 119: 1545–9.
61. D. G. Munoz, J. Woulfe, A. Kertesz. Argyrophilic thorny astrocyte clusters in association with Alzheimer’s disease pathology in possible primary progressive aphasia. Acta Neuropathol 2007; 114: 347–357.
62. M. E. Murray, N. R. Graff-Radford, O. A. Ross, et al. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 2011; 10: 785–96.
63. C. R. Jack, D. S. Knopman, W. J. Jagust, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 2010; 9: 119–28.
64. C. Duyckaerts. Tau pathology in children and young adults: can you still be unconditionally baptist? Acta Neuropathol 2011; 121: 145–7.
65. C. R. Jack, D. S. Knopman, W. J. Jagust, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12: 207–16.
66. C. R. Jack, H. J. Wiste, S. D. Weigand, et al. Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity. Neurology 2013; 81: 1732–40.
67. K. Leroy, K. Ando, V. Laporte, et al. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice. Am J Pathol 2012; 181: 1928–40.
68. H. Zempel, J. Luedtke, Y. Kumar, et al. Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 2013; 6: 1–18.
69. C. Héraud, D. Goufak, K. Ando, et al. Increased misfolding and truncation of tau in APP/PS1/tau transgenic mice compared to mutant tau mice. Neurobiol Dis 2013; 62C: 100–112.
70. A. Kadokura, T. Yamazaki, S. Kakuda, et al. Phosphorylation-dependent TDP-43 antibody detects intraneuronal dot-like structures showing morphological characters of granulovacuolar degeneration. Neurosci Lett 2009; 463: 87–92.
71. D. R. Thal, K. Del Tredici, A. C. Ludolph, et al. Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol 2011; 122: 577–89.
72. A. Probst, M. C. Herzig, C. Mistl, S. Ipsen, M. Tolnay M. Perisomatic granules (non-plaque dystrophic dendrites) of hippocampal CA1 neurons in Alzheimer’s disease and Pick’s disease: a lesion distinct from granulovacuolar degeneration. Acta Neuropathol 2001; 102: 636–44.
73. K. Josephs, M. E. Murray, J. L. Whitwell, et al. Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol 2014; 127: 441–50.
74. A. Hirano. Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 1994; 20: 3–11.
75. S. W. Scheff, D. A. Price. Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 2003; 24: 1029–1046.
76. S. W. Scheff, D. A. Price, F. A. Schmitt, S. T. DeKosky, E. J. Mufson. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 2007; 68: 1501–1508.
77. D. W. Dickson, H. A. Crystal, C. Bevona, et al. Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 1995; 16: 285–304.
78. P. Davidsson, K. Blennow. Neurochemical dissection of synaptic pathology in Alzheimer’s disease. Int Psychogeriatr 1998; 10: 11–23.
79. S. Shimohama, S. Kamiya, T. Taniguchi, K. Akagawa, J. Kimura J. Differential involvement of synaptic vesicle and presynaptic plasma membrane proteins in Alzheimer’s disease. Biochem Biophys Res Commun 1997; 236: 239–242.
80. F. Dessi, M. A. Colle, J.-J. Hauw, C. Duyckaerts. Accumulation of SNAP-25 immunoreactive material in axons of Alzheimer’s disease. Neuroreport 1997; 8: 3685–3689.
81. G. Leuba, A. Savioz, A. Vernay, et al. Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein. J Alzheimers Dis 2008; 15: 139–151.
82. S. Mitew, M. T. K. Kirkcaldie, T. C. Dickson, J. C. Vickers. Altered synapses and gliotransmission in Alzheimer’s disease and AD model mice. Neurobiol Aging 2013; 34: 2341–51.
83. P. N. Lacor, M. C. Buniel, P. W. Furlow, et al. Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 2007; 27: 796–807.
84. S. Sokolow, K. M. Henkins, I. A. Williams, et al. Isolation of synaptic terminals from Alzheimer’s disease cortex. Cytometry A 2012; 81: 248–54.
85. J. L. Crimins, A. Pooler, M. Polydoro, J. I. Luebke, T. L. Spires-Jones. The intersection of amyloid β and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer’s disease. Ageing Res Rev 2013; 12: 757–63.
86. L. Regeur, G. Badsberg Jensen, H. Pakkenberg, S. M. Evans, B. Pakkenberg. No global neocortical nerve cell loss in brains from patients with senile dementia of Alzheimer’s type. Neurobiol Aging 1994; 15: 347–352.
87. J. H. Kordower, Y. Chu, G. T. Stebbins, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49: 202–213.
88. Y. Grignon, C. Duyckaerts, M. Bennecib, J. J. Hauw. Cytoarchitectonic alterations in the supramarginal gyrus of late onset Alzheimer’s disease. Acta Neuropathol 1998; 95: 395–406.
89. T. Gomez-Isla, J. L. Price, D. W. McKeel, et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 1996; 16: 4491–4500.
90. M. J. West, P. D. Coleman, D. G. Flood, J. C. Troncoso. Differences in the pattern of hippocampal neuronal loss in normal aging and Alzheimer disease. Lancet 1994; 344: 769–772.
91. T. Gomez-Isla, R. Hollister, H. West, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997; 41: 17–24.
92. A. G. Herzog, T. L. Kemper. Amygdaloid changes in aging and dementia. Arch Neurol 1980; 37: 625–629.
93. T. H. Vereecken, O. J. Vogels, R. Nieuwenhuys. Neuron loss and shrinkage in the amygdala in Alzheimer’s disease. Neurobiol Aging 1994; 15: 45–54.
94. T. Arendt, V. Bigl, A. Arendt, A. Tennstedt. Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s Disease. Acta Neuropathol 1983; 61: 101–108.
95. O. J. Vogels, C. A. Broere, H. J. ter Laak, et al. Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer’s disease. Neurobiol Aging 1990; 11: 3–13.
96. T. Uchihara, H. Kondo, K. Ikeda, K. Kosaka. Alzheimer-type pathology in melanin-bleached sections of substantia nigra. J Neurol 1995; 242: 485–489.
97. N. Kemppainen, M. Roytta, Y. Collan, et al. Unbiased morphological measurements show no neuronal loss in the substantia nigra in Alzheimer’s disease. Acta Neuropathol 2002; 103: 43–47.
98. C. Busch, J. Bohl, T. G. Ohm. Spatial, temporal and numeric analysis of Alzheimer changes in the nucleus coeruleus. Neurobiol Aging 1997; 18: 401–416.
99. D. C. German, K. F. Manaye, C. L. White, 3rd, et al. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 1992; 32: 667–676.
100. M. A. Aletrino, O. J. Vogels, P. H. Van Domburg, H. J. Ten Donkelaar. Cell loss in the nucleus raphes dorsalis in Alzheimer’s disease. Neurobiol Aging 1992; 13: 461–468.
101. G. G. Kovacs, S. Klöppel, I. Fischer, et al. Nucleus-specific alteration of raphe neurons in human neurodegenerative disorders. Neuroreport 2003; 14: 73–6.
102. P. Cras, M. A. Smith, P. L. Richey, et al. Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer disease. Acta Neuropathol 1995; 89: 291–295.
103. J. J. Kril, S. Patel, A. J. Harding, G. M. Halliday. Neuron loss from the hippocampus of Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol 2002; 103: 370–376.
104. C. Stadelmann, T. L. Deckwerth, A. Srinivasan, et al. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease: evidence for apoptotic cell death. Am J Pathol 1999; 155: 1459–1466.
105. M. Morawski, G. Brückner, C. Jäger, G. Seeger, T. Arendt. Neurons associated with aggrecan-based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer’s disease. Neuroscience 2010; 169: 1347–63.
106. J. C. Augustinack, K. E. Huber, G. M. Postelnicu, et al. Entorhinal verrucae geometry is coincident and correlates with Alzheimer’s lesions: a combined neuropathology and high-resolution ex vivo MRI analysis. Acta Neuropathol 2012; 123: 85–96.
107. C. Duyckaerts, J.-J. Hauw, F. Piette, et al. Cortical atrophy in senile dementia of the Alzheimer type is mainly due to a decrease in cortical length. Acta Neuropathol 1985; 66: 72–74.
108. E. Fletcher, M. Raman, P. Huebner, et al. Loss of fornix white matter volume as a predictor of cognitive impairment in cognitively normal elderly individuals. JAMA Neurol 2013; 70: 1389–95.
109. D. M. Cash, G. R. Ridgway, Y. Liang, et al. The pattern of atrophy in familial Alzheimer disease: volumetric MRI results from the DIAN study. Neurology 2013; 81: 1425–33.
110. M. Di Paola, F. Di Iulio, A. Cherubini, et al. When, where, and how the corpus callosum changes in MCI and AD: a multimodal MRI study. Neurology 2010; 74: 1136–42.
111. T. Wyss-Coray, J. Rogers. Inflammation in Alzheimer disease – a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2012; 2: a006346.
112. W. J. Streit, H. Braak, Q. S. Xue, I. Bechmann. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 2009; 118: 475–485.
113. W. J. Streit, Q.-S. Xue, H. Braak, K. del Tredici. Presence of severe neuroinflammation does not intensify neurofibrillary degeneration in human brain. Glia 2014; 62: 96–105.
114. A. Dal Bianco, M. Bradl, J. Frischer, et al. Multiple sclerosis and Alzheimer’s disease. Ann Neurol 2008; 63: 174–183.
115. O. Lazarov, R. A. Marr. Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 2010; 223: 267–81.
116. C. Holmes, D. Boche, D. Wilkinson, et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008; 372: 216–223.
117. E. Zotova, V. Bharambe, M. Cheaveau, et al. Inflammatory components in human Alzheimer’s disease and after active amyloid-β42 immunization. Brain 2013; 136: 2677–96.
118. A. Serrano-Pozo, C. M. William, I. Ferrer, et al. Beneficial effect of human anti-amyloid-β active immunization on neurite morphology and tau pathology. Brain 2010; 133: 1312–27.
119. E. Uro-Coste, G. Russano de Paiva, C. Guilbeau- Frugier, et al. Cerebral amyloid angiopathy and microhemorrhages after amyloid β vaccination: case report and brief review. Clin Neuropathol 2010; 29: 209–16.
120. G. Blessed, B. E. Tomlinson, M. Roth. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Brit J Psychiat 1968; 114: 797–811.
121. C. C. Rowe, K. A. Ellis, M. Rimajova, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 2010; 31: 1275–83.
122. P. T. Nelson, I. Alafuzoff, E. H. Bigio, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 2012; 71: 362–81.
123. C. Duyckaerts, M. Bennecib, Y. Grignon, et al. Modeling the relation between neurofibrillary tangles and intellectual status. Neurobiol Aging 1997; 18: 267–73.
124. Working Group. Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 2007; 18: S1–2.
125. R. A. Sperling, P. S. Aisen, L. A. Beckett, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 280–92.
126. Y. Stern. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 2012; 11: 1006–12.
127. I. Kuperstein, K. Broersen, I. Benilova, et al. Neurotoxicity of Alzheimer’s disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J 2010; 29: 3408–20.
128. J.-C. Cossec, A. Simon, C. Marquer, et al. Clathrin-dependent APP endocytosis and Aβ secretion are highly sensitive to the level of plasma membrane cholesterol. Biochim Biophys Acta 2010; 1801: 846–52.
129. R. A. Nixon, D.-S. Yang. Autophagy failure in Alzheimer’s disease – locating the primary defect. Neurobiol Dis 2011; 43: 38–45.
130. I. Benilova, E. Karran, B. De Strooper. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 2012; 15: 349–57.
131. Y. S. Eisele. From soluble Aβ to progressive Aβ aggregation: could prion-like templated misfolding play a role? Brain Pathol 2013; 23: 333–41.
132. F. Clavaguera, H. Akatsu, G. Fraser, et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci 2013; 110: 9535–40.
133. A. Nunomura, R. J. Castellani, X. Zhu, et al. Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 2006; 65: 631–41.
134. T. J. Montine, C. H. Phelps, T. G. Beach, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 2012; 123: 1–11.
135. Z. S. Khachaturian. Diagnosis of Alzheimer’s disease. Arch Neurol 1985; 42: 1097–1105.
136. S. S. Mirra, A. Heyman, D. McKeel, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Neurology 1991; 41: 479–486.
137. I. Alafuzoff, M. Pikkarainen, S. Al-Sarraj, et al. Interlaboratory comparison of assessments of Alzheimer disease-related lesions: a study of the BrainNet Europe Consortium. J Neuropathol Exp Neurol 2006; 65: 740–57.
138. G. G. Kovacs, U. Wagner, B. Dumont, et al. An antibody with high reactivity for disease-associated α-synuclein reveals extensive brain pathology. Acta Neuropathol 2012; 124: 37–50.
139. M. Ball, H. Braak, P. Coleman, et al. Consensus Recommendations for the Postmortem Diagnosis of Alzheimer’s Disease. Neurobiol Aging 1997; 18: 4–5.
140. B. T. Hyman, C. H. Phelps, T. G. Beach, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012; 8: 1–13.