Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-04T22:51:00.595Z Has data issue: false hasContentIssue false

16 - Interactions of the Dopamine, Serotonin, and GABA Systems During Childhood and Adolescence: Influence of Stress on the Vulnerability for Psychopathology

Published online by Cambridge University Press:  10 August 2009

Francine M. Benes
Affiliation:
Department of Psychiatry, Columbia University
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

The past decade has been characterized by a significant change in the approach of psychologists and neuroscientists to the study of psychopathology (Cicchetti, 1993; Cicchetti & Cannon, 1999) and how we conceptualize the etiology of mental illness during childhood, adolescence, and adulthood (Benes, 1995). Among these disorders, schizophrenia and, more recently, bipolar disorder have received the most attention with recent postmortem studies having provided compelling evidence for a defect of GABAergic neurotransmission playing a role in its pathophysiology (for a review, see Benes & Berretta, 2001). For example, findings of a decreased density of interneurons (Benes, McSparren, Bird, SanGiovanni, & Vincent, 1991; Benes, Kwok, Vincent, & Todtenkopf, 1998), reduced GABA uptake (Simpson et al., 1989; Reynolds, Czudek, & Andrews, 1990), increased GABA receptor binding activity (Benes, Khan, Vincent, & Wickramasinghe, 1996; Benes, Vincent, Alsterberg, Bird, & SanGiovanni, 1992), decreased GABA terminals (Benes, Todtenkopf, Logiotatos, & Williams, 2000), and reduced expression of mRNA for GAD65 and GAD67 (Akbarian et al., 1995; Guidotti et al., 2000; Heckers et al., 2001; Volk, Austin, Pierri, Sampson, & Lewis, 2000) reported to date are consistent with the idea that there may be a decrease of GABAergic cells and/or activity in these disorders. Since the mechanism of action of antipsychotic medication involves blockade of both dopamine and serotonin receptors (Meltzer, 1994), a key question is how GABA cells interact with these monoaminergic systems in corticolimbic regions of schizophrenic brain.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbarian, S., Kim, J. J., Potkin, S. G., Hagman, J. O., Tafazzoli, A., Bunney, W. E., & Jones, E. G. (1995). Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Archives of General Psychiatry, 52, 258–278CrossRefGoogle ScholarPubMed
Benes, F. M. (1988). Post-mortem structural analyses of schizophrenic brain: study designs and the interpretation of data. Psychiatric Developments, 6(3), 213–226Google Scholar
Benes, F. M. (1989). Myelination of cortical-hippocampal relays during late adolescence. Schizophrenia Bulletin, 15(4), 585–593CrossRefGoogle ScholarPubMed
Benes, F. M. (1993a). Neurobiological investigations in cingulate cortex of schizophrenic brain. Schizophrenia Bulletin, 19(3), 537–549CrossRefGoogle Scholar
Benes, F. M. (1993b). The relationship of cingulate cortex to schizophrenia. In B. A. Vogt & M. Gabriel (Eds.), Neurobiology of cingulate cortex and limbic thalamus (pp. 581–605). Boston: Birkhäuser
Benes, F. M. (1995). A neurodevelopmental approach to the understanding of schizophrenia and other mental disorders. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology, Volume 1: Theory and Methods (pp. 227–253). New York: Wiley
Benes, F. M. (1997). The role of stress and dopamine-GABA interactions in the vulnerability for schizophrenia. Journal of Psychiatric Research, 31(2), 257–275CrossRefGoogle Scholar
Benes, F. M. (2000). Emerging principles of altered neural circuitry in schizophrenia. Brain Research Reviews, 31(2–3), 251–269CrossRefGoogle Scholar
Benes, F. M., & Berretta, S. (2001). GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology
Benes, F. M., Davidson, B., & Bird, E. D. (1986). Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Archives of General Psychiatry, 43, 31–35CrossRefGoogle ScholarPubMed
Benes, F. M., Khan, Y., Vincent, S. L., & Wickramasinghe, R. (1996). Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse, 22(4), 338–3493.0.CO;2-C>CrossRefGoogle ScholarPubMed
Benes, F. M., Kwok, E. W., Vincent, S. L., & Todtenkopf, M. S. (1998). A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives [see comments]. Biological Psychiatry, 44(2), 88–97CrossRefGoogle Scholar
Benes, F. M., McSparren, J., Bird, E. D., SanGiovanni, J. P., & Vincent, S. L. (1991). Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Archives of General Psychiatry, 48(11), 996–1001CrossRefGoogle ScholarPubMed
Benes, F. M., Taylor, J. B., & Cunningham, M. C. (2000). Convergence and plasticity of monoaminergic systems in the medial prefrontal cortex during the postnatal period: implications for the development of psychopathology. Cerebal Cortex, 10(10), 1014–1027CrossRefGoogle ScholarPubMed
Benes, F. M., Todtenkopf, M. S., Logiotatos, P., & Williams, M. (2000). Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain. Journal of Chemistry and Neuroanatomy, 20(3–4), 259–269CrossRefGoogle ScholarPubMed
Benes, F. M., Todtenkopf, M. S., & Taylor, J. B. (1997). Differential distribution of tyrosine hydroxylase fibers on small and large neurons in layer II of anterior cingulate cortex of schizophrenic brain. Synapse, 25(1), 80–923.0.CO;2-2>CrossRefGoogle ScholarPubMed
Benes, F. M., Turtle, M., Khan, Y., & Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Archives of General Psychiatry, 51(6), 477–484CrossRefGoogle Scholar
Benes, F. M., Vincent, S. L., Alsterberg, G., Bird, E. D., & SanGiovanni, J. P. (1992). Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. Journal of Neuroscience, 12(3), 924–929CrossRefGoogle ScholarPubMed
Benes, F. M., Vincent, S. L., & Molloy, R. (1993a). Dopamine-immunoreactive axon varicosities form nonrandom contacts with GABA-immunoreactive neurons of rat medial prefrontal cortex. Synapse, 15(4), 285–295CrossRefGoogle Scholar
Benes, F. M., Vincent, S. L., Molloy, R., & Khan, Y. (1996). Increased interaction of dopamine-immunoreactive varicosities with GABA neurons of rat medial prefrontal cortex occurs during the postweanling period. Synapse, 23(4), 237–2453.0.CO;2-8>CrossRefGoogle ScholarPubMed
Bergson, C., Mrzljak, L., Lidow, M. S., Goldman-Rakic, P. S., & Levenson, R. (1995). Characterization of subtype-specific antibodies to the human D5 dopamine receptor: studies in primate brain and transfected mammalian cells. Proceedings of the National Academy of Science, 92(8), 3468-3472CrossRefGoogle ScholarPubMed
Bramham, C. R., Southard, T., Sarvey, J. M., Herkenham, M., & Brady, L. S. (1996). Unilateral LTP triggers bilateral increases in hippocampal neurothrophin and trk receptor mRNA expression in behaving rats: evidence for inter-hemispheric communication. Journal of Comparative Neurology, 368, 371–3823.0.CO;2-2>CrossRefGoogle Scholar
Broderick, P. A., & Phelix, C. F. (1997). I. Serotonin (5-HT) within dopamine reward circuits signals open-field behavior. II. Basis for 5-HT-DA interaction in cocaine dysfunctional behavior. Neuroscience Biobehavioral Reviews, 21, 227–260CrossRefGoogle ScholarPubMed
Brozoski, T., Brown, R. M., Rosvold, H. E., & Goldman, P. S. (1979). Cognitive deficit caused by depletion of dopamine in prefrontal cortex of rhesus monkey. Science, 205, 929–931CrossRefGoogle ScholarPubMed
Bruinink, A., Lichtensteiner, W., & Schlumpf, M. (1983). Pre- and postnatal ontogeny and characterization of dopaminergic D2, serotonergic S2, and spirodecanone binding sites in rat forebrain. Journal of Neurochemistry, 40, 1227–1237CrossRefGoogle ScholarPubMed
Bunney, B. S., & Chiodo, L. A. (1984). Mesocortical dopamine systems: further electrophysiological and pharmacological characteristics. In L. Descarries, T. A. Reader, & H. H. Jasper (Eds.), Monoamine innervation of the cerebral cortex (pp. 263–277). New York: Alan R. Liss
Caleo, M., Menna, E., Chierzi, S., Cenni, M. C., & Maffei, L. (2000). Brain-derived neurotrophic factor is an anterograde survival factor in the rat visual system. Current Biology, 10(19), 1155–1161CrossRefGoogle ScholarPubMed
Castren, E., Pitkanen, M., Sirvio, J., Parsadanian, A., Lindholm, D., Thoenen, H., & Riekkinen, P. J. (1993). The induction of LTP increases BDNF and NGF messenger RNA but decreases NT-3 messenger RNA in the dentate gyrus. Neuroreport, 4, 895–898CrossRefGoogle ScholarPubMed
Chalmers, D. T., Kwak, S., Mansour, A., Akil, H., & Watson, S. (1993). Corticosteroids regulate brain hippocampal 5-HT1A receptor mRNA expression. Journal of Neuroscience, 13, 914–923CrossRefGoogle ScholarPubMed
Chalmers, D. T., Lopez, J. F., Vazquez, D. M., Akil, H., & Watson, S. J. (1994). Regulation of hippocampal 5-HT1A receptor gene expression by dexamethasone. Neuropsychopharmacology, 10(3), 215–222CrossRefGoogle ScholarPubMed
Chaouloff, F. (2000). Serotonin, stress and corticoids [In Process Citation]. Journal of Psychopharmacology, 14(2), 139–151CrossRefGoogle Scholar
Chronwall, B., & Wolff, J. R. (1980). Prenatal and postnatal development of GABA-accumulating cells in the occipital neocortex of rat. Journal of Comparative Neurology, 190, 187–208CrossRefGoogle ScholarPubMed
Cicchetti, D. (1993). Developmental pyschopathology: Reactions, reflections, projections. Development and Psychopathology, 13, 471–502Google Scholar
Cicchetti, D., & Cannon, T. (1999). Neurodevelopmental processes in the ontogenesis and epigenesis of psychopathology. Development and Psychopathology, 11, 375–393CrossRefGoogle ScholarPubMed
Corda, M. G., & Biggio, G. (1986). Stress and GABAergic transmission: biochemical and behavioural studies. In G. Biggio & E. Costa (Eds.), GABAergic transmission and anxiety (pp. 121–135). New York: Raven Press
Coyle, J. T., & Enna, S. (1976). Neurochemical aspects of the ontogenesis of GABAnergic neurons in the rat brain. Brain Research, 111, 119–133CrossRefGoogle ScholarPubMed
D'Amato, R. J., Blue, M., Largent, B., Lynch, D., Leobetter, D., Molliver, M., & Snyder, S. (1987). Ontogeny of the serotonergic projection of rat neocortex: Transient expression of a dense innervation of primary sensory areas. Proceeding of the National Academy of Science, 84, 4322–4326CrossRefGoogle ScholarPubMed
Davidoff, S. A., & Benes, F. M. (1998). High-resolution scatchard analysis shows D1 receptor binding on pyramidal and nonpyramidal neurons. Synapse, 28(1), 83–903.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Deskin, R., Seidler, F. J., Whitmore, W. L., & Slotkin, T. A. (1981). Development of noradrenergic and dopaminergic receptor systems depends on maturation of their presynaptic nerve terminals in the rat brain. Journal of Neurochemistry, 36, 1683–1690CrossRefGoogle ScholarPubMed
Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118(Pt 1), 279–306CrossRefGoogle ScholarPubMed
Emson, P. C., & Koob, G. F. (1978). The origin and distribution of dopamine-containing afferents to rat frontal cortex. Brain Research, 142, 249–267CrossRefGoogle ScholarPubMed
Flechsig, P. (1920). Anatomie des menschlichen Gehirns und Ruckenmarks auf myelogenetischer Gundlange Leipzig, G. Thieme
Fride, E., Dan, Y., Feldon, H., Halvey, G., & Weinstock, M. (1986). Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats. Physiology and Behavior, 37, 681–687CrossRefGoogle ScholarPubMed
Gambarana, C., Pittman, R., & Siegel, R. E. (1990). Development expression of the GABA-A receptor g1 subunit mRNA in the rat brain. Journal of Neurobiology, 21(8), 1169–1179CrossRefGoogle Scholar
Gaspar, P., Bloch, B., & Moine, C. (1995). D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. European Journal of Neuroscience, 7(5), 1050–1063CrossRefGoogle ScholarPubMed
Gellman, R. L., & Aghajanian, G. K. (1993). Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Research, 600, 63–73CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S., Leranth, C., Williams, S. M., Mons, N., & Geffard, M. (1989). Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proceedings of the National Academy of Science, 86(22), 9015–9019CrossRefGoogle ScholarPubMed
Gudelsky, N. J. (1996). Carrier-mediated release of serotonin by 3,4methylenedioxymethamphetaine: implications for serotonin-dopamine interactions. Journal of Neurochemistry, 66, 243–249CrossRefGoogle ScholarPubMed
Guidotti, A., Auta, J., Davis, J. M., Gerevini, V. D., Dwivedi, Y., Grayson, D. R., Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R., Uzunov, D., & Costa, E. (2000). Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: A postmortem brain study [In Process Citation]. Archives of General Psychiatry, 57(11), 1061-1069CrossRefGoogle Scholar
Gulledge, A. T., & Jaffe, D. B. (1998). Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. Journal of Neuroscience, 18, 9139–9151CrossRefGoogle Scholar
Heckers, S., Stone, D. J., Walsh, J., Schick, J., Koul, P., & Benes, F. M. (2001). Decreased hippocampal expression of glutamic acid decarboxylase (GAD) 65 and 67 mRNA in bipolar disorder. Archives of General Psychiatry
Howell, I. I., Czoty, P. W., & Burd, L. D. (1997). Pharmacological interactions between serotonin and dopamine on behavior in the squirrel monkey. Psychopharmacology, 131, 40–48CrossRefGoogle ScholarPubMed
Huntley, G. W., Morrison, J. H., Prikhozhan, A., & Sealfon, S. C. (1992). Localization of multiple dopamine receptor subtype mRNAs in human and monkey motor cortex and striatum. Molecular Brain Research, 15, 181–188CrossRefGoogle ScholarPubMed
Iuvone, P., & Dunn, A. (1986). Tyrosine hydroxylase activation in mesocortical 3,4-dihydroxyphenylethylamine neurons following footshock. Journal of Neurochemistry, 47, 837–844CrossRefGoogle ScholarPubMed
Iyer, R. N., & Bradberry, C. W. (1996). Serotonin-mediated increase in prefrontal cortex dopamine release: pharmacological characterization. Journal of Pharmacology and Experimental Therapeutics, 277, 40–47Google ScholarPubMed
Jakab, R. L., & Goldman-Rakic, P. S. (1998). 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proceedings of the National Academy of Science, 95(2), 735-740CrossRefGoogle ScholarPubMed
Jakob, H., & Beckmann, H. (1986). Prenatal developmental disturbances in the limbic allocortex in schizophrenics. Journal of Neural Transmission, 65, 303–326CrossRefGoogle ScholarPubMed
Johnston, M. V. (1988). Biochemistry of neurotransmitters in cortical development. In A. Peter & E. G. Jones (Eds.), Cerebral Cortex, Vol. 7: Development and Maturation of Cerebral Cortex (pp. 211–236). New York: PlenumCrossRef
Jung, A. B., & Bennett, J. P.. (1996). Development of striatal dopaminergic function. III: Pre- and postnatal development of striatal and cortical mRNAs for the neurotrophin receptors trkBTK+ and trkC and their regulation by synaptic dopamine. Brain Research: Developmental Brain Research, 94(2), 133–143CrossRefGoogle ScholarPubMed
Kalsbeek, A., Bruin, J. P., Matthijssen, M. A., & Uylings, H. B. (1989). Ontogeny of open field activity in rats after neonatal lesioning of the mesocortical dopaminergic projection. Behavior and Brain Research, 32(2), 115–127CrossRefGoogle ScholarPubMed
Kalsbeek, A., Voorn, P., Buijs, R. M., Pool, C. W., & Uylings, H. B. (1988). Development of the dopaminergic innervation in the prefrontal cortex of the rat. Journal of Comparative Neurology, 269(1), 58–72CrossRefGoogle ScholarPubMed
Keshavan, M. S., & Hogarty, G. E. (1999). Brain maturational processes and delayed onset in schizophrenia. Development and Psychopathology, 11, 524–543CrossRefGoogle Scholar
Kovelman, J. A., & Scheibel, A. B. (1984). A neurohistological correlate of schizophrenia. Biological Psychiatry, 19, 1601–1621Google ScholarPubMed
Lambe, E. K., Krimer, L. S., & Goldman-Rakic, P. S. (2000). Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. Journal of Neuroscience, 20(23), 8780–8787CrossRefGoogle ScholarPubMed
Moine, C., & Gaspar, P. (1998). Subpopulations of cortical GABAergic interneurons differ by their expression of D1 and D2 dopamine receptor subtypes. Brain Research: Molecular Brain Research, 58(1–2), 231–236Google ScholarPubMed
Lidov, H. G. W., Grzanna, R., & Molliver, M. E. (1980). The serotonin innervation of the cerebral cortex in the rat – an immunocytochemical analysis. Neuroscience, 5, 207–227CrossRefGoogle Scholar
Lindvall, O., & Bjorklund, A. (1978). Anatomy of the dopaminergic neuron systems in the rat brain. In P. J. E. A. Roberts (Ed.), Advances in biochemical psychopharmacology (Vol. 19, pp. 1–23). New York: Raven Press
Lopez, J., Chalmers, D., Vazquez, D., Akil, H., & Watson, S. (1993). Chronic unpredictable stress down-regulates serotonin 1A receptors in the hippocampus. Society for Neuroscience Abstracts, 19(1), 216Google Scholar
Luhmann, H. J., & Prince, D. A. (1991). Postnatal maturation of the GABAergic system in rat neocortex. Journal of Neurophysiology, 65, 247–263CrossRefGoogle ScholarPubMed
Maines, L. W., Keck, B. J., Dugar, A., & Lakoski, J. M. (1998). Age-dependent loss of corticosterone modulation of central serotonin 5- HT1A receptor binding sites. Journal of Neuroscience Research, 53(1), 86–983.0.CO;2-F>CrossRefGoogle ScholarPubMed
Marek, G. J., & Aghajanian, G. K. (1998). The electrophysiology of prefrontal serotonin systems: therapeutic implications for psychosis. Biological Psychiatry, 44, 1118–1127CrossRefGoogle Scholar
Meltzer, H. Y. (1994). An overview of the mechanism of action of clozapine. J clin Psychiatry, 55 Suppl B, 47–52Google ScholarPubMed
Morilak, D. A., & Ciaranello, R. D. (1993). Ontogeny of 5-hydroxytryptamine2 receptor immunoreactivity in the developing rat brain. Neuroscience, 55(3), 869–880CrossRefGoogle ScholarPubMed
Muly, E. C., Szigeti, K., & Goldman-Rakic, P. S. (1998). D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization. Journal of Neuroscience, 18(24), 10553–10565CrossRefGoogle ScholarPubMed
Palacios, J. M., Niehoff, D. L., & Kuhar, M. J. (1979). Ontogeny of GABA and benzodiazepine receptors: effects of Triton X-100, bromide and muscimol. Brain Research, 179, 390–395CrossRefGoogle ScholarPubMed
Parnavelas, J. G., Papadopoulos, G. C., & Cavanagh, M. E. (1988). Changes in neurotransmitters during development. In A. Peters & E. G. Jones (Eds.), Cerebral Cortex, Vol. 7: Development and Maturation of Cerebral Cortex (pp. 177–209). New York: PlenumCrossRef
Pehek, E. A. (1996). Local infusion of the serotonin antagonist ritanserin or ICS 205,930 increases in vivo dopamine release in the rat medial prefrontal cortex. Synapse, 24, 12–183.0.CO;2-J>CrossRefGoogle ScholarPubMed
Penit-Soria, J., Audinat, E., & Crepel, F. (1987). Excitation of rat prefrontal cortical neurons by dopamine: an in vitro electrophysiological study. Brain Research, 425, 363–374CrossRefGoogle Scholar
Petty, F., Kramer, G., & Moeller, M. (1994). Does learned helplessness induction by haloperidol involve serotonin mediation? Pharmacology Biochemistry and Behavior, 48(3), 671–676CrossRefGoogle ScholarPubMed
Reader, T. A. (1981). Distribution of catecholamines and serotonin in the rat cerebral cortex: Absolute levels and relative proportions. Journal of Neural Transmission, 50, 13–27CrossRefGoogle ScholarPubMed
Reader, T. A., Ferron, A., Descarries, L., & Jasper, H. H. (1979). Modulatory role for biogenic amines in the cerebral cortex: Microiontophoretic studies. Brain Research, 160, 217–229CrossRefGoogle ScholarPubMed
Retaux, S., Besson, M. J., & Penit-Soria, J. (1991). Opposing effects of dopamine D2 receptor stimulation on the spontaneous and the electrically evoked release of [3H]GABA on rat prefrontal cortex slices. Neuroscience, 42(1), 61–71CrossRefGoogle Scholar
Reynolds, G. P., Czudek, C., & Andrews, H. B. (1990). Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry, 27(9), 1038–1044CrossRefGoogle Scholar
Roth, R. H., Tam, S. Y., Ida, Y., Yang, J. X., & Deutch, A. Y. (1988). Stress and the mesocorticolimbic dopamine systems. Annals of the New York Academy of Sciences, 537, 138–147CrossRefGoogle ScholarPubMed
Schuman, E. M. (1999). Neurotrophin regulation of synaptic transmission. Current Opinion in Neurobiology, 9(1), 105–109CrossRefGoogle ScholarPubMed
Schwartz, R., Wess, M., Labarca, R., Skolnick, P., & Paul, S. (1987). Acute stress enhances the activity of the GABA receptor-gated ion channel in brain. Brain Research, 411, 151–155CrossRefGoogle ScholarPubMed
Seguela, P., Watkins, K. C., & Descarries, L. (1988). Ultrastructural features of dopamine axon terminals in the anteromedial and suprarhinal cortex of rat. Journal of Comparative Neurology, 289, 11–22Google Scholar
Sheldon, P. W., & Aghajanian, G. K. (1990). Serotonin (5-HT) induces IPSPs in pyramidal layer cells of rat piriform cortex: evidence for the involvement of a 5-HT2-activated interneuron. Brain Research, 506, 62–69CrossRefGoogle ScholarPubMed
Sheldon, P. W., & Aghajanian, G. K. (1991). Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: evidence for mediation by 5-HT1C receptors in pyramidal cells and 5-HT2 receptors in interneurons. Synapse, 9, 208–218CrossRefGoogle ScholarPubMed
Simpson, M. D. C., Slater, P., Deakin, J. F. W., Royston, M. C., & Skan, W. J. (1989). Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neuroscience Letters, 107, 211–215CrossRefGoogle Scholar
Smiley, J. F., & Goldman-Rakic, P. S. (1996). Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy. Journal of Comparative Neurology, 367(3), 431–4433.0.CO;2-6>CrossRefGoogle ScholarPubMed
Smiley, J. F., Levey, A. I., Ciliax, B. J., & Goldman-Rakic, P. S. (1994). D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: Predominant and extrasynaptic localization in dendritic spines. Proceedings of the National Academy of Science, 91, 5720–5724CrossRefGoogle ScholarPubMed
Spoerri, P. E. (1988). Neurotrophic effects of GABA in cultures of embryonic chick brain and retina. Synapse, 2, 11–22CrossRefGoogle ScholarPubMed
Stone, D. J., Walsh, J. P., & Benes, F. M. (2001). Effects of pre- and postnatal stress on the rat GABA system. Hippocampus, 11, 492–507CrossRefGoogle ScholarPubMed
Stone, E., Freedman, L., & Morgano, L. (1978). Brain and adrenal tyrosine hydroxylase activity after chronic footshock stress. Pharmacology Biochemistry and Behavior, 9, 551–553CrossRefGoogle ScholarPubMed
Stone, E., & McCarty, R. (1983). Adaptation to stress: tyrosine hydroxylase activity and catecholamine release. Neuroscience and Biobehavioral Reviews, 7, 29–34CrossRefGoogle ScholarPubMed
Stutzmann, G. E., McEwen, B. S., & LeDoux, J. E. (1998). Serotonin modulation of sensory inputs to the lateral amygdala: dependency on corticosterone. Journal of Neuroscience, 18(22), 9529-9538CrossRefGoogle ScholarPubMed
Svensson, T. H. (2000). Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Research Reviews, 31, 320–329CrossRefGoogle ScholarPubMed
Takahashi, L. K., & Kalin, N. H. (1991). Early developmental and temporal characteristics of stress-induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups. Brain Research, 558, 75–78CrossRefGoogle ScholarPubMed
Tam, S., & Roth, R. (1990). Modulation of mesoprefrontal dopamine neurons by central benzodiazepine receptors. I. Pharmacological characterization. Journal of Pharmacology and Experimental Therapeutics, 252, 989–996Google ScholarPubMed
Taylor, J., Cunningham, M. C., & Benes, F. M. (1998). Neonatal raphe lesions increase dopamine fibers in prefrontal cortex of adult rats. Neuroreport, 9(8), 1811–1815CrossRefGoogle Scholar
Taylor, J. B., & Benes, F. M. (1996). Colocalization of glutamate decarboxylase, tyrosine hydroxylase and serotonin immunoreactivity in rat medial prefrontal cortex. Neuroscience-Net, 1, 10001Google Scholar
Thierry, A. M., Mantz, J., Milla, C., & Glowinski, J. (1988). Influence of the mesocortical/prefrontal dopamine neurons on their target cells. In P. W. Kalivas & C. B. Nemeroff (Eds.), The mesocorticolimbic dopamine system, Vol. 537 (pp. 101–111). New York: Ann. N.Y. Acad. Sci.
Thierry, A. M., Tassin, J. P., Blanc, G., & Glowinski, J. (1976). Selective activation of the mesocortical DA system by stress. Nature, 263, 242–244CrossRefGoogle ScholarPubMed
Bockstaele, E. J., Cestari, D. M., & Pickel, V. M. (1994). Synaptic structure and connectivity of serotonin terminals in the ventral tegmental area: potential sites for modulation of mesolimbic dopamine neurons. Brain Research, 647(2), 307–322CrossRefGoogle ScholarPubMed
Verney, C., Alvarez, C., Gerrard, M., & Berger, B. (1990). Ultrastructural double-labelling study of dopamine terminals and GABA-containing neurons in rat anteromedial cortex. European Journal of Neuroscience, 2, 960–972CrossRefGoogle Scholar
Verney, C., Berger, B., Adrien, J., Vigny, A., & Gay, M. (1982). Development of the dopaminergic innervation of the rat cerebral cortex. A light microscopic immunocytochemical study using anti-tyrosine hydroxylase antibodies. Brain Research, 281(1), 41–52CrossRefGoogle ScholarPubMed
Vincent, S. L., & Benes, F. M. (1995). Postnatal maturation of GABA-immunoreactive neurons of rat medial prefrontal cortex. Journal of Comparative Neurology, 355, 81–92CrossRefGoogle ScholarPubMed
Vincent, S. L., Khan, Y., & Benes, F. M. (1995). Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Synapse, 19(2), 112–120CrossRefGoogle ScholarPubMed
Volk, D. W., Austin, M. C., Pierri, J. N., Sampson, A. R., & Lewis, D. A. (2000). Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Archives of General Psychiatry, 57(3), 237–245CrossRefGoogle Scholar
Walker, E., & Diforio, D. (1997). Schizophrenia: a neural diathesis-stress model. Psychological Review, 104, 667–685CrossRefGoogle ScholarPubMed
Wang, Y., Sheen, V. L., & Macklis, J. D. (1998). Cortical interneurons upregulate neurotrophins in vivo in response to targeted apoptotic degeneration of neighboring pyramidal neurons. Experimental Neurology, 154(2), 389–402CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660–669CrossRefGoogle ScholarPubMed
West, A. R., & Galloway, M. P. (1996). Regulation of serotonin-facilitated dopamine release in vivo: the role of protein kinase A activating transduction mechanisms. Synapse, 23, 20–273.0.CO;2-J>CrossRefGoogle ScholarPubMed
Wu, C., Yoder, E. J., Shih, J., Chen, K., Dias, P. K., Shi, L., Ji, S. D., Wei, J., Conner, J. M., Kumar, S., Ellisman, M. H., & Singh, S. K. (1998). Development and characterization of monoclonal antibodies specific to serotonin 5-HT2A receptor. Journal of Histochemistry and Cytochemistry, 46, 811–824CrossRefGoogle ScholarPubMed
Yakovlev, P., & Lecours, A. (1967). The myelinogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain early in Life (pp. 3–70). Oxford: Blackwell
Zhou, F. M., & Hablitz, J. J. (1999). Dopamine modulation of membrane and synaptic properties of interneurons in rat cortex. Journal of Neruophysiology, 81, 967–976CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×