Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T11:22:14.445Z Has data issue: false hasContentIssue false

29 - The neuropathology of Alzheimer's disease in the year 2005

from Part IV - Alzheimer's disease

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Colin L. Masters
Affiliation:
Department of Pathology, University of Melbourne and the Mental Health Research Institute of Victoria, Parkville, Australia
Konrad Beyreuther
Affiliation:
Centre for Molecular Biology, University of Heidelberg, Heidelberg, Germany
Get access

Summary

Introduction

The current molecular era of the neuropathology of Alzheimer's disease began in the early 1970s with the first attempts to characterize the biochemical basis of the amyloid deposits (now designated Aβ), which remain the pathognomic feature of this illness (Nikaido et al., 1971). Subsequent dramatic progress in amino acid sequencing (Glenner & Wong, 1984; Masters et al., 1985), gene cloning (Kang et al., 1987), and elucidation of the biogenesis of the Aβ amyloid protein (for recent reviews see Beyreuther et al., 2001; Cummings & Cole, 2002; Hardy & Selkoe, 2002; Ines Dominguez & DeStrooper, 2002; McLean et al., 2001; Sisodia & St George-Hyslop, 2002) have led to a coherent picture of the pathogenesis of AD. However, this explosion of knowledge on AD still has not been fully translated back into the clinic, the pathology laboratory, or the mortuary, where diagnostic criteria remain subjective and ambiguous. As the natural history of AD becomes better understood at the molecular level, it would be highly desirable to develop standardized protocols for diagnosis based around the principal biochemical pathway: the biogenesis and accumulation of Aβ amyloid in susceptible areas of the brain (Fig. 29.1). This chapter outlines the traditional methods of neuropathologic diagnosis, together with some approaches to the contemporary molecular diagnosis of AD both during life and after death (Fig. 29.2), which should have general applicability to the other major diseases caused by the toxic gains-of-function of α-synuclein (Parkinson's disease; diffuse Lewy body disease; multiple system atrophy), prion protein (Creutzfeldt–Jakob and related diseases); Cu–Zu superoxide dismutase (amyotrophic lateral sclerosis); polyglutamine expansions (Huntington's disease and mechanistically related illnesses) and the tau microtubule associated protein (frontotemporal degenerations; Pick's disease; cortico-basal degeneration; progressive supranuclear palsy).

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 433 - 440
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, N., Minthon, L., Davidsson, P.et al. (2001a). Evaluation of CSF-tau and CSF-Aβ42 as diagnostic markers for Alzheimer disease in clinical practice. Arch. Neurol., 58, 373–9CrossRefGoogle Scholar
Andreasen, N., Gottfries, J., Vanmechelen, E.et al. (2001b). Evaluation of CSF biomarkers for axonal and neuronal degeneration, gliosis, and β-amyloid metabolism in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatr., 71, 557–8CrossRefGoogle Scholar
Bading, J. R., Yamada, S., Mackic, J. B.et al. (2002). Brain clearance of Alzheimer's amyloid-β40 in the squirrel monkey: A SPECT study in a primate model of cerebral amyloid angiopathy. J. Drug Targetin., 10, 359–68CrossRefGoogle Scholar
Beyreuther, K., Christen, Y. & Masters, C. L. (eds.) (2001). Neurodegenerative Disorders: Loss of Function Through Gain of Function. Berlin: Springe, 189pp
Bush, A. I., Multhaup, G., Moir, R. D.et al. (1993). A novel zinc (II) binding site modulates the function of the βA4 amyloid protein precursor of Alzheimer's disease. J. Biol. Chem., 268, 16109–12Google Scholar
Bush, A. I., Pettingell, W. H., Multhaup, G.et al. (1994). Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science, 265, 1464–7CrossRefGoogle Scholar
Bussière, T., Friend, P. D., Sadeghi, N.et al. (2002). Stereologic assessment of the total cortical volume occupied by amyloid deposits and its relationship with cognitive status in aging and Alzheimer's disease. Neuroscience, 112, 75–91CrossRefGoogle ScholarPubMed
Cherny, R. A., Legg, J. T., McLean, C. A.et al. (1999). Aqueous dissolution of Alzheimer's disease Aβ amyloid deposits by biometal depletion. J. Biol. Chem., 274, 23223–8CrossRefGoogle ScholarPubMed
Cherny, R. A, Barnham, K., Lynch, T.et al. (2000). Chelation and intercalation: complementary properties in a compound for the treatment of Alzheimer's disease. J. Struct. Biol., 130, 209–16CrossRefGoogle Scholar
Cummings, J. L. & Cole, G. (2002). Alzheimer disease. J. Am. Med. Assoc., 287, 2335–8CrossRefGoogle ScholarPubMed
Curtain, C. C., Ali, F., Volitakis, I.et al. (2001). Alzheimer's disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem., 276, 20466–73CrossRefGoogle ScholarPubMed
Davies, L., Wolska, B., Hilbich, C.et al. (1988). A4 amyloid protein deposition and the diagnosis of Alzheimer's disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathlogic techniques. Neurology, 38, 1688–93CrossRefGoogle Scholar
DeMattos, R. B., Bales, K. R., Cummins, D. J., Dodart, J. C., Paul, S. M. & Holtzman, D. M. (2001). Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci., USA, 98, 8850–5CrossRefGoogle Scholar
DeMattos, R. B., Bales, K R., Parsadanian, M. and Holtzman, D. M. (2002a). Plaque-associated disruption of CSF and plasma amyloid-β (Aβ) equilibrium in a mouse model of Alzheimer's disease. J. Neurochem., 81, 229–36CrossRefGoogle Scholar
DeMattos, R. B., Bales, K. R., Cummins, D. J., Paul, S. M. & Holtzman, D. M. (2002b). Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science, 295, 2264–7CrossRefGoogle Scholar
Ertekin-Taner, N., Graff-Radford, N., Younkin, L. H.et al. (2001). Heritability of plasma amyloid β in typical late-onset Alzheimer's disease pedigrees. Genet. Epidemiol., 21, 19–30CrossRefGoogle ScholarPubMed
Fishman, C. E., Cummins, D. J., Bales, K. R.et al. (2001). Statistical aspects of quantitative image analysis of β-amyloid in the APPV717F transgenic mouse model of Alzheimer's disease. J. Neurosci. Method., 108, 145–52CrossRefGoogle Scholar
Glenner, G. G. & Wong, C. W. (1984). Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 120, 885–90CrossRefGoogle ScholarPubMed
Gold, G., Kövari, E., Corte, G.et al. (2001). Clinical validity of Aβ-protein deposition staging in brain aging and Alzheimer disease. J. Neuropathol. Exp. Neurol., 60, 946–52CrossRefGoogle ScholarPubMed
Hardy, J. & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297, 353–6CrossRefGoogle ScholarPubMed
Hashemzadeh-Gargari, H. & Guilarte, T. R. (1999). Divalent cations modulate N-methyl-D-aspartate receptor function at the glycine site. J. Pharmacol. Exp. Ther., 290, 1356–62Google ScholarPubMed
Holsinger, R. M. D., McLean, C. A., Beyreuther, K., Masters, C. L. & Evin, G. (2002). Increased expression of the amyloid precursor β-secretase in Alzheimer's disease. Ann. Neurol., 51, 783–6CrossRefGoogle ScholarPubMed
Helmuth, L. (2002). Long-awaited techniques spots Alzheimer's toxin. Science, 297, 752–3CrossRefGoogle ScholarPubMed
Ines Dominguez, D. & DeStrooper, B. (2002). Novel therapeutic strategies provide the real test for the amyloid hypothesis of Alzheimer's disease. Trends Pharm. Sci., 23, 324–30CrossRefGoogle Scholar
Jensen, M., Schröder, J., Blomberg, M.et al. (1999). Cerebrospinal fluid Aβ42 is increased early in sporadic Alzheimer's disease and declines with disease progression. Ann. Neurol., 45, 504–113.0.CO;2-9>CrossRefGoogle Scholar
Jobling, M. F., Huang, X., Stewart, L. R.et al. (2001). Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106–126. Biochemistry, 40, 8073–84CrossRefGoogle ScholarPubMed
Kang, J., Lemaire, H., Unterbeck, A.et al. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325, 733–6CrossRefGoogle ScholarPubMed
Kanski, J., Varadarajan, S., Aksenova, M. & Butterfield, D. A. (2002). Role of glycine-33 and methionine-35 in Alzheimer's amyloid β-peptide 1–42 associated oxidative stress and neurotoxicity. Biochim. Biophys. Act., 1586, 190–8CrossRefGoogle ScholarPubMed
Kapaki, E., Kilidireas, K., Paraskevas, G. P., Michalopoulou, M. & Patsouris, E. (2001). Highly increased CSF tau protein and decreased β-amyloid (1–42) in sporadic CJD: a discrimination from Alzheimer's disease?J. Neurol. Neurosurg. Psychiatr., 71, 401–3CrossRefGoogle ScholarPubMed
Klunk, W. E., Wang, Y., Huang, G. F., Debnath, M. L., Holt, D. P. & Mathis, C. A. (2001). Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci., 69, 1471–84CrossRefGoogle Scholar
Kraszpulski, M., Soininen, H., Helisalmi, S. & Alafuzoff, I. (2001). The load and distribution of [beta]-amyloid in brain tissue of patients with Alzheimer's disease. Acta Neurol. Scand., 103, 88–92CrossRefGoogle ScholarPubMed
Kung, H. F., Lee, C. W., Zhuang, Z. P., Kung, M. P., Hou, C. & Plossl, K. (2001). Novel stilbenes as probes for amyloid plaques. J. Am. Chem. Soc., 123, 12740–1CrossRefGoogle ScholarPubMed
Lee, C. W., Zhuang, Z. P., Kung, M. P.et al. (2001). Isomerization of (Z, Z) to (E, E)1-bromo-2,5-bis-(3-hydroxycarbonyl-4- hydroxy)styrylbenzene in strong base: probes for amyloid plaques in the brain. J. Med. Chem., 44, 2270–5CrossRefGoogle Scholar
Lee, H. J., Zhang, Y., Zhu, C., Duff, K. & Pardridge, W. M. (2002). Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an Aβ peptide radiopharmaceutical. J. Cereb. Blood Flow Metab., 22, 223–31CrossRefGoogle ScholarPubMed
Lee, J. Y., Cole, T. B., Palmiter, R. D., Suh, S. W. & Koh, J. Y. (2002). Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc. Natl Acad. Sci., USA, 99, 7705–10CrossRefGoogle ScholarPubMed
McLean, C. A., Cherny, R. A., Fraser, F. W.et al. (1999). Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol., 46, 860–63.0.CO;2-M>CrossRefGoogle ScholarPubMed
McLean, C. A., Beyreuther, K. & Masters, C. L. (2001). Amyloid Aβ?levels in Alzheimer's disease – a diagnostic tool and the key to understanding the natural history of Aβ?J. Alzheimer's Dis., 3, 305–12CrossRefGoogle ScholarPubMed
Maruyama, M., Arai, H., Sugita, M.et al. (2001). Cerebrospinal fluid amyloid β(1–42) levels in the mild cognitive impairment stage of Alzheimer's disease. Exp. Neurol., 172, 433–6CrossRefGoogle ScholarPubMed
Masters, C. L., Simms, G., Weinman, N. A., McDonald, B. L., Multhaup, G. & Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci., USA, 82, 4245–9CrossRefGoogle ScholarPubMed
Mathis, C. A., Bacskai, B. J., Kajdasz, S. T.et al. (2002). A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med. Chem. Lett., 12, 295–8CrossRefGoogle ScholarPubMed
Mehta, P. D., Pirttila, T., Patrick, B. A., Barshatzky, M. & Mehta, S. P. (2001). Amyloid β protein 1–40 and 1–42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neurosci. Lett., 304, 102–6CrossRefGoogle ScholarPubMed
Nicoll, J. A. R., Wilkinson, D., Holmes, C., Steart, P., Markham, H. & Weller, R. O. (2003). Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat. Med., 9, 448–52CrossRefGoogle ScholarPubMed
Nikaido, T., Austin, J., Rinehart, R.et al. (1971). Studies in aging of the brain I. Isolation and preliminary characterization of Alzheimer plaques and cores. Arch. Neurol., 25, 198–211CrossRefGoogle Scholar
Okamura, N., Arai, H., Maruyama, M.et al. (2001). Serum cholesterol and cerebrospinal fluid amyloid β protein in Alzheimer's disease. J. Am. Geriat. Soc., 49, 1738–9CrossRefGoogle ScholarPubMed
Opazo, C., Huang, X., Cherny, R. A.et al. (2002). Metalloenzyme-like activity of Alzheimer's disease β-amyloid: Cu-dependent catalytic conversion of dopamine, cholesterol and biological reducing agents to neurotoxic H2O2. J. Biol. Chem., 277, 40302–8CrossRefGoogle Scholar
Orgogozo, J.-M., Gilman, S., Dartigues, J.-F., et al. (2003). Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology, 61, 46–54CrossRefGoogle Scholar
Oshima, N., Morishima-Kawashima, M., Yamaguchi, H.et al. (2001). Accumulation of amyloid β-protein in the low-density membrane domain accurately reflects the extent of β-amyloid deposition in the brain. Am. J. Pathol., 158, 2209–18CrossRefGoogle Scholar
Parvathy, S., Davies, P., Haroutunian, V.et al. (2001). Correlation between Aβx-40-, Aβx-42-, and Aβx-43- containing amyloid plaques and cognitive decline. Arch. Neurol., 58, 2025–32CrossRefGoogle ScholarPubMed
Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P. & Ferreira, A. (2002). Tau is essential to β-amyloid-induced neurotoxicity. Proc. Natl Acad. Sci., USA, 99, 6364–9CrossRefGoogle ScholarPubMed
Revesz, T., Holton, J. L., Lashley, T.et al. (2002). Frangione B. Sporadic and familial cerebral amyloid angiopathies. Brain. Pathol., 12, 343–57CrossRefGoogle ScholarPubMed
Riemenschneider, M., Schmolke, M., Lautenschlager, N.et al. (2002a). Association of CSF apolipoprotein E, Aβ42 and cognition in Alzheimer's disease. Neurobiol. Agin., 23, 205–11CrossRefGoogle Scholar
Riemenschneider, M., Wagenpfeil, S., Diehl, J.et al. (2002b). Tau and Aβ42 protein in CSF of patients with frontotemporal degeneration. Neurology, 58, 1622–8CrossRefGoogle Scholar
Ritchie, C. W., Bush, A. I., Mackinnon, A.et al. (2003). Metal–protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer's disease: a pilot Phase 2 clinical trial. Arch. Neurol., 60, 1685–91CrossRefGoogle ScholarPubMed
Rösler, N., Wichart, I. & Jellinger, K. A. (2001). CSF Aβ40 and Aβ42: Natural course and clinical usefulness. J. Alzheimer's Dis., 3, 599–600CrossRefGoogle ScholarPubMed
Schmidt, M. L., Schuck, T., Sheridan, S.et al. (2001). The fluorescent Congo red derivative, (trans, trans)-1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy) styrylbenzene (BSB), labels diverse β-pleated sheet structures in postmortem human neurodegenerative disease brains. Am. J. Pathol., 159, 937–43CrossRefGoogle Scholar
Schupf, N., Patel, B., Silverman, W.et al. (2001). Elevated plasma amyloid β-peptide 1–42 and onset of dementia in adults with Down syndrome. Neurosci. Lett., 301, 199–203CrossRefGoogle ScholarPubMed
Shoghi-Jadid, K., Small, G. W., Agdeppa, E. D.et al. (2002). Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am. J. Geriatr. Psychiatr., 10, 24–35CrossRefGoogle ScholarPubMed
Shoji, M. & Kanai, M. (2001). Cerebrospinal fluid Aβ40 and Aβ42: natural course and clinical usefulness. J. Alzheimer's Dis., 3, 313–21CrossRefGoogle ScholarPubMed
Shoji, M., Kanai, M., Matsubara, E.et al. (2001). The levels of cerebrospinal fluid Aβ40 and Aβ42(43) are regulated age-dependently. Neurobiol. Agin., 22, 209–15CrossRefGoogle ScholarPubMed
Sisodia, S. S. & St George-Hyslop, P. H. (2002). γ-Secretase, Notch, Abeta and Alzheimer's disease: where do the presenilins fit in?Nat. Rev. Neurosci. 3, 281–90CrossRefGoogle ScholarPubMed
Sjögren, M., Vanderstichele, H., Ågren, H.et al. (2001). Tau and Aβ42 in cerebrospinal fluid from healthy adults 21–93 years of age: establishment of reference values. Clin. Chem., 47, 1776–81Google ScholarPubMed
Sjögren, M., Davidsson, P., Wallin, A.et al. (2002). Decreased CSF-β-amyloid 42 in Alzheimer's disease and amyotrophic lateral sclerosis may reflect mismetabolism of β-amyloid induced by disparate mechanisms. Dement. Geriatr. Cogn. Disord., 13, 112–18CrossRefGoogle ScholarPubMed
Smith, M. J., Kwok, J. B. J., McLean, C. A.et al. (2001). Variable phenotype of Alzheimer's disease with spastic paraparesis. Ann. Neurol., 49, 125–93.0.CO;2-1>CrossRefGoogle ScholarPubMed
Tokuda, T., Tamaoka, A., Matsuno, S.et al. (2001). Plasma levels of amyloid β proteins did not differ between subjects taking statins and those not taking statins. Ann. Neurol., 49, 546–7CrossRefGoogle Scholar
Tschampa, H. J., Schulz-Schaeffer, W., Wiltfang, J.et al. (2001). Decreased CSF amyloid β42 and normal tau levels in dementia with Lewy bodies. Neurology, 56, 576CrossRefGoogle ScholarPubMed
Walsh, D. M., Klyubin, I., Fadeeva, J. V.et al. (2002). Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–9CrossRefGoogle ScholarPubMed
Weiss, J. H. & Sensi, S. L. (2000). Ca2+-Zn2+permeable AMPA or kainite receptors: possible key factors in selective neurodegeneration. Trends Neurosci., 23, 365–71CrossRefGoogle ScholarPubMed
Zhuang, Z. P., Kung, M. P., Hou, C.et al. (2001a). Radioiodinated styrylbenzenes and thioflavins as probes for amyloid aggregates. J. Med. Chem., 44, 1905–14CrossRefGoogle Scholar
Zhuang, Z. P., Kung, M. P., Hou, C.et al. (2001b). IBOX(2-(4-dimethylaminophenyl)-6-iodobenzoxazole): a ligand for imaging amyloid plaques in the brain. Nucl. Med. Biol., 28, 887–94CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×