Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T09:34:55.487Z Has data issue: false hasContentIssue false

Part IV - Practice of Neuromonitoring: Cardiac Intensive Care Unit

Published online by Cambridge University Press:  08 September 2022

Cecil D. Hahn
Affiliation:
The Hospital for Sick Children, University of Toronto
Courtney J. Wusthoff
Affiliation:
Lucile Packard Children’s Hospital, Stanford University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.CrossRefGoogle ScholarPubMed
National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention. Congenital heart defects. 2015. www.cdc.gov/ncbddd/heartdefects/data.htmlGoogle Scholar
Rosomoff, HL. Pathophysiology of the central nervous system during hypothermia. Acta Neurochir Suppl. 1964;14(Suppl 13):1122.Google ScholarPubMed
Nakagawa, TA, Ashawal, S, Mathur, M, et al. Guidelines for the determination of brain death in infants and children: an update of the 1987 Task Force recommendations. Crit Care Med. 2011;39(9):2139–55.CrossRefGoogle ScholarPubMed
Follis, MW. Neurologic/myocardial protection during pediatric cardiac surgery. Medscape. 2015. http://emedicine.medscape.com/article/902765-overviewGoogle Scholar
Newburger, JW, Jones, RA, Wernovsky, G, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med. 1993;329(15):1057–64.CrossRefGoogle ScholarPubMed
Helmers, SL, Wypij, D, Constantinou, JE, et al. Perioperative electroencephalographic seizures in infants undergoing repair of complex congenital cardiac defects. Electroencephalogr Clin Neurophysiol. 1997;102(1):2736.CrossRefGoogle ScholarPubMed
Wang, H, Wang, B, Normoyle, KP, et al. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci. 2014; 8: 307.CrossRefGoogle ScholarPubMed
Vossough, A, Limperopoulos, C, Putt, ME, et al. Development and validation of a semiquantitative brain maturation score on fetal MR images: initial results. Radiology. 2013;268(1):200–7.CrossRefGoogle ScholarPubMed
Licht, DJ, Shera, DM, Clancy, RR, et al. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg. 2009;137(3):529–36; discussion 536–7.CrossRefGoogle ScholarPubMed
Abdel Raheem, MM, Mohamed, WA. Impact of congenital heart disease on brain development in newborn infants. Ann Pediatr Cardiol. 2012;5(1):21–6.CrossRefGoogle ScholarPubMed
Miller, SP, McQuillen, PS, Hamrick, S, et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med. 2007;357(19): 1928–38.CrossRefGoogle ScholarPubMed
Harden, A, Pampiglione, G, Waterston, DJ. Circulatory arrest during hypothermia in cardiac surgery: an E.E.G. study in children. Br Med J. 1966;2(5522):1105–8.CrossRefGoogle ScholarPubMed
Stecker, MM, Cheung, AT, Pochettino, A, et al. Deep hypothermic circulatory arrest: II. Changes in electroencephalogram and evoked potentials during rewarming. Ann Thorac Surg. 2001;71(1):22–8.Google ScholarPubMed
Seltzer, LE, Swartz, M, Kwon, JM, et al. Intraoperative electroencephalography predicts postoperative seizures in infants with congenital heart disease. Pediatr Neurol. 2014;50(4):313–7.CrossRefGoogle ScholarPubMed
Schmitt, B, Finckh, B, Christen, S, et al. Electroencephalographic changes after pediatric cardiac surgery with cardiopulmonary bypass: is slow wave activity unfavorable? Pediatr Res. 2005; 58(4):771–8.CrossRefGoogle ScholarPubMed
Massey, SL, Abend, NS, Gaynor, JW, et al. Electroencephalographic patterns preceding cardiac arrest in neonates following cardiac surgery. Resuscitation. 2019;144:6774.CrossRefGoogle ScholarPubMed
Murray, DM, Boylan, B, Ali, I, et al. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008;93(3):F187–91.CrossRefGoogle ScholarPubMed
Scher, MS. Neonatal seizures and brain damage. Pediatr Neurol. 2003;29(5):381–90.CrossRefGoogle ScholarPubMed
Scher, MS, Alvin, J, Gaus, L, Minnigh, B, Painter, MJ. Uncoupling of EEG-clinical neonatal seizures after antiepileptic drug use. Pediatr Neurol. 2003;28(4):277–80.CrossRefGoogle ScholarPubMed
Glass, HC, Shellhaas, RA, Wusthoff, CJ, et al. Contemporary profile of seizures in neonates: a prospective cohort study. J Pediatr. 2016;174:98103.CrossRefGoogle ScholarPubMed
Connell, J, Oozeer, R, De Vries, L, et al. Clinical and EEG response to anticonvulsants in neonatal seizures. Arch Dis Child. 1989;64(4 Spec No):459–64.CrossRefGoogle ScholarPubMed
Naim, MY, Gaynor, JW, Chen, J, et al. Subclinical seizures identified by postoperative electroencephalographic monitoring are common after neonatal cardiac surgery. J Thorac Cardiovasc Surg. 2015;150(1):169–78; discussion 178–80.CrossRefGoogle ScholarPubMed
Hahn, JS, Vaucher, Y, Bejar, R, Coen, RW. Electroencephalographic and neuroimaging findings in neonates undergoing extracorporeal membrane oxygenation. Neuropediatrics. 1993;24(1):1924.CrossRefGoogle ScholarPubMed
Malone, A, Ryan, CA, Fitzgerald, A, et al. Interobserver agreement in neonatal seizure identification. Epilepsia. 2009;50(9):2097–101.Google Scholar
Abend, NS, Dlugos, DJ, Clancy, RR. A review of long-term EEG monitoring in critically ill children with hypoxic-ischemic encephalopathy, congenital heart disease, ECMO, and stroke. J Clin Neurophysiol. 2013;30(2):134–42.CrossRefGoogle ScholarPubMed
Glauser, TA, Rorke, LB, Weinberg, PM, Clancy, RR. Acquired neuropathologic lesions associated with the hypoplastic left heart syndrome. Pediatrics. 1990;85(6):9911000.CrossRefGoogle ScholarPubMed
Clancy, RR, McGaurn, SA, Goin, JE, et al. Allopurinol neurocardiac protection trial in infants undergoing heart surgery using deep hypothermic circulatory arrest. Pediatrics. 2001 108(1):6170.CrossRefGoogle ScholarPubMed
Clancy, RR, McGaurn, SA, Wernovsky, G, et al. Risk of seizures in survivors of newborn heart surgery using deep hypothermic circulatory arrest. Pediatrics. 2003;111(3):592601.CrossRefGoogle ScholarPubMed
Clancy, RR, Sharif, U, Ichord, R, et al. Electrographic neonatal seizures after infant heart surgery. Epilepsia. 2005;46(1):8490.CrossRefGoogle ScholarPubMed
Shellhaas, RA, Chang, T, Tsuchida, T, et al. The American Clinical Neurophysiology Society’s Guideline on Continuous Electroencephalography Monitoring in Neonates. J Clin Neurophysiol. 2011;28(6):611–17.CrossRefGoogle ScholarPubMed
Backer, CL, Marino, BS. Protecting the neonatal brain: finding, treating, and preventing seizures. J Thorac Cardiovasc Surg. 2015;150(1):67.CrossRefGoogle ScholarPubMed
du Plessis, AJ, Jonas, RA, Wypij, D, et al. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 1997;114(6):9911000; discussion 1000–1.CrossRefGoogle ScholarPubMed
Gaynor, JW, Nicolson, SC, Jarvik, GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg. 2005;130(5):1278–86.CrossRefGoogle ScholarPubMed
Andropoulos, DB, Mizrahi, EM, Hrachovy, RA, et al. Electroencephalographic seizures after neonatal cardiac surgery with high-flow cardiopulmonary bypass. Anesth Analg. 2010;110(6):1680–5.CrossRefGoogle ScholarPubMed
Gunn, JK, Beca, J, Penny, DJ, et al. Amplitude-integrated electroencephalography and brain injury in infants undergoing Norwood-type operations. Ann Thorac Surg. 2012;93(1):170–6.CrossRefGoogle ScholarPubMed
Frenkel, N, Friger, M, Meledin, I, et al. Neonatal seizure recognition–comparative study of continuous-amplitude integrated EEG versus short conventional EEG recordings. Clin Neurophysiol. 2011;122(6):1091–7.CrossRefGoogle ScholarPubMed
Rennie, JM, Chorley, G, Boylan, GB, et al. Non-expert use of the cerebral function monitor for neonatal seizure detection. Arch Dis Child Fetal Neonatal Ed. 2004;89(1):F3740.CrossRefGoogle ScholarPubMed
Shah, DK, Mackay, MT, Lavery, S, et al. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics. 2008;121(6):1146–54.CrossRefGoogle ScholarPubMed
Shellhaas, RA, Clancy, RR. Characterization of neonatal seizures by conventional EEG and single-channel EEG. Clin Neurophysiol. 2007;118(10):2156–61.CrossRefGoogle ScholarPubMed
Shellhaas, RA, Soaita, AI, Clancy, RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics. 2007;120(4):770–7.CrossRefGoogle ScholarPubMed
Shellhaas, RA, Gallagher, PR, Clancy, RR. Assessment of neonatal electroencephalography (EEG) background by conventional and two amplitude-integrated EEG classification systems. J Pediatr. 2008;153(3):369–74.CrossRefGoogle ScholarPubMed
Boylan, G, Burgoyne, L, Moore, C, O’Flaherty, B, Rennie, JM. An international survey of EEG use in the neonatal intensive care unit. Acta Paediatr. 2010;99(8):1150–5.CrossRefGoogle ScholarPubMed
Clancy, RR, Bergqvist, AGC, Dlugos, DJ, Nordli, DR, Jr. Normal pediatric EEG: neonates and children. In Ebersole, JS, Nordli, D, Jr., editors. Current Practice of Clinical Electroencephalography. Philadelphia: Wolters Kluwer Health; 2014, pp. 125212.Google Scholar
Clancy, RR, Dicker, L, Cho, S, et al. Agreement between long-term neonatal background classification by conventional and amplitude-integrated EEG. J Clin Neurophysiol. 2011;28(1):19.CrossRefGoogle ScholarPubMed
Clancy, RR. Summary proceedings from the neurology group on neonatal seizures. Pediatrics. 2006;117(3 Pt 2):S23–7.Google Scholar
Painter, MJ, Scher, MS, Stein, AD, et al. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N Engl J Med. 1999;341(7):485–9.Google Scholar
Boylan, GB, Rennie, JM, Chorley, G, et al. Second-line anticonvulsant treatment of neonatal seizures: a video-EEG monitoring study. Neurology. 2004;62(3):486–8.CrossRefGoogle ScholarPubMed
Shany, E, Benzaqen, O, Watemberg, N. Comparison of continuous drip of midazolam or lidocaine in the treatment of intractable neonatal seizures. J Child Neurol. 2007;22(3):255–9.CrossRefGoogle ScholarPubMed
Castro Conde, JR, Hernández Borges, A, Doménech Martinez, E, et al. Midazolam in neonatal seizures with no response to phenobarbital. Neurology. 2005;64(5):876–9.Google Scholar
Sirsi, D, Nangia, S, LaMothe, J, et al. Successful management of refractory neonatal seizures with midazolam. J Child Neurol. 2008;23(6):706–9.CrossRefGoogle ScholarPubMed
Abend, NS, Gutierrez-Colina, AM, Monk, HM, et al. Levetiracetam for treatment of neonatal seizures. J Child Neurol. 2011;26(4):465–70.CrossRefGoogle ScholarPubMed
Khan, O, Chang, E, Cipriani, C, et al. Use of intravenous levetiracetam for management of acute seizures in neonates. Pediatr Neurol. 2011;44(4):265–9.CrossRefGoogle ScholarPubMed
Khan, O, Cipriani, C, Wright, C, et al. Role of intravenous levetiracetam for acute seizure management in preterm neonates. Pediatr Neurol. 2013;49(5):340–3.Google Scholar
Glass, HC, Poulin, C, Shevell, MI. Topiramate for the treatment of neonatal seizures. Pediatr Neurol. 2011; 44(6):439–42.CrossRefGoogle ScholarPubMed
Riesgo, R., Winckler, MI, Ohlweiler, L, et al. Treatment of refractory neonatal seizures with topiramate. Neuropediatrics. 2012;43(6):353–6.Google ScholarPubMed
Booth, D, Evans, DJ. Anticonvulsants for neonates with seizures. Cochrane Database Syst Rev. 2004(4):CD004218.Google ScholarPubMed
Sicca, F, Contaldo, A, Rey, E, Dulac, O. Phenytoin administration in the newborn and infant. Brain Dev. 2000;22(1):3540.CrossRefGoogle ScholarPubMed
Thibault, C, Naim, MY, Abend, NS, et al. A retrospective comparison of phenobarbital and levetiracetam for the treatment of seizures following cardiac surgery in neonates. Epilepsia. 2020;61(4):627635.CrossRefGoogle ScholarPubMed
McQuillen, PS, Goff, DA, Licht, DJ. Effects of congenital heart disease on brain development. Prog Pediatr Cardiol. 2010;29(2):7985.CrossRefGoogle ScholarPubMed
Clancy, RR. The neurology of hypoplastic left heart syndrome. In Rychik, JW, Wernovsky, G, editors. Hypoplastic Left Heart Syndrome. New York:Springer;2003, pp. 251–72.CrossRefGoogle Scholar
Fountain, DM, Schaer, M, Mutlu, AK, et al. Congenital heart disease is associated with reduced cortical and hippocampal volume in patients with 22q11.2 deletion syndrome. Cortex. 2014;57:128–42.CrossRefGoogle ScholarPubMed
Mulkey, SB, OU, X, Ramakrishnaiah, RH, et al. White matter injury in newborns with congenital heart disease: a diffusion tensor imaging study. Pediatr Neurol. 2014;51(3):377–83.CrossRefGoogle ScholarPubMed
Cheong, JL, Thompson, DK, Spittle, AJ, et al. Brain volumes at term-equivalent age are associated with 2-year neurodevelopment in moderate and late preterm children. J Pediatr. 2016;174:91–7.CrossRefGoogle ScholarPubMed
Birca, A, Vakorin, FA, Porayette, P, et al. Interplay of brain structure and function in neonatal congenital heart disease. Ann Clin Transl Neurol. 2016;3(9):708–22.CrossRefGoogle ScholarPubMed
Andropoulos, DB, Hunter, JV, Nelson, DP, et al. Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. J Thorac Cardiovasc Surg. 2010;139(3):543–56.CrossRefGoogle ScholarPubMed
Seltzer, L, Swartz, MF, Kwon, J, et al. Neurodevelopmental outcomes after neonatal cardiac surgery: Role of cortical isoelectric activity. J Thorac Cardiovasc Surg. 2016;151(4):1137–42.CrossRefGoogle ScholarPubMed
Gaynor, JW, Jarvik, GP, Bernbaum, J, et al. The relationship of postoperative electrographic seizures to neurodevelopmental outcome at 1 year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg. 2006;131(1):181–9.CrossRefGoogle ScholarPubMed
Gaynor, JW, Jarvik, GP, Gerdes, M, et al. Postoperative electroencephalographic seizures are associated with deficits in executive function and social behaviors at 4 years of age following cardiac surgery in infancy. J Thorac Cardiovasc Surg. 2013;146(1):132–7.Google Scholar
Rappaport, LA, Wypij, D, Bellinger, DC, et al. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Boston Circulatory Arrest Study Group. Circulation. 1998;97(8):773–9.Google Scholar
Bellinger, DC, Wypij, D, Kuban, KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation. 1999;100(5):526–32.CrossRefGoogle ScholarPubMed
Bellinger, DC, Wypij, D, Rivkin, MJ, et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation. 2011;124(12):1361–9.CrossRefGoogle ScholarPubMed
Kansy, A, Tobota, A, Maruszewski, P, Maruxzewski, B. Analysis of 14,843 neonatal congenital heart surgical procedures in the European Association for Cardiothoracic Surgery Congenital Database. Ann Thorac Surg. 2010;89(4):1255–9.CrossRefGoogle Scholar
Hirsch, JC, Jacobs, ML, Andropoulos, D, et al. Protecting the infant brain during cardiac surgery: a systematic review. Ann Thorac Surg. 2012;94(4):1365–73; discussion 1373.CrossRefGoogle ScholarPubMed
Sharpe C, Reiner GE, Davis SL, Nespeca M, Gold JJ, Rasmussen M, Kuperman R, Harbert MJ, Michelson D, Joe P, Wang S, Rismanchi N, Le NM, Mower A, Kim J, Battin MR, Lane B, Honold J, Knodel E, Arnell K, Bridge R, Lee L, Ernstrom K, Raman R, Haas RH; NEOLEV2 INVESTIGATORS. Levetiracetam Versus Phenobarbital for Neonatal Seizures: A Randomized Controlled Trial. Pediatrics. 2020 Jun;145(6):e20193182. doi: 10.1542/peds.2019-3182. Epub 2020 May 8. Erratum in: Pediatrics. 2021 Jan;147(1): PMID: 32385134; PMCID: PMC7263056.Google Scholar

References

Cengiz, P, Seidel, K, Rycus, PT, Brogan, TV, Roberts, JS. Central nervous system complications during pediatric extracorporeal life support: incidence and risk factors. Crit Care Med. 2005;33(12):2817–24.CrossRefGoogle ScholarPubMed
Short, BL. The effect of extracorporeal life support on the brain: a focus on ECMO. Semin Perinatol. 2005;29(1):4550.CrossRefGoogle Scholar
Karimova, A, Brown, K, Ridout, D, et al. Neonatal extracorporeal membrane oxygenation: practice patterns and predictors of outcome in the UK. Arch Dis Child Fetal Neonatal Ed. 2009;94(2):F129–32.CrossRefGoogle ScholarPubMed
Hervey-Jumper, SL, Annich, GM, Yancon, AR, et al. Neurological complications of extracorporeal membrane oxygenation in children. J Neurosurg Pediatr. 2011;7(4):338–44.CrossRefGoogle ScholarPubMed
Chrysostomou, C, Maul, T, Callahan, PM, et al. Neurodevelopmental outcomes after pediatric cardiac ECMO support. Front Pediatr. 2013;1:47.CrossRefGoogle ScholarPubMed
de Mol, AC, Liem, KD, van Heijst, AF. Cerebral aspects of neonatal extracorporeal membrane oxygenation: a review. Neonatology. 2013;104(2):95103.Google Scholar
Mehta, A, Ibsen, LM. Neurologic complications and neurodevelopmental outcome with extracorporeal life support. World J Crit Care Med. 2013;2(4):40–7.Google Scholar
Piantino, JA, Wainwright, MS,. Grimason, M, et al. Nonconvulsive seizures are common in children treated with extracorporeal cardiac life support. Pediatr Crit Care Med. 2013;14(6):601–9.CrossRefGoogle ScholarPubMed
Polito, A, Barrett, CS, Wypij, D, et al. Neurologic complications in neonates supported with extracorporeal membrane oxygenation. An analysis of ELSO registry data. Intensive Care Med. 2013;39(9):1594601.Google Scholar
Beghi, E, Carpio, A, Forsgren, L., et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia. 2010;51(4):671–5.CrossRefGoogle ScholarPubMed
Shellhaas, RA, Chang, T, Tsuchida, T, et al. The American Clinical Neurophysiology Society’s guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol. 2011;28(6):611–17.CrossRefGoogle ScholarPubMed
Herman, ST, Abend, NS, Bleck, TP, et al., and E. E. G. T. F. o. t. A. C. N. S. Critical Care Continuous. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015a;32(2):8795.Google Scholar
Herman, ST, Abend, NS, Bleck, TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol. 2015b;32(2):96108.CrossRefGoogle ScholarPubMed
Bembea, MM, Felling, R, Anton, B. Salorio, CF, Johnston, MV. Neuromonitoring during extracorporeal membrane oxygenation: a systematic review of the literature. Pediatr Crit Care Med. 2015;16(6):558–64.CrossRefGoogle ScholarPubMed
Lin, JJ, Banwell, BL, Berg, RA, et al. Electrographic seizures in children and neonates undergoing extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2017;18(3):249–57.CrossRefGoogle ScholarPubMed
Okochi, S, Shakoor, A, Barton, S, et al. Prevalence of seizures in pediatric extracorporeal membrane oxygenation patients as measured by continuous electroencephalography. Pediatr Crit Care Med. 2018;19(12):1162–7.CrossRefGoogle ScholarPubMed
Yuliati, A, Federman, M, Rao, LM, et al. Prevalence of seizures and risk factors for mortality in a continuous cohort of pediatric extracorporeal membrane oxygenation patients. Pediatr Crit Care Med. 2020;21(11):949–58.Google Scholar
Sansevere, AJ, DiBacco, ML, Akhondi-Asl, A, et al. EEG features of brain injury during extracorporeal membrane oxygenation in children. Neurology. 2020;95(1):e1372e1380.CrossRefGoogle ScholarPubMed
Horan, M, Azzopardi, D, Edwards, AD, Firmin, RK, Field, D. Lack of influence of mild hypothermia on amplitude integrated-electroencephalography in neonates receiving extracorporeal membrane oxygenation. Early Hum Dev. 2007;83(2):6975.CrossRefGoogle ScholarPubMed
Hahn, JS, Vaucher, Y, Bejar, R, Coen, RW. Electroencephalographic and neuroimaging findings in neonates undergoing extracorporeal membrane oxygenation. Neuropediatrics. 1993;24(1):1924.Google Scholar
Streletz, LJ, Bej, MD, Graziani, LJ, et al. Utility of serial EEGs in neonates during extracorporeal membrane oxygenation. Pediatr Neurol. 1992;8(3):190–6.Google Scholar
Haines, NM, Rycus, PT, Zwischenberger, JB, Bartlett, RH, Undar, A. Extracorporeal Life Support Registry Report 2008: neonatal and pediatric cardiac cases. ASAIO J. 2009;55(1):111–16.CrossRefGoogle ScholarPubMed
Campbell, LR, Bunyapen, C, Gangarosa, ME, Cohen, M, KantoJr., WP. Significance of seizures associated with extracorporeal membrane oxygenation. J Pediatr. 1991;119(5):789–92.CrossRefGoogle ScholarPubMed
Nasr, D. M, Rabinstein, AA. Neurologic complications of extracorporeal membrane oxygenation. J Clin Neurol. 2015;11(4):383–9.CrossRefGoogle ScholarPubMed
Abend, NS, Topjian, AA, Williams, S. Could EEG monitoring in critically ill children be a cost-effective neuroprotective strategy? J Clin Neurophysiol. 2015a;32(6):486–94.CrossRefGoogle ScholarPubMed
Abend, NS, Topjian, AA, Williams, S. How much does it cost to identify a critically ill child experiencing electrographic seizures? J Clin Neurophysiol. 2015b;32(3):257–64.CrossRefGoogle ScholarPubMed
Bennett, CC, Johnson, A, Field, DJ. A comparison of clinical variables that predict adverse outcome in term infants with severe respiratory failure randomised to a policy of extracorporeal membrane oxygenation or to conventional neonatal intensive care. J Perinat Med. 2002;30(3):225–30.CrossRefGoogle ScholarPubMed
Parish, AP, Bunyapen, C, Cohen, MJ, Garrison, T, Bhatia, J. Seizures as a predictor of long-term neurodevelopmental outcome in survivors of neonatal extracorporeal membrane oxygenation (ECMO). J Child Neurol. 2004;19(12):930–4.CrossRefGoogle ScholarPubMed
Fitzgerald, MP, Donnelly, M, Vala, L, Allen-Napoli, L, Abend, NS. Collodion remover can degrade plastic-containing medical devices commonly used in the intensive care unit. Neurodiagn J. 2019;59(3):163–8.CrossRefGoogle ScholarPubMed
Matsumoto, JH, McArthur, DL, Szeliga, CW, et al. Conductive plastic electrodes reduce EEG artifact during pediatric ECMO therapy. J Clin Neurophysiol. 2016;33(5):426–30.CrossRefGoogle ScholarPubMed
Abend, NS, Dlugos, DJ, Zhu, X, Schwartz, ES. Utility of CT-compatible EEG electrodes in critically ill children. Pediatr Radiol. 2015;45(5):714–18.CrossRefGoogle ScholarPubMed
Tsuchida, TN, Wusthoff, CJ, Shellhaas, RA, et al.; C. American Clinical Neurophysiology Society Critical Care Monitoring. American Clinical Neurophysiology Society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol. 2013;30(2):161–73.Google Scholar
Hirsch, LJ, LaRoche, SM, Gaspard, N, et al. American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2012 version. J Clin Neurophysiol. 2013;30(1):127.CrossRefGoogle ScholarPubMed

References

Abend, NS, Mani, R, Tschuda, TN, et al. EEG monitoring during therapeutic hypothermia in neonates, children, and adults. Am J Electroneurodiagnostic Technol. 2011;51(3):141–64.Google Scholar
Girotra, S, Spertus, JA, Li, Y, et al. Survival trends in pediatric in-hospital cardiac arrests: an analysis from Get With the Guidelines-Resuscitation. Circ Cardiovasc Qual Outcomes. 2013;6(1):42–9.Google Scholar
Topjian, AA, Berg, RA, Nadkarni, VM. Pediatric cardiopulmonary resuscitation: advances in science, techniques, and outcomes. Pediatrics. 2008;122(5):1086–98.CrossRefGoogle ScholarPubMed
Meert, KL, Donaldson, A, Nadkarni, V, et al. Multicenter cohort study of in-hospital pediatric cardiac arrest. Pediatr Crit Care Med. 2009;10(5):544–53.CrossRefGoogle ScholarPubMed
Berg, RA, Nadkarni, VM, Clark, AE, et al. Incidence and outcomes of cardiopulmonary resuscitation in PICUs. Crit Care Med. 2016;44(4):798808.CrossRefGoogle ScholarPubMed
Topjian, AA, Nadkarni, VM, Berg, RA. Cardiopulmonary resuscitation in children. Curr Opin Crit Care. 2009;15(3):203–8.Google Scholar
Donoghue, AJ, Nadkarni, V, Berg, RA, et al. Out-of-hospital pediatric cardiac arrest: an epidemiologic review and assessment of current knowledge. Ann Emerg Med. 2005;46(6):512–22.CrossRefGoogle ScholarPubMed
Atkins, DL, Everson-Stewart, S, Sears, GK, et al. Epidemiology and outcomes from out-of-hospital cardiac arrest in children: the Resuscitation Outcomes Consortium Epistry-Cardiac Arrest. Circulation. 2009;119(11):1484–91.CrossRefGoogle ScholarPubMed
Moler, FW, Donaldson, AE, Meert, K, et al. Multicenter cohort study of out-of-hospital pediatric cardiac arrest. Crit Care Med. 2011;39(1):141–9.Google Scholar
Slomine, BS, Silverstein, FS, Christensen, JR, et al. Neurobehavioral outcomes in children after out-of-hospital cardiac arrest. Pediatrics. 2016;137(4):e20153412.Google Scholar
van Zellem, L, Buysse, C, Madderom, M, et al. Long-term neuropsychological outcomes in children and adolescents after cardiac arrest. Intensive Care Med. 2015;41(6):1057–66.CrossRefGoogle ScholarPubMed
van Zellem, L, Utens, EM, Legerstee, JS, et al. Cardiac arrest in children: long-term health status and health-related quality of life. Pediatr Crit Care Med. 2015;16(8):693702.CrossRefGoogle ScholarPubMed
Neumar, RW, Nolan, JP, Adrie, C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 2008;118(23):2452–83.Google Scholar
Topjian, AA, Raymond, TT, Atkins, D, et al. Part 4: pediatric basic and advanced life support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142(16 Suppl 2):S469S523.CrossRefGoogle ScholarPubMed
Bembea, MM, Nadkarni, VM, Diener-West, M, et al. American Heart Association National Registry of Cardiopulmonary Resuscitation I: temperature patterns in the early postresuscitation period after pediatric inhospital cardiac arrest. Pediatr Crit Care Med. 2010;11(6):723–30.CrossRefGoogle Scholar
Topjian, AA, de Caen, A, Wainwright, MS, et al. Pediatric post-cardiac arrest care: a scientific statement from the American Heart Association. Circulation. 2019;140(6):e194e233.CrossRefGoogle Scholar
Topjian, AA, Sanchez, SM, Shults, J, et al. Early electroencephalographic background features predict outcomes in children resuscitated from cardiac arrest. Pediatr Crit Care Med. 2016;17(6):547–57.CrossRefGoogle ScholarPubMed
Williams, K, Jarrar, R, Buchhalter, J. Continuous video-EEG monitoring in pediatric intensive care units. Epilepsia. 2011;52(6):1130–6.CrossRefGoogle ScholarPubMed
Herman, ST, Abend, NS, Bleck, TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32(2):8795.Google Scholar
Jette, N, Claassen, J, Emerson, RG, Hirsch, LJ. Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol. 2006;63(12):1750–5.Google Scholar
Abend, NS, Marsh, E. Convulsive and nonconvulsive status epilepticus in children. Curr Treat Options Neurol. 2009;11(4):262–72.CrossRefGoogle ScholarPubMed
Abend, NS, Topjian, A, Ichord, R, et al. Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology. 2009;72(22):1931–40.CrossRefGoogle ScholarPubMed
Abend, NS, Gutierrez-Colina, AM, Topjian, AA, et al. Non-convulsive seizures are common in critically ill children. Neurology. 2011;76(12):1071–7.Google Scholar
Mani, R, Schmitt, SE, Mazer, M, Putt, ME, Gaieski, DF. The frequency and timing of epileptiform activity on continuous electroencephalogram in comatose post-cardiac arrest syndrome patients treated with therapeutic hypothermia. Resuscitation. 2012;83(7):840–7.CrossRefGoogle ScholarPubMed
Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.Google Scholar
Bernard, SA, Gray, TW, Buist, MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63.Google Scholar
Nielsen, N, Wetterslev, J, Cronberg, T, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.Google Scholar
Brophy, GM, Bell, R, Claassen, J, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17(1):323.Google Scholar
Abend, NS, Dlugos, DJ, Hahn, CD, Hirsch, LJ, Herman, ST. Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocrit Care. 2010;12(3):382–9.CrossRefGoogle ScholarPubMed
Sanchez, SM, Carpenter, J, Chapman, KE, et al. Pediatric ICU EEG monitoring: current resources and practice in the United States and Canada. J Clin Neurophysiol. 2013;30(2):156–60.Google Scholar
Scheuer, ML, Wilson, SB. Data analysis for continuous EEG monitoring in the ICU: seeing the forest and the trees. J Clin Neurophysiol. 2004;21(5):353–78.Google ScholarPubMed
Shah, NA, Wusthoff, CJ. How to use: amplitude-integrated EEG (aEEG). Arch Dis Child Educ Pract Ed. 2015;100(2):7581.Google Scholar
Mathur, AM, Morris, LD, Teteh, F, Inder, TE, Zempel, J. Utility of prolonged bedside amplitude-integrated encephalogram in encephalopathic infants. Am J Perinatol. 2008;25(10):611–15.CrossRefGoogle ScholarPubMed
Topjian, AA, Fry, M, Jawad, AF, et al. Detection of electrographic seizures by critical care providers using color density spectral array after cardiac arrest is feasible. Pediatr Crit Care Med. 2015;16(5):461–7.CrossRefGoogle ScholarPubMed
Stewart, CP, Otsubo, H, Ochi, A, et al. Seizure identification in the ICU using quantitative EEG displays. Neurology. 2010;75(17):1501–18.Google Scholar
Pensirikul, AD, Beslow, LA, Kessler, SK, et al. Density spectral array for seizure identification in critically ill children. J Clin Neurophysiol. 2013;30(4):371–5.Google Scholar
Akman, CI, Micic, V, Thompson, A, Riviello, JJ, Jr. Seizure detection using digital trend analysis: Factors affecting utility. Epilepsy Res. 2011;93(1):6672.Google Scholar
Williamson, CA, Wahlster, S, Shafi, MM, Westover, MB. Sensitivity of compressed spectral arrays for detecting seizures in acutely ill adults. Neurocrit Care. 2014;20(1):32–9.CrossRefGoogle ScholarPubMed
Moura, LM, Shafi, MM, Ng, M, et al. Spectrogram screening of adult EEGs is sensitive and efficient. Neurology 2014;83(1):5664.Google Scholar
Haider, HA, Esteller, R, Hahn, CD, et al. Sensitivity of quantitative EEG for seizure identification in the intensive care unit. Neurology 2016;87(9):935–44.CrossRefGoogle ScholarPubMed
Swisher, CB, White, CR, Mace, BE, et al. Diagnostic accuracy of electrographic seizure detection by neurophysiologists and non-neurophysiologists in the adult ICU using a panel of quantitative EEG trends. J Clin Neurophysiol. 2015;32(4):324–30.Google Scholar
Dericioglu, N, Yetim, E, Bas, DF, et al. Non-expert use of quantitative EEG displays for seizure identification in the adult neuro-intensive care unit. Epilepsy Res. 2015;109 :48–56.CrossRefGoogle ScholarPubMed
Evans, E, Koh, S, Lerner, J, Sankar, R, Garg, M. Accuracy of amplitude integrated EEG in a neonatal cohort. Arch Dis Child Fetal Neonatal Ed. 2010;95(3):F169-73.CrossRefGoogle Scholar
Shah, DK, Mackay, MT, Lavery, S, et al. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics. 2008;121(6):1146–54.CrossRefGoogle ScholarPubMed
Tao, JD, Mathur, AM. Using amplitude-integrated EEG in neonatal intensive care. J Perinatol. 2010;30 Suppl:S7381.Google Scholar
Toet, MC, van der Meij, W, de Vries, LS, Uiterwaal, CS, van Huffelen, KC. Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics. 2002;109(5):772–9.Google Scholar
Glass, HC, Kan, J, Bonifacio, SL, Ferriero, DM. Neonatal seizures: treatment practices among term and preterm infants. Pediatr. Neurol. 2012;46(2):111–15.Google Scholar
Shah, NA, Van Meurs, KP, Davis, AS. Amplitude-integrated electroencephalography: a survey of practices in the United States. Am J Perinatol. 2015;32(8):755–60.Google Scholar
Shellhaas, RA, Soaita, AI, Clancy, RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics. 2007;120(4):770–7.Google Scholar
Fujikawa, DG. Prolonged seizures and cellular injury: understanding the connection. Epilepsy Behav. 2005;7(Suppl 3):S311.Google Scholar
Abend, NS, Dlugos, DJ, Clancy, RR. A review of long-term EEG monitoring in critically ill children with hypoxic-ischemic encephalopathy, congenital heart disease, ECMO, and stroke. J Clin Neurophysiol. 2013;30(2):134–42.CrossRefGoogle ScholarPubMed
Hovland, A, Nielsen, EW, Kluver, J, Salvesen, R. EEG should be performed during induced hypothermia. Resuscitation. 2006;68(1):143–6.CrossRefGoogle ScholarPubMed
Westhall, E, Rundgren, M, Lilja, G, Friberg, H, Cronberg, T. Postanoxic status epilepticus can be identified and treatment guided successfully by continuous electroencephalography. Ther Hypothermia Temp Manag. 2013;3(2):84–7.Google Scholar
Rossetti, AO, Oddo, M, Liaudet, L, Kaplan, PW. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology. 2009;72(8):744–9.CrossRefGoogle ScholarPubMed
Rossetti, AO, Oddo, M, Logroscino, G, Kaplan, PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67(3):301–7.CrossRefGoogle ScholarPubMed
Rossetti, AO, Urbano, LA, Delodder, F, Kaplan, PW, Oddo, M. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Critical Care. 2010;14(5):R173.CrossRefGoogle ScholarPubMed
Rundgren, M, Westhall, E, Cronberg, T, Rosen, I, Friberg, H. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med. 2010;38(9):1838–44.Google Scholar
Young, GB, Jordan, KG, Doig, GS. An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology. 1996;47(1):83–9.CrossRefGoogle ScholarPubMed
Lewena, S, Young, S. When benzodiazepines fail: how effective is second line therapy for status epilepticus in children? Emerg Med Australas. 2006;18(1):4550.CrossRefGoogle ScholarPubMed
Hayashi, K, Osawa, M, Aihara, M, et al. Efficacy of intravenous midazolam for status epilepticus in childhood. Pediatr Neurol. 2007;36(6):366–72.CrossRefGoogle ScholarPubMed
van Rooij, LG, Toet, MC, van Huffelen, AC, et al. Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics. 2010;125(2):e358–66.CrossRefGoogle ScholarPubMed
Crepeau, AZ, Fugate, JE, Mandrekar, J, et al. Value analysis of continuous EEG in patients during therapeutic hypothermia after cardiac arrest. Resuscitation. 2014;85(6):785–9.CrossRefGoogle ScholarPubMed
Kaplan, PW. No, some types of nonconvulsive status epilepticus cause little permanent neurologic sequelae (or: “the cure may be worse than the disease”). Neurophysiol Clin. 2000;30(6):377–82.Google Scholar
Freeman, JM. Beware: the misuse of technology and the law of unintended consequences. Neurotherapeutics. 2007;4(3):549–54.Google Scholar
Abend, NS, Dlugos, DJ: Treatment of refractory status epilepticus: literature review and a proposed protocol. Pediatric neurology 2008, 38(6):377390.Google Scholar
Rundgren, M, Rosen, I, Friberg, H. Amplitude-integrated EEG (aEEG) predicts outcome after cardiac arrest and induced hypothermia. Intensive Care Med. 2006;32(6):836–42.CrossRefGoogle ScholarPubMed
Oh, SH, Park, KN, Shon, YM, et al. Continuous amplitude-integrated electroencephalographic monitoring is a useful prognostic tool for hypothermia-treated cardiac arrest patients. Circulation. 2015;132(12):10941103.CrossRefGoogle ScholarPubMed
Knight, WA, Hart, KW, Adeoye, OM, et al. The incidence of seizures in patients undergoing therapeutic hypothermia after resuscitation from cardiac arrest. Epilepsy Res. 2013;106(3):396402.Google Scholar
Wagenman, KL, Blake, TP, Sanchez, SM, et al. Electrographic status epilepticus and long-term outcome in critically ill children. Neurology. 2014;82(5):396404.Google Scholar
Ostendorf, AP, Hartman, ME, Friess, SH. Early electroencephalographic findings correlate with neurologic outcome in children following cardiac arrest. Pediatr Crit Care Med. 2016;17(7):667–76.CrossRefGoogle ScholarPubMed
Lamartine Monteiro, M, Taccone, FS, Depondt, C, et al. The prognostic value of 48-h continuous EEG during therapeutic hypothermia after cardiac arrest. Neurocrit Care. 2015;24(2):153–62.Google Scholar
Bouwes, A, van Poppelen, D, Koelman, JH, et al. Acute posthypoxic myoclonus after cardiopulmonary resuscitation. BMC Neurol. 2012;12: 63.Google Scholar
Newey, CR, Hornik, A, Guerch, M, et al. The benefit of neuromuscular blockade in patients with postanoxic myoclonus otherwise obscuring continuous electroencephalography (CEEG). Crit Care Res Pract. 2017;2017:2504058.Google Scholar
Wijdicks, EF, Hijdra, A, Young, GB, Bassetti, CL, Wiebe, S. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67(2):203–10.CrossRefGoogle Scholar
Wijdicks, EF, Parisi, JE, Sharbrough, FW. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol. 1994;35(2):239–43.CrossRefGoogle ScholarPubMed
Mikhaeil-Demo, Y, Gavvala, JR, Bellinski, II, et al. Clinical classification of post anoxic myoclonic status. Resuscitation. 2017;119 :76–80.CrossRefGoogle ScholarPubMed
Lucas, JM, Cocchi, MN, Salciccioli, J, et al. Neurologic recovery after therapeutic hypothermia in patients with post-cardiac arrest myoclonus. Resuscitation. 2012;83(2):265–9.Google Scholar
Elmer, J, Rittenberger, JC, Faro, J, et al.; Pittsburgh Post-Cardiac Arrest S.Clinically distinct electroencephalographic phenotypes of early myoclonus after cardiac arrest. Ann Neurol. 2016;80(2):175–84.CrossRefGoogle ScholarPubMed
Seder, DB, Sunde, K, Rubertsson, S, et al. Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med. 2015;43(5):965–72.CrossRefGoogle ScholarPubMed
Pampiglione, G. Electroencephalographic studies after cardiorespiratory resuscitation. Proc R Soc Med. 1962;55 :653–7.Google Scholar
Nishisaki, A, Sullivan, J, 3rd, Steger, B, et al. Retrospective analysis of the prognostic value of electroencephalography patterns obtained in pediatric in-hospital cardiac arrest survivors during three years. Pediatr Crit Care Med. 2007;8(1):1017.Google Scholar
Synek, VM. Value of a revised EEG coma scale for prognosis after cerebral anoxia and diffuse head injury. Clin Electroencephalogr. 1990;21(1):2530.Google Scholar
Hockaday, JM, Potts, F, Epstein, E, Bonazzi, A, Schwab, RS. Electroencephalographic changes in acute cerebral anoxia from cardiac or respiratory arrest. Electroencephalogr Clin Neurophysiol. 1965;18 :575–86.Google Scholar
Young, GB, Doig, G, Ragazzoni, A. Anoxic-ischemic encephalopathy: clinical and electrophysiological associations with outcome. Neurocrit Care. 2005;2(2):159–64.Google Scholar
Westhall, E, Rossetti, AO, van Rootselaar, AF, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86(16):1482–90.Google Scholar
Mandel, R, Martinot, A, Delepoulle, F, et al. Prediction of outcome after hypoxic-ischemic encephalopathy: a prospective clinical and electrophysiologic study. J Pediatr. 2002;141(1):4550.CrossRefGoogle ScholarPubMed
Ramachandrannair, R, Sharma, R, Weiss, SK, Cortez, MA. Reactive EEG patterns in pediatric coma. Pediatr Neurol. 2005;33(5):345–9.Google Scholar
Tasker, RC, Boyd, S, Harden, A, Matthew, DJ. Monitoring in non-traumatic coma. Part II: electroencephalography. Arch Dis Child. 1988;63(8):895–9.Google ScholarPubMed
Pampiglione, G, Harden, A. Resuscitation after cardiocirculatory arrest. Prognostic evaluation of early electroencephalographic findings. Lancet. 1968;1(7555):1261–5.Google ScholarPubMed
Cheliout-Heraut, F, Sale-Franque, F, Hubert, P, Bataille, J. [Cerebral anoxia in near-drowning of children. The prognostic value of EEG] In French. Neurophysiol Clin. 1991;21(2):121–32.Google Scholar
Ducharme-Crevier, L, Press, CA, Kurz, JE, et al. Early presence of sleep spindles on electroencephalography is associated with good outcome after pediatric cardiac arrest. Pediatr Crit Care Med. 2017;18(5):452–60.Google Scholar
Pampiglione, G, Chaloner, J, Harden, A, O’Brien, J. Transitory ischemia/anoxia in young children and the prediction of quality of survival. Ann N Y Acad Sci. 1978;315 :281–92.Google Scholar
Abend, NS, Massey, SL, Fitzgerald, M, et al. Interrater agreement of EEG interpretation after pediatric cardiac arrest using standardized critical care EEG terminology. J Clin Neurophysiol. 2017;34(6):534–41.Google Scholar
Ostendorf, AP, Hartman, ME, Friess, SH. Early electroencephalographic findings correlate with neurologic outcome in children following cardiac arrest. Pediatr Crit Care Med. 2016;17(7):667–76.Google Scholar
Fung, FW, Topjian, AA, Xiao, R, Abend, NS. Early EEG features for outcome prediction after cardiac arrest in children. J Clin Neurophysiol. 2019;36(5):349–57.CrossRefGoogle ScholarPubMed
Toet, MC, Hellstrom-Westas, L, Groenendaal, F, Eken, P, de Vries, LS. Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 1999;81(1):F1923.Google Scholar
Cloostermans, MC, van Meulen, FB, Eertman, CJ, Hom, HW, van Putten, MJ. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40(10):2867–75.Google Scholar
Synek, VM, Shaw, NA. Epileptiform discharges in presence of continuous background activity in anoxic coma. Clin Electroencephalogr. 1989;20(2):141–6.Google Scholar
Rossetti, AO, Carrera, E, Oddo, M. Early EEG correlates of neuronal injury after brain anoxia. Neurology. 2012;78(11):796802.CrossRefGoogle ScholarPubMed
Synek, VM. Revised EEG coma scale in diffuse acute head injuries in adults. Clin Exp Neurol. 1990;27 :99–111.Google Scholar
Abend, NS, Gutierrez-Colina, A, Zhao, H, et al. Interobserver reproducibility of electroencephalogram interpretation in critically ill children. J Clin Neurophysiol. 2011;28(1):1519.Google Scholar
Husain, AM. Electroencephalographic assessment of coma. J Clin Neurophysiol. 2006;23(3):208–20.CrossRefGoogle ScholarPubMed
Gerber, PA, Chapman, KE, Chung, SS, et al. Interobserver agreement in the interpretation of EEG patterns in critically ill adults. J Clin Neurophysiol. 2008;25(5):241–9.Google Scholar
Hirsch, LJ, Brenner, RP, Drislane, FW, et al. The ACNS subcommittee on research terminology for continuous EEG monitoring: proposed standardized terminology for rhythmic and periodic EEG patterns encountered in critically ill patients. J Clin Neurophysiol. 2005;22(2):128–35.Google Scholar
Ronner, HE, Ponten, SC, Stam, CJ, Uitdehaag, BM. Inter-observer variability of the EEG diagnosis of seizures in comatose patients. Seizure. 2009;18(4):257–63.CrossRefGoogle ScholarPubMed
Bourgoin, P, Barrault, V, Joram, N, et al. The prognostic value of early amplitude-integrated electroencephalography monitoring after pediatric cardiac arrest. Pediatr Crit Care Med. 2020;21(3):248–55.CrossRefGoogle ScholarPubMed
Lee, S, Zhao, X, Davis, KA, et al. Quantitative EEG predicts outcomes in children after cardiac arrest. Neurology. 2019;92(20):e2329–e2338.CrossRefGoogle ScholarPubMed
Stecker, MM, Cheung, AT, Pochettino, A, et al. Deep hypothermic circulatory arrest: I. Effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg. 2001;71(1):1421.CrossRefGoogle ScholarPubMed
Levy, WJ. Quantitative analysis of EEG changes during hypothermia. Anesthesiology. 1984;60(4):291–7.Google Scholar
Horan, M, Azzopardi, D, Edwards, AD, Firmin, RK, Field, D. Lack of influence of mild hypothermia on amplitude integrated-electroencephalography in neonates receiving extracorporeal membrane oxygenation. Early Hum Dev. 2007;83(2):6975.CrossRefGoogle ScholarPubMed
Kochs, E. Electrophysiological monitoring and mild hypothermia. J Neurosurg Anesthesiol. 1995;7(3):222–8.Google Scholar
Kessler, SK, Topjian, AA, Gutierrez-Colina, AM, et al. Short-term outcome prediction by electroencephalographic features in children treated with therapeutic hypothermia after cardiac arrest. Neurocrit Care. 2011;14(1):3743.Google Scholar
Veselis, RA, Reinsel, R, Marino, P, Sommer, S, Carlon, GC. The effects of midazolam on the EEG during sedation of critically ill patients. Anaesthesia. 1993;48(6):463–70.CrossRefGoogle ScholarPubMed
Tortorici, MA, Kochanek, PM, Poloyac, SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med. 2007;35(9):21962204.Google Scholar
Sessler, DI. Complications and treatment of mild hypothermia. Anesthesiology. 2001;95(2):531–43.CrossRefGoogle ScholarPubMed
Arpino, PA, Greer, DM. Practical pharmacologic aspects of therapeutic hypothermia after cardiac arrest. Pharmacotherapy. 2008;28(1):102–11.Google Scholar
Fritz, HG, Holzmayr, M, Walter, B, et al. The effect of mild hypothermia on plasma fentanyl concentration and biotransformation in juvenile pigs. Anesth Analg. 2005;100(4):9961002.CrossRefGoogle ScholarPubMed
Samaniego, EA, Mlynash, M, Caulfield, AF, Eyngorn, I, Wijman, CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15(1):113–19.CrossRefGoogle ScholarPubMed
Callaway, CW, Soar, J, Aibiki, M, et al. Part 4: Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2015;132(16 Suppl 1):S84145.Google Scholar
Kane, N, Oware, A. Somatosensory evoked potentials aid prediction after hypoxic-ischaemic brain injury. Pract Neurol. 2015;15(5):352–60.Google Scholar
Goldie, WD, Chiappa, KH, Young, RR, Brooks, EB. Brainstem auditory and short-latency somatosensory evoked responses in brain death. Neurology. 1981;31(3):248–56.Google Scholar
Trojaborg, W, Jorgensen, EO. Evoked cortical potentials in patients with “isoelectric” EEGs. Electroencephalogr Clin Neurophysiol. 1973;35(3):301–9.CrossRefGoogle ScholarPubMed
Zegers de Beyl, D, Brunko, E. Prediction of chronic vegetative state with somatosensory evoked potentials. Neurology. 1986;36(1):134.CrossRefGoogle ScholarPubMed
Rothstein, TL. The role of evoked potentials in anoxic-ischemic coma and severe brain trauma. J Clin Neurophysiol. 2000;17(5):486–97.CrossRefGoogle ScholarPubMed
Tiainen, M, Kovala, TT, Takkunen, OS, Roine, RO. Somatosensory and brainstem auditory evoked potentials in cardiac arrest patients treated with hypothermia. Crit Care Med. 2005;33(8):1736–40.CrossRefGoogle ScholarPubMed
Zandbergen, EG, de Haan, RJ, Stoutenbeek, CP, Koelman, JH, Hijdra, A. Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet. 1998;352(9143):1808–12.Google Scholar
Zandbergen, EG, Hijdra, A, Koelman, JH, et al. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology. 2006;66(1):62–8.Google Scholar
Howell, K, Grill, E, Klein, AM, Straube, A, Bender, A. Rehabilitation outcome of anoxic-ischaemic encephalopathy survivors with prolonged disorders of consciousness. Resuscitation. 2013;84(10):1409–15.Google Scholar
Leithner, C, Ploner, CJ, Hasper, D, Storm, C. Does hypothermia influence the predictive value of bilateral absent N20 after cardiac arrest? Neurology. 2010;74(12):965–9.Google Scholar
Bender, A, Howell, K, Frey, M, et al. Bilateral loss of cortical SSEP responses is compatible with good outcome after cardiac arrest. J Neurol. 2012;259(11):2481–3.Google Scholar
Pfeiffer, G, Pfeifer, R, Isenmann, S. Cerebral hypoxia, missing cortical somatosensory evoked potentials and recovery of consciousness. BMC Neurol. 2014;14:82.CrossRefGoogle ScholarPubMed
Arch, AE, Chiappa, K, Greer, DM. False positive absent somatosensory evoked potentials in cardiac arrest with therapeutic hypothermia. Resuscitation. 2014;85(6):e9798.Google Scholar
Bouwes, A, Binnekade, JM, Zandstra, DF, et al. Somatosensory evoked potentials during mild hypothermia after cardiopulmonary resuscitation. Neurology. 2009;73(18):1457–61.Google Scholar
Carter, BG, Butt, W. Review of the use of somatosensory evoked potentials in the prediction of outcome after severe brain injury. Crit Care Med. 2001;29(1):178–86.Google Scholar
Robinson, LR, Micklesen, PJ, Tirschwell, DL, Lew, HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31(3):960–7.Google Scholar
Kamps, MJ, Horn, J, Oddo, M, et al. Prognostication of neurologic outcome in cardiac arrest patients after mild therapeutic hypothermia: a meta-analysis of the current literature. Intensive Care Med. 2013;39(10):1671–82.Google Scholar
Golan, E, Barrett, K, Alali, AS, et al. Predicting neurologic outcome after targeted temperature management for cardiac arrest: systematic review and meta-analysis. Crit Care Med. 2014;42(8):1919–30.Google Scholar
Sandroni, C, Cavallaro, F, Callaway, CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: patients treated with therapeutic hypothermia. Resuscitation. 2013;84(10):1324–38.Google Scholar
Bouwes, A, Binnekade, JM, Kuiper, MA, et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol. 2012;71(2):206–12.CrossRefGoogle ScholarPubMed
Pfeifer, R, Weitzel, S, Gunther, A, et al. Investigation of the inter-observer variability effect on the prognostic value of somatosensory evoked potentials of the median nerve (SSEP) in cardiac arrest survivors using an SSEP classification. Resuscitation. 2013;84(10):1375–81.Google Scholar
Zandbergen, EG, Hijdra, A, de Haan, RJ, et al. Interobserver variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol. 2006;117(7):1529–35.Google Scholar
Jobsis, FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264–7.Google Scholar
Scheeren, TW, Schober, P, Schwarte, LA. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput. 2012;26(4):279–87.Google Scholar
Tobias, JD. Cerebral oxygenation monitoring: near-infrared spectroscopy. Expert Rev Med Devices. 2006;3(2):235–43.Google Scholar
Watzman, HM, Kurth, CD, Montenegro, LM, et al. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology. 2000;93(4):947–53.Google Scholar
Abdul-Khaliq, H, Troitzsch, D, Berger, F, Lange, PE. [Regional transcranial oximetry with near infrared spectroscopy (NIRS) in comparison with measuring oxygen saturation in the jugular bulb in infants and children for monitoring cerebral oxygenation]. Biomed Tech (Berl). 2000;45(11):328–32.CrossRefGoogle ScholarPubMed
Nagdyman, N, Ewert, P, Peters, B, et al. Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children. Paediatr Anaesth. 2008;18(2):160–6.Google Scholar
Nagdyman, N, Fleck, T, Schubert, S, et al. Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children. Intensive Care Med. 2005;31(6):846–50.Google Scholar
Bhutta, AT, Ford, JW, Parker, JG, et al. Noninvasive cerebral oximeter as a surrogate for mixed venous saturation in children. Pediatr Cardiol. 2007;28(1):3441.Google Scholar
Ranucci, M, Isgro, G, De la Torre, T, et al. Near-infrared spectroscopy correlates with continuous superior vena cava oxygen saturation in pediatric cardiac surgery patients. Paediatr Anaesth. 2008;18(12):1163–9.Google Scholar
Sanfilippo, F, Serena, G, Corredor, C, et al. Cerebral oximetry and return of spontaneous circulation after cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2015;94 :67–72.Google Scholar
Parnia, S, Nasir, A, Ahn, A, et al. A feasibility study of cerebral oximetry during in-hospital mechanical and manual cardiopulmonary resuscitation. Crit Care Med. 2014;42(4):930–3.Google Scholar
Genbrugge, C, Dens, J, Meex, I, et al. Regional cerebral oximetry during cardiopulmonary resuscitation: useful or useless? J Emerg Med. 2015;50(1):198207.Google Scholar
Newman, DH, Callaway, CW, Greenwald, IB, Freed, J. Cerebral oximetry in out-of-hospital cardiac arrest: standard CPR rarely provides detectable hemoglobin-oxygen saturation to the frontal cortex. Resuscitation. 2004;63(2):189–94.Google Scholar
Singer, AJ, Ahn, A, Inigo-Santiago, LA, et al. Cerebral oximetry levels during CPR are associated with return of spontaneous circulation following cardiac arrest: an observational study. Emerg Med J. 2015;32(5):353–6.Google Scholar
Parnia, S, Nasir, A, Shah, C, et al. A feasibility study evaluating the role of cerebral oximetry in predicting return of spontaneous circulation in cardiac arrest. Resuscitation. 2012;83(8):982–5.Google Scholar
Meex, I, De Deyne, C, Dens, J, et al. Feasibility of absolute cerebral tissue oxygen saturation during cardiopulmonary resuscitation. Crit Care. 2013;17(2):R36.Google Scholar
Ahn, A, Nasir, A, Malik, H, D’Orazi, F, Parnia, S. A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest. Resuscitation. 2013;84(12):1713–16.Google Scholar
Parnia, S, Yang, J, Nguyen, R, et al. Cerebral oximetry during cardiac arrest: a multicenter study of neurologic outcomes and survival. Crit Care Med. 2016;44(9):1663–74.Google Scholar
Ito, N, Nishiyama, K, Callaway, CW, et al. Noninvasive regional cerebral oxygen saturation for neurological prognostication of patients with out-of-hospital cardiac arrest: a prospective multicenter observational study. Resuscitation. 2014;85(6):778–84.Google Scholar
Paradis, NA, Martin, GB, Rivers, EP, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;263(8):1106–13.Google Scholar
Yannopoulos, D, McKnite, S, Aufderheide, TP, et al. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Resuscitation. 2005;64(3):363–72.Google Scholar
Koyama, Y, Wada, T, Lohman, BD, et al. A new method to detect cerebral blood flow waveform in synchrony with chest compression by near-infrared spectroscopy during CPR. Am J Emerg Med. 2013;31(10):1504–8.Google Scholar
Kamarainen, A, Sainio, M, Olkkola, KT, et al. Quality controlled manual chest compressions and cerebral oxygenation during in-hospital cardiac arrest. Resuscitation. 2012;83(1):138–42.Google Scholar
Paarmann, H, Heringlake, M, Sier, H, Schon, J. The association of non-invasive cerebral and mixed venous oxygen saturation during cardiopulmonary resuscitation. Interact Cardiovasc Thorac Surg. 2010;11(3):371–3.Google Scholar
Mayr, NP, Martin, K, Kurz, J, Tassani, P. Monitoring of cerebral oxygen saturation during closed-chest and open-chest CPR. Resuscitation. 2011;82(5):635–6.CrossRefGoogle ScholarPubMed
Martens, PR, Dhaese, HL, Van den Brande, FG, Van Laecke, SM. External cardiac massage improved cerebral tissue oxygenation shown by near-infrared spectroscopy during transcatheter aortic valve implantation. Resuscitation. 2010;81(11):1590–1.CrossRefGoogle ScholarPubMed
Pilkington, SN, Hett, DA, Pierce, JM, Smith, DC. Auditory evoked responses and near infrared spectroscopy during cardiac arrest. Br J Anaesth. 1995;74(6):717–19.Google Scholar
Storm, C, Leithner, C, Krannich, A, et al. Regional cerebral oxygen saturation after cardiac arrest in 60 patients – a prospective outcome study. Resuscitation. 2014;85(8):1037–41.Google Scholar
Meex, I, Dens, J, Jans, F, et al. Cerebral tissue oxygen saturation during therapeutic hypothermia in post-cardiac arrest patients. Resuscitation. 2013;84(6):788–93.Google Scholar
Shum-Tim, D, Nagashima, M, Shinoka, T, et al. Postischemic hyperthermia exacerbates neurologic injury after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1998;116(5):780–92.Google Scholar
Pynnonen, L, Falkenbach, P, Kamarainen, A, et al. Therapeutic hypothermia after cardiac arrest – cerebral perfusion and metabolism during upper and lower threshold normocapnia. Resuscitation. 2011;82(9):1174–9.Google Scholar
Mayr, NP, Martin, K, Hausleiter, J, Tassani, P. Measuring cerebral oxygenation helps optimizing post-resuscitation therapy. Resuscitation. 2011;82(8):1110–11.Google Scholar
Hoffman, GM, Brosig, CL, Mussatto, KA, Tweddell, JS, Ghanayem, NS. Perioperative cerebral oxygen saturation in neonates with hypoplastic left heart syndrome and childhood neurodevelopmental outcome. J Thorac Cardiovasc Surg. 2013;146(5):1153–64.Google Scholar
Deschamps, A, Lambert, J, Couture, P, et al. Reversal of decreases in cerebral saturation in high-risk cardiac surgery. J Cardiothorac Vasc Anesth. 2013;27(6):1260–16.Google Scholar
Massey, SL, Abend, NS, Gaynor, JW, et al. Electroencephalographic patterns preceding cardiac arrest in neonates following cardiac surgery. Resuscitation. 2019;144 :67–74.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×