Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T03:22:50.628Z Has data issue: false hasContentIssue false

15 - Toward Unraveling the Premorbid Neurodevelopmental Risk for Schizophrenia

Published online by Cambridge University Press:  10 August 2009

Matcheri S. Keshavan
Affiliation:
Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

Over the past four decades several studies have attempted to investigate the potential premorbid indicators of risk for schizophrenia. These studies have involved either long-term follow-up investigation of mostly unselected at risk subjects, or follow-back studies, and have examined behavioral/physiological indicators of variable significance. The “first generation” prospective studies have revealed some important clues to putative markers of risk for schizophrenia such as attentional and neuromotor abnormalities. However, these studies have often been criticized for their expense and lack of statistical power. Over the past decade an impressive wealth of data suggest developmentally mediated neurobiological alterations preceding clinical manifestations of schizophrenia and the critical importance of adolescence for emergence of such alterations. In this chapter, we discuss the merits and disadvantages of approaches to ascertain premorbid risk for schizophrenic illness, and argue that at the dawn of the twenty-first century, it is time to launch a new generation of high risk studies in schizophrenia. To be successful, such studies need to: (a) use hypothesis-driven and established neurobehavioral and biological markers that are guided by the emerging neurodevelopmental models of schizophrenia; (b) use an “enhanced” high risk strategy which defines risk by the presence of both genetic risk and biobehavioral or psychopathological risk; (c) address issues of diagnostic reliability, specificity, and generalizability; (d) develop a prospective follow-up design through the critical risk period closer to illness onset such as adolescence; and (e) use coordinated multicenter studies which are likely to enhance statistical power in such studies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amminger, G. P., Pape, S., Rock, D., Roberts, S. A., Ott, S. L., Squires-Wheeler, E., Kestenbaum, C., & Erlenmeyer-Kimling, L. (1999). Relationship between childhood behavioral disturbance and later schizophrenia in the New York High-Risk Project. American Journal of Psychiatry, 156, 525–530Google ScholarPubMed
Benes, F. M. (1995). A neurodevelopmental approach to the understanding of schizophrenia and other mental disorders. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology: Theory and methods (pp. 227–253). New York: Wiley
Born, P., Rostrup, E., Leth, H., Peitersen, B., & Lou, H. C. (1996). Changes of visually induced cortical activation patterns during development. Lancet, 347, 543–544CrossRefGoogle Scholar
Cannon, T. D., & Mednick, S. A. (1993). The schizophrenia high-risk project in Copenhagen: three decades of progress. Acta Psychiatrica Scandinavica, Supplementum, 370, 33–47CrossRefGoogle ScholarPubMed
Carter, J. W., Parnas, J., Cannon, T. D., Schulsinger, F., & Mednick, S. A. (1999). MMPI variables predictive of schizophrenia in the Copenhagen High-Risk Project: a 25-year follow-up. Acta Psychiatrica Scandinavica, 99, 432–440CrossRefGoogle ScholarPubMed
Chapman, L. J., Chapman, J. P., & Raulin, M. L. (1976). Scales for physical and social anhedonia. Journal of Abnormal Psychology, 85, 374–382CrossRefGoogle ScholarPubMed
Chapman, L. J., Chapman, J. P., & Raulin, M. (1978). Body-image aberration in schizophrenia. Journal of Abnormal Psychology, 87, 399–407CrossRefGoogle Scholar
Clark, V. P., Courchesne, E., & Grafe, M. (1992). In vivo myeloarchitecture analysis of human striate and extrastriate cortex using Magnetic Resonance Imaging. Cerebral Cortex, 2, 417–424CrossRefGoogle Scholar
Cornblatt, B. A., Dworkin, R. H., Wolf, L. E., & Erlenmeyer-Kimling, L. (1996). Markers, developmental processes, and schizophrenia. In M. F. Lenzenweger & J. J. Haugaard (Eds.), Frontiers of developmental psychopathology (pp. 125–147). New York: Oxford University Press
Cornblatt, B., & Erlenmeyer-Kimling, L. (1985). Global attentional deviance as a marker of risk for schizophrenia: Specificity and predictive validity. Journal of Abnormal Psychology, 94, 470–486CrossRefGoogle ScholarPubMed
Cornblatt, B., & Erlenmeyer-Kimling, . (1989). Attention and schizophrenia. Schizophrenia Research, 2, 58CrossRefGoogle Scholar
Cornblatt, B. A., & Keilp, J. G. (1994). Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophrenia Bulletin, 20, 31–46CrossRefGoogle ScholarPubMed
Cornblatt, B., & Obuchowski, M. (1997). Update of high risk research: 1987–1997. International Review of Psychiatry, 9, 437–447Google Scholar
Csernansky, J. G., & Newcomer, J. W. (1994). Are there neurochemical indicators of vulnerability to schizophrenia? Schizophrenia Bulletin, 20, 89–102CrossRefGoogle Scholar
David, A. S., Malmberg, A., Brandt, L., Allebeck, P., & Lewis, G. (1997). IQ and risk for schizophrenia: a population-based cohort study. Psychological Medicine, 27, 1131–1323CrossRefGoogle ScholarPubMed
Davidson, M., Reichenberg, A., Rabinowitz, J., Weiser, M., Kaplan, Z., & Mark, M. (1999). Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. American Journal of Psychiatry, 156, 1328–1335Google ScholarPubMed
DeLisi, L. E., Goldin, L. R., Hamovit, J. R., Maxwell, M. E., Kurtz, D., & Gershon, E. S. (1986). A family study of the association of increased ventricular size with schizophrenia. Archives of General Psychiatry, 43, 148–153CrossRefGoogle ScholarPubMed
Done, D. J., Crow, T. J., Johnstone, E. C., & Sacker, A. (1994). Childhood antecedents of schizophrenia and affective illness: Social adjustments at ages 7 and 11. British Medical Journal, 309, 699–703CrossRefGoogle ScholarPubMed
Dykes, K. L., Mednick, S. A., Machon, R. A., Praestholm, J., & Parnas, J. (1992). Adult third ventricle width and infant behavioral arousal in groups at high and low risk for schizophrenia. Schizophrenic Research, 7, 13–18CrossRefGoogle ScholarPubMed
Erlenmeyer-Kimling, L., Squires-Wheeler, E., Hilldoff-Adamo, U. H., Bassett, A. S., Cornblatt, B. A., Kestenbaum, C. J., Rock, D., Roberts, S. A., & Gottesman, I. I. (1995). The New York High-Risk Project. Psychoses and cluster A personality disorders in offspring of schizophrenic parents at 23 years of follow-up. Archives of General Psychiatry, 52, 857–865CrossRefGoogle Scholar
Feinberg, I. (1982). Schizophrenia and late maturational brain changes in man. Psychopharmacology Bulletin, 18, 29–31Google Scholar
Fish, B., Marcus, J., Hans, S. L., Auerbach, J. G., & Perdue, S. (1992). Infants at risk for schizophrenia: Sequelae of a genetic neurointegrative defect: A review and replication analysis of pandysmaturation in the Jerusalem Infant Development Study. Archives of General Psychiatry, 49, 221–235CrossRefGoogle ScholarPubMed
Friedman, D., & Squires-Wheeler, E. (1994). Event-related potentials (ERPs) as indicators for risk for schizophrenia. Schizophrenia Bulletin, 20(1), 63–74CrossRefGoogle ScholarPubMed
Garver, D. L. (1987). Methodological issues facing the interpretation of high-risk studies: Biological heterogeneity (Review). Schizophrenia Bulletin, 13, 525–529CrossRefGoogle Scholar
Gooding, D. C., & Iacono, W. G. (1995). Schizophrenia through the lens of a developmental psychopathology perspective. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology: Risk, disorder, and adaptation (pp. 535–580). New York: Wiley
Gottesman, I. I., & Shields, J. (1982). Schizophrenia: The epigenetic puzzle. New York: Cambridge University Press
Hafner, H. (1990). New perspectives in the epidemiology of schizophrenia. In H. Hafner & W. F. Gattaz (Eds.), Search for the causes of schizophrenia (pp. 408–431). Berlin: Springer-VerlagCrossRef
Hanson, D. R., Gottesman, I. I., & Heston, L. L. (1990). Long-range schizophrenia forecasting: many a slip twixt cup and lip. In J. Rolf, A. Masten, D. Cicchetti, K. Nuechterlein, & S. Weintraub (Eds.), Risk and protective factors in the development of psychopathology. New York: Cambridge University PressCrossRef
Hollister, J. M., Mednick, S. A., Brennan, P., & Cannon, T. D. (1994). Impaired autonomic nervous system-habituation in those at genetic risk for schizophrenia. Archives of General Psychiatry, 51, 552–558CrossRefGoogle ScholarPubMed
Holzman, P. S., Levy, D. L., & Proctor, L. R. (1976). Smooth pursuit eye movements, attention, and schizophrenia. Archives of General Psychiatry, 33, 1415–1420CrossRefGoogle Scholar
Ingraham, L. J., Kugelmass, S., Frenkel, E., Nathan, M., & Mirsky, A. F. (1995). Twenty-five year follow-up of the Israeli High-Risk Study: current and lifetime psychopathology. Schizophrenia Bulletin, 21, 183–192CrossRefGoogle ScholarPubMed
Jones, P., Rodgers, B., Murray, R., & Marmot, M. (1994). Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet, 344, 1398–1402CrossRefGoogle ScholarPubMed
Jones, P. B., & Tarrant, C. J. (1999). Specificity of developmental precursors to schizophrenia and affective disorders. Schizophrenia Research, 39, 121–125CrossRefGoogle ScholarPubMed
Josiassen, R. C., Shagass, C., Roemer, R. A., & Straumanis, J. J. (1985). Attention-related effects on somatosensory evoked potentials in college students at high risk for psychopathology. Journal of Abnormal Psychiatry, 94, 507–518CrossRefGoogle ScholarPubMed
Keshavan, M. S., Anderson, S., & Pettegrew, J. W. (1994). Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? Journal of Psychiatric Research, 28, 239–265CrossRefGoogle ScholarPubMed
Keshavan, M. S., & Cornblatt, B. (2000). Early pharmacotherapeutic intervention in the prodromal phase of schizophrenia: Is this a good idea? PRO/CON. The Journal of Psychotic Disorders, IV(2), 3Google Scholar
Keshavan, M. S., & Hogarty, G. E. (1999). Brain maturational processes and delayed onset in schizophrenia. Development and Psychopathology, 11, 525–543CrossRefGoogle Scholar
Keshavan, M. S., Kapur, S., & Pettegrew, J. W. (1991). Magnetic resonance spectroscopy in psychiatry: Potential, pitfalls and promise. American Journal of Psychiatry, 148, 976–985Google ScholarPubMed
Keshavan, M. S., Montrose, D. M., Pierri, J. N., Dick, E. L., Rosenberg, D., Talagala, L., & Sweeney, J. A. (1997). Magnetic resonance imaging and spectroscopy in offspring at risk for schizophrenia: Preliminary studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 1285–1295CrossRefGoogle ScholarPubMed
Keshavan, M. S., Pettegrew, J. W., Panchalingam, K., Kaplan, D., Brar, J., & Campbell, K. (1989). In vivo 31P nuclear magnetic resonance (NMR) spectroscopy of the frontal lobe metabolism in neuroleptic naive first episode psychoses. Schizophrenia Research, 2, 122CrossRefGoogle Scholar
Keshavan, M. S., & Schooler, N. R. (1992). First-episode studies of schizophrenia: Criteria and characterization. Schizophrenia Bulletin, 18, 491–513CrossRefGoogle ScholarPubMed
Kremen, W. S., Seidman, L. J., Pepple, J. R., Lyons, M. J., Tsuang, M. T., & Faraone, S. V. (1994). Neuropsychological risk indicators for schizophrenia: A review of family studies. Schizophrenia Bulletin, 20, 103–119CrossRefGoogle ScholarPubMed
Lawrie, S. M., Whalley, H., Kestelman, J. N., Abukmeil, S. S., Byrne, M., Hodges, A., Rimmington, J. E., Best, J. J., Owens, D. G., & Johnstone, E. C. (1999). Magnetic resonance imaging of brain in people at high risk of developing schizophrenia [see comments]. Lancet, 353, 30–33CrossRefGoogle Scholar
Lencz, T., Raine, A., Scerbo, A., Redmon, M., Brodish, S., Holt, L., & Bird, L. (1993). Impaired eye tracking in undergraduates with schizotypal personality disorder. American Journal of Psychiatry, 150, 152–154Google ScholarPubMed
Lenzenweger, M. F. (1994). Psychometric high-risk paradigm, perceptual aberrations, and schizotypy: an update. Schizophrenia Bulletin, 20, 121–135CrossRefGoogle ScholarPubMed
Levy, D. L., Holzman, P. S., Matthysse, S., & Mendell, N. R. (1994). Eye tracking and schizophrenia: a selective review. Schizophrenia Bulletin, 20(1), 47–62CrossRefGoogle ScholarPubMed
Lim, K. O., Adalsteinsson, E., Spielman, D., Sullivan, E. V., Rosenbloom, M. J., & Pfefferbaum, A. (1998). Proton magnetic resonance spectroscopic imaging of cortical gray and white matter in schizophrenia. Archives of General Psychiatry, 55, 346–352CrossRefGoogle Scholar
Maier, W., Franke, P., Hain, C., Kipp, B., & Rist, F. (1992). Neuropsychological indicators of the vulnerability to schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 16, 703–715CrossRefGoogle Scholar
McGlashan, T. H. (1998). Early detection and intervention of schizophrenia: Rationale and research. British Journal of Psychiatry, 172, 3–6Google ScholarPubMed
McGorry, P. D. (1998). “A sitch in time” … the scope for preventive strategies in early psychosis. European Archives of Psychiatry & Clinical Neuroscience, 248, 22–31CrossRefGoogle Scholar
Mednick, S. A., Parnas, J., & Schulsinger, F. (1987). The Copenhagen High-Risk Project. Schizophrenia Bulletin, 13, 485–495CrossRefGoogle ScholarPubMed
Moldin, S. O., Gottesman, I. I., Rice, J., & Erlenmeyer-Kimling, L. (1991). Replicated psychometric correlates of schizophrenia. American Journal of Psychiatry, 148, 762–767Google ScholarPubMed
Murray, R. M., & Lewis, S. W. (1987). Is schizophrenia a neurodevelopmental disorder? [editorial]. British Medical Journal (Clin Res Ed), 295, 681–682CrossRefGoogle Scholar
Nasrallah, H. A., & Tolbert, H. A. (1997). Neurobiology and neuroplasticity in schizophrenia. Continuity across the life cycle [comment]. Archives of General Psychiatry, 54(10), 913-914CrossRefGoogle Scholar
Parnas, J., Cannon, T. D., Jacobsen, B., Schulsinger, H., Schulsinger, F., & Mednick, S. A. (1993). Lifetime DSM-II-R diagnostic outcomes in the offspring of schizophrenic mothers. Results from the Copenhagen High-Risk Study. Archives of General Psychiatry, 50, 707–714CrossRefGoogle Scholar
Pearson, J. S., & Kley, I. B. (1957). On the application of genetic expectancies as age specific base rates in the study of human behavior disorders. Psychological Bulletin, 54, 406–420CrossRefGoogle Scholar
Rantakallio, P., Jones, P. B., Moring, J., & Wendt, L. (1997). Association between central nervous system infections during childhood and adult onset schizophrenia and other psychoses: a 28-year follow-up. Inernational Journal of Epidemiology, 26, 837–843CrossRefGoogle ScholarPubMed
Reveley, A. M., Reveley, M. A., Clifford, C. A., & Murray, R. M. (1982). Cerebral ventricular size in twins discordant for schizophrenia. Lancet, 1, 540–541CrossRefGoogle Scholar
Rosenberg, D. R., & Keshavan, M. S. (1998). Toward a neurodevelopmental model of obsessive-compulsive disorder. Biological Psychiatry, 43, 623–640CrossRefGoogle Scholar
Saitoh, O., Niwa, S., Hiramatsu, K., Kameyama, T., Rymar, K., & Itoh, K. (1984). Abnormalities in late positive components of event-related potentials may reflect genetic predisposition to schizophrenia. Biological Psychiatry, 19, 293–303Google Scholar
Schreiber, H., Stolz, G., Rothmeier, J., Kornhuber, H. H., & Born, J. (1989). Prolonged latencies of the N2 and P3 of the auditory event-related potential in children at risk for schizophrenia. A preliminary report. European Archives of Psychiatry and Neurological Sciences, 238, 185–188CrossRefGoogle ScholarPubMed
Schreiber, H., Wallner, B., & DeWinter, I. M. (1999). Brain morphology in adolescents at genetic risk for schizophrenia assessed by qualitative and quantitative magnetic resonance imaging. Schizophrenia Research, 40, 81–84CrossRefGoogle ScholarPubMed
Schulsinger, F., Mednick, S. A., Venables, P. H., Raman, A. C., & Bell, B. (1975). Early detection and prevention of mental illness: the Mauritius project. A preliminary report. Neuropsychobiology, 1, 166–175CrossRefGoogle ScholarPubMed
Seidman, L. J., Goldstein, J. M., Goodman, J. M., Koren, D., Turner, W. M., Faraone, S. V., & Tsuang, M. T. (1997). Sex differences in olfactory identification and Wisconsin Card Sorting performance in schizophrenia: relationship to attention and verbal ability. Biological Psychiatry, 42, 104–115CrossRefGoogle ScholarPubMed
Sharma, T., du Boulay, G., Lewis, S., Sigmundsson, T., Gurling, H., & Murray, R. (1997). The Maudsley Family Study. I: Structural brain changes on magnetic resonance imaging in familial schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 1297–1315CrossRefGoogle ScholarPubMed
Siever, L. J. (1994). Biologic factors in schizotypal personal disorders. Acta Psychiatrica Scandinavica, 384, 45–50CrossRefGoogle ScholarPubMed
Staal, W. G., Hulshoff Pol, H. E., Schnack, H., Schot, A. C., & Kahn, R. S. (1998). Partial volume decreases of the thalamus in relatives of patients with schizophrenia. American Journal of Psychiatry, 155, 1784–1786CrossRefGoogle Scholar
Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, W. F., & Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. New England Journal of Medicine, 322, 789–795CrossRefGoogle Scholar
Tienari, P., Wynne, L. C., Moring, J., Lahti, I., Naarala, M., Sorri, A., Wahlberg, K. E., Saarento, O., Seitamaa, M., Kaleva, M., & Laksy, K. (1994). The Finnish adoptive family study of schizophrenia: implications for family research. British Journal of Psychiatry, 164, 20–26Google Scholar
Venables, P. H., Mednick, S. A., Schulsinger, S. F., Raman, A. C., Bell, B., Dalais, J. C., & Fletcher, R. P. (1978). Screening for risk in mental illness. In G. M. Serban (Ed.), Cognitive defects in the development of mental illness (pp. 273–303). New York: Brunner/Mazel
Walker, E., Grimes, K., Davis, D., & Smith, A. (1993). Childhood precursors of schizophrenia: Facial expressions of emotion. American Journal of Psychiatry, 150, 1654–1660Google ScholarPubMed
Walker, E., & Lewine, R. (1990). Prediction of adult onset schizophrenia from childhood movies of patients. American Journal of Psychiatry, 147, 1052–1056Google Scholar
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660–669CrossRefGoogle ScholarPubMed
Weinberger, D. R., DeLisi, L. E., Neophytides, A. N., & Wyatt, R. J. (1981). Familial aspects of CT scan abnormalities in chronic schizophrenic patients. Psychiatry Research, 4, 65–71CrossRefGoogle ScholarPubMed
Yung, A. R., Phillips, L. J., McGorry, P. D., McFarlane, C. A., Francey, S., Harrigan, S., Patton, G. C., Jackson, H. J. (1998). Prediction of psychosis. A step towards indicated prevention of schizophrenia. British Journal of Psychiatry, Supplement, 172(33), 14–20Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×