Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-24T00:47:37.028Z Has data issue: false hasContentIssue false

8 - Role of opiate peptides in regulating energy balance

Published online by Cambridge University Press:  15 September 2009

Richard J. Bodnar
Affiliation:
Department of Psychology and Neuropsychology, Doctoral Sub-Program, Queens College, City Univeerdity of New York, USA
Allen S. Levine
Affiliation:
Minnesota Obesity Centeer, Department of Food Science and Nutrition, University of Minnesota, USA
Jenni Harvey
Affiliation:
University of Dundee
Dominic J. Withers
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

The endogenous opioid system, initially characterized over 30 years ago, is a primary example of a multifunctional neural system involved in a wide range of basic homeostatic behaviors, including pain control, sexual behavior, learning and memory, reward, addiction and motivation, immune function, thermoregulatory, cardiovascular and respiratory processes, and as this review indicates, the regulation of energy balance through the modulation of food intake. Given the complexity and breadth of both the endogenous opioid system itself and the complex nature of energy regulation, this review is designed to inform the reader of the systematic steps taken by the field as a whole to understand their interaction. Thus, this review will focus on: (a) discovery and characterization of the endogenous opioids and their receptors, (b) early evidence involving the opioid system in ingestive behavior, (c) the role of opioids in rewarding aspects of food intake, (d) the role of macronutrient choice in opioid-induced feeding, (e) the specific roles of opiate receptor subtypes and specific brain sites in regulating opioid-induced feeding, (f) molecular mechanisms governing opioid-induced feeding, and (g) interactions of opioid-induced feeding with dopamine and other orexigenic neuropeptides.

Discovery and characterization of the endogenous opioids and their receptors

The existence of an endogenous receptor in animals that bound opiates was reported in 1973 (Pert & Snyder, 1973; Simon et al., 1973; Terenius, 1973). Shortly thereafter, it became apparent that multiple subtypes (mu, delta and kappa) of the receptor existed (Martin et al., 1976; Lord et al., 1977).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamsen, G. C., Berman, Y. & Carr, K. D. (1995). Curve-shift analysis of self-stimulation in food restricted rats: relationship between daily meal, plasma corticosterone and reward sensitization. Brain Res. 695, 186–94.CrossRefGoogle ScholarPubMed
Akil, H., Watson, S. J., Young, E.et al. (1984). Endogenous opioids: biology and function. Annu. Rev. Neurosci. 7, 223–55.CrossRefGoogle ScholarPubMed
Apfelbaum, M. & Mandenoff, A. (1981). Naltrexone suppresses hyperphagia induced in the rat by a highly palatable diet. Pharmacol. Biochem. Behav. 15, 89–91.CrossRefGoogle ScholarPubMed
Appleyard, S. M., Haywood, M., Young, J. I.et al. (2003). A role for the endogenous opioid beta-endorphin in energy homeostasis. Endocrinology 144, 1753–60.CrossRefGoogle ScholarPubMed
Aravich, P. F., Rieg, T. S., Lauterio, T. J. & Doerries, L. E. (1993). Beta-endorphin and dynorphin abnormalities in rats subjected to exercise and restricted feeding: relationship to anorexia nervosa?Brain Res. 622, 1–8.Google ScholarPubMed
Arbisi, P. A., Billington, C. J. & Levine, A. S. (1999). The effect of naltrexone on taste detection and recognition threshold. Appetite 32, 241–9.CrossRefGoogle ScholarPubMed
Arjune, D. & Bodnar, R. J. (1990). Suppression of nocturnal, palatable and glucoprivic intake in rats by the kappa opioid antagonist, nor-binaltorphamine. Brain Res. 534, 313–16.CrossRefGoogle ScholarPubMed
Arjune, D., Standifer, K. M., Pasternak, G. W. & Bodnar, R. J. (1990). Reduction by central beta-funaltrexamine of food intake in rats under freely-feeding, deprivation and glucoprivic conditions. Brain Res. 535, 101–9.CrossRefGoogle ScholarPubMed
Arjune, D., Bowen, W. D. & Bodnar, R. J. (1991). Ingestive behavior following central [D-Ala2,Leu5,Cys6]-enkephalin (DALCE), a short-acting agonist and long-acting antagonist at the delta opioid receptor. Pharmacol. Biochem. Behav. 39, 429–36.CrossRefGoogle Scholar
Azzara, A. V., Bodnar, R.J, Delamater, A. R. & Sclafani, A. (2000). Naltrexone fails to block the acquisition or expression of a flavor preference conditioned by intragastric carbohydrate infusions. Pharmacol. Biochem. Behav. 67, 545–57.CrossRefGoogle ScholarPubMed
Badiani, A., Leone, P., Noel, M. B. & Stewart, J. (1995). Ventral tegmental area opioid mechanisms and modulation of ingestive behavior. Brain Res. 670, 264–76.CrossRefGoogle ScholarPubMed
Baker, R. W., Li, Y., Lee, M. G., Sclafani, A. & Bodnar, R. J. (2004). Naltrexone does not prevent acquisition or expression of flavor preferences conditioned by fructose in rats. Pharmacol. Biochem. Behav. 78, 239–46.CrossRefGoogle ScholarPubMed
Bakshi, V. P. & Kelley, A. E. (1993a). Feeding induced by opioid stimulation of the ventral striatum: role of opioid receptor subtypes. J. Pharmacol. Exp. Ther. 265, 1253–60.Google Scholar
Bakshi, V. P. & Kelley, A. E. (1993b). Striatal regulation of morphine-induced hyperphagia: an anatomical mapping study. Psychopharmacology 111, 207–14.CrossRefGoogle Scholar
Barnes, M. J., Lapanowski, K., Conley, A., Rafols, J. A., Jen, K. L. & Dunbar, J. C. (2003). High fat feeding is associated with increased blood pressure, sympathetic nerve activity and hypothalamic mu opioid receptors. Brain Res. Bull. 61, 511–19.CrossRefGoogle ScholarPubMed
Barton, C., York, D. A. & Bray, G. A. (1996). Opioid receptor subtype control of galanin-induced feeding. Peptides 17, 237–40.CrossRefGoogle ScholarPubMed
Beczkowska, I. W. & Bodnar, R. J. (1991). Mediation of insulin hyperphagia by specific central opiate receptor antagonists. Brain Res. 547, 315–18.CrossRefGoogle ScholarPubMed
Beczkowska, I. W., Bowen, W. D. & Bodnar, R. J. (1992). Central opioid receptor subtype antagonists differentially alter sucrose and deprivation-induced water intake in rats. Brain Res. 589, 291–301.CrossRefGoogle ScholarPubMed
Beczkowska, I. W., Koch, J. E., Bostock, M. E., Leibowitz, S. F. & Bodnar, R. J. (1993). Central opioid receptor subtype antagonists differentially reduce intake of saccharin and maltose dextrin solutions in rats. Brain Res. 618, 261–70.CrossRefGoogle ScholarPubMed
Berman, Y., Devi, L. & Carr, K. D. (1994). Effects of chronic food restriction on prodynorphin-derived peptides in rat brain regions. Brain Res. 664, 49–53.CrossRefGoogle ScholarPubMed
Berman, Y., Devi, L. & Carr, K. D. (1995). Effects of streptozotocin-induced diabetes on prodynorphin-derived peptides in rat brain regions. Brain Res. 685, 129–34.CrossRefGoogle ScholarPubMed
Berman, Y., Devi, L., Spangler, R., Kreek, M. J. & Carr, K. D. (1997). Chronic food restriction and streptozotocin-induced diabetes differentially alter prodynorphin mRNA levels in rat brain regions. Mol. Brain Res. 46, 25–30.CrossRefGoogle ScholarPubMed
Bertiere, M. C., Mame Sy, T., Baigts, F., Mandenoff, A. & Apfelbaum, M. (1984). Stress and sucrose hyperphagia: role of endogenous opiates. Pharmacol. Biochem. Behav. 20, 675–9.CrossRefGoogle ScholarPubMed
Bertino, M., Beauchamp, G. K. & Engelman, K. (1991). Naltrexone, an opiate blocker, alters taste perception and nutrient intake in humans. Am. J. Physiol. 261, R59–63.Google Scholar
Bodnar, R. J. (2004). Endogenous opioids and feeding behavior: a thirty-year historical perspective. Peptides 25, 697–725.CrossRefGoogle Scholar
Bodnar, R. J., Glass, M. J. & Koch, J. E. (1995a). Analysis of central opioid receptor subtype antagonism of hypotonic and hypertonic saline intake in water-deprived rats. Brain Res. Bull. 36, 293–300.CrossRefGoogle Scholar
Bodnar, R. J., Glass, M. J., Ragnauth, A. & Cooper, M. L. (1995b). General, mu and kappa opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions. Brain Res. 700, 205–12.CrossRefGoogle Scholar
Bodnar, R. J., Lamonte, N., Israel, Y., Kandov, Y., Ackerman, T. F. & Khaimova, E. (2005). Reciprocal opioid-opioid interactions between the ventral tegmental area and nucleus accumbens regions in mediating mu agonist-induced feeding in rats. Peptides 26, 621–9.CrossRefGoogle ScholarPubMed
Bozarth, M. A. & Wise, R. A. (1981). Intracranial self-administration of morphine into the ventral tegmental area. Life Sci. 28, 551–5.CrossRefGoogle ScholarPubMed
Brands, B. J., Thornhill, J. A., Hirst, M. & Gowdey, C. W. (1979). Suppression of food intake and body weight by naloxone in rats. Life Sci. 24, 1773–8.CrossRefGoogle ScholarPubMed
Brown, D. R. & Holtzman, S. J. (1979). Suppression of deprivation induced food and water intake in rats and mice by naloxone. Pharmacol. Biochem. Behav. 11, 567–83.CrossRefGoogle ScholarPubMed
Brown, D. R. & Holtzman, S. G. (1980). Evidence that opiate receptors mediate suppression of hypertonic saline-induced drinking in the mouse by narcotic antagonists. Life Sci. 26, 1543–50.CrossRefGoogle ScholarPubMed
Brown, D. R., Blank, M. S. & Holtzman, S. G. (1980). Suppression by naloxone of water intake induced by deprivation and hypertonic saline in intact and hypophysectomized rats. Life Sci. 26, 1535–42.CrossRefGoogle ScholarPubMed
Brugman, S., Clegg, D. J., Woods, S. C. & Seeley, R. J. (2002). Combined blockade of both mu- and kappa-opioid receptors prevents the acute orexigenic action of agouti-related protein. Endocrinology 143, 4265–70.CrossRefGoogle ScholarPubMed
Burdick, K., Yu, W. -Z., Ragnauth, A.et al. (1998). Antisense mapping of opioid receptor clones: effects upon 2-deoxy-D-glucose-induced hyperphagia. Brain Res. 794, 359–63.Google ScholarPubMed
Cador, M., Kelley, A. E., LeMoal, M. & Stinus, L. (1986). Ventral tegmental area infusion of substance P, neurotensin and enkephalin: differential effects on feeding behavior. Neuroscience 18, 659–69.CrossRefGoogle ScholarPubMed
Canli, T., Cook, R. G. & Miczek, K. A. (1990). Opiate antagonists enhance the working memory of rats in the radial maze. Pharmacol. Biochem. Behav. 36, 521–5.CrossRefGoogle ScholarPubMed
Carr, K. D. (1990). Effects of antibodies to dynorphin A and beta-endorphin on lateral hypothalamic self-stimulation in ad libitum fed and food-deprived rats. Brain Res. 534, 8–14.CrossRefGoogle ScholarPubMed
Carr, K. D. & Bak, T. H. (1990). Rostral and caudal ventricular infusion of antibodies to dynorphin A (1–17) and dynorphin A (1–8): effects on electrically-elicited feeding in the rat. Brain Res. 507, 289–94.CrossRefGoogle ScholarPubMed
Carr, K. D. & Simon, E. J. (1983). Effects of naloxone and its quatenary analogue on stimulation-induced feeding. Neuropharmacology 22, 127–30.Google Scholar
Carr, K. D., Bak, T. H., Gioannini, T. L. & Simon, E. J. (1987). Antibodies to dynorphin A(1–13) but not beta-endorphin inhibit electrically-elicited feeding in the rat. Brain Res. 422, 384–8.CrossRefGoogle Scholar
Carr, K. D., Bak, T. H., Simon, E. J. & Portoghese, P. S. (1989). Effects of the selective K opioid antagonist, nor-binaltorphamine, on electrically-elicited feeding in the rat. Life Sci. 45, 1787–92.Google Scholar
Carr, K. D., Aleman, D. O., Bak, T. H. & Simon, E. J. (1991). Effects of parabrachial opioid antagonism on stimulation-induced feeding. Brain Res. 545, 283–6.CrossRefGoogle ScholarPubMed
Carr, K. D., Papadouka, V. & Wolinsky, T. D. (1993). Norbinaltorphamine blocks the feeding but not the reinforcing effect of lateral hypothalamic electrical stimulation. Psychopharmacology 111, 345–50.CrossRefGoogle Scholar
Carr, K. D., Park, T. H. & Stone, E. A. (1998). Neuroanatomical patterns of Fos-like immunoreactivity induced by naltrexone in food-restricted and ad libitum fed rats. Brain Res. 779, 26–32.CrossRefGoogle ScholarPubMed
Carr, K. D., Kutchukhidze, N. & Park, T. H. (1999). Differential effects of mu and kappa opioid antagonists on Fos-like immunoreactivity in extended amygdala. Brain Res. 822, 34–42.CrossRefGoogle ScholarPubMed
Clark, J. A., Liu, L., Price, M., Hersh, B., Edelson, M. & Pasternak, G. W. (1989). Kappa opiate receptor multiplicity: evidence for two U50,488H-sensitive K-1 subtypes and a novel K-3 subtype. J. Pharmacol. Exp. Ther. 251, 461–8.Google Scholar
Colantuoni, C., Schwenker, J., McCarthy, J.et al. (2001). Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 12, 3549–52.CrossRefGoogle Scholar
Colantuoni, C., Rada, P., McCarthy, J.et al. (2002). Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes. Res. 10, 478–88.CrossRefGoogle ScholarPubMed
Cole, J. L., Leventhal, L., Pasternak, G. W., Bowen, W. D. & Bodnar, R. J. (1995). Reductions in body weight following chronic central opioid receptor subtype antagonists during development of dietary obesity in rats. Brain Res. 678, 168–76.CrossRefGoogle ScholarPubMed
Cole, J. L., Berman, N. & Bodnar, R. J. (1997). Evaluation of chronic opioid receptor antagonist effects upon weight and intake measures in lean and obese Zucker rats. Peptides 18, 1201–7.CrossRefGoogle ScholarPubMed
Cole, J. L., Ross, A. & Bodnar, R. J. (1999). Dietary history affects the potency of chronic opioid receptor subtype antagonist effects upon body weight in rats. Nutr. Neurosci. 1, 405–18.CrossRefGoogle Scholar
Cooper, S. J. (1980). Naloxone: effects on food and water consumption in the non-deprived and deprived rat. Psychopharmacology 71, 1–6.CrossRefGoogle ScholarPubMed
Cooper, S. J. (1981). Behaviorally-specific hyperdipsia in the non-dependent rat following acute morphine treatment. Neuropharmacology 20, 469–72.CrossRefGoogle Scholar
Cooper, S. J. & Gilbert, D. B. (1984). Naloxone suppresses fluid consumption in tests of choice between sodium chloride solutions and water in male and female water-deprived rats. Psychopharmacology 84, 362–7.CrossRefGoogle ScholarPubMed
Cooper, S. J., Barber, D. J. & Barber-McMullen, J. (1985a). Selective attenuation of sweetened milk consumption by opiate receptor antagonists in male and female rats of the Roman strains. Neuropeptide 5, 349–52.CrossRefGoogle Scholar
Cooper, S. J., Jackson, A. & Kirkham, T. C. (1985b). Endorphins and food intake: K opioid receptor agonists and hyperphagia. Pharmacol. Biochem. Behav. 23, 889–901.CrossRefGoogle Scholar
Cooper, S. J., Jackson, A., Morgan, R. & Carter, R. (1985c). Evidence for opiate receptor involvement in the consumption of a high palatability diet in non-deprived rats. Neuropeptide 5, 345–8.CrossRefGoogle Scholar
Cooper, S. J., Moores, W. R., Jackson, A. & Barber, D. J. (1985d). Effects of tifluadom on food consumption compared with chlordiazepoxide and kappa agonists. Neuropharmacology 24, 877–83.Google Scholar
Czech, D. A. & Stein, E. A. (1980). Naloxone suppresses osmoregulatory drinking in rats. Pharmacol. Biochem. Behav. 12, 987–9.CrossRefGoogle Scholar
Czech, D. A., Stein, E. A. & Blake, M. J. (1983). Naloxone-induced hypodipsia: a CNS mapping study. Life Sci. 33, 797–803.CrossRefGoogle ScholarPubMed
Czech, D. A., Blake, M. J. & Stein, E. A. (1984). Drinking behavior is modulated by CNS administration of opioids. Appetite 5, 15–24.CrossRefGoogle ScholarPubMed
DeCaro, G., Micossi, L. G. & Venturi, F. (1979). Drinking behavior induced by intracerebroventricular enkephalins in rats. Nature 277, 51–3.CrossRefGoogle Scholar
Delamater, A. R., Sclafani, A. & Bodnar, R. J. (2000). Pharmacology of sucrose-reinforced place-preference conditioning: effects of naltrexone. Pharmacol. Biochem. Behav. 65, 697–704.CrossRefGoogle ScholarPubMed
Devine, D. P. & Wise, R. A. (1994). Self-administration of morphine, DAMGO and DPDPE into the ventral tegmental area of rats. J. Neurosci. 14, 1978–84.CrossRefGoogle ScholarPubMed
Drewnowski, A., Krahn, D. D., Demitrack, M. A., Nairn, K. & Gosnell, B. A. (1992). Taste responses and preferences for sweet high-fat foods: evidence for opioid involvement. Physiol. Behav. 51, 371–9.CrossRefGoogle ScholarPubMed
Evans, K. R. & Vaccarino, F. J. (1990). Amphetamine- and morphine-induced feeding: evidence for involvement of reward mechanisms. Neurosci. Biobehav. Rev. 14, 9–22.CrossRefGoogle ScholarPubMed
Fantino, M., Hosotte, J. & Apfelbaum, M. (1986). An opioid antagonist naltrexone, reduces the preference for sucrose in humans. Am. J. Physiol. 251, R91–6.Google ScholarPubMed
Frenk, H. & Rogers, G. H. (1979). The suppressant effects of naloxone on food and water intake in the rat. Behav. Neur. Biol. 26, 23–40.CrossRefGoogle ScholarPubMed
Giraudo, S. Q., Billington, C. J. & Levine, A. S. (1998a). Effects of the opioid antagonist naltrexone on feeding induced by DAMGO in the central nucleus of the amygdala and in the paraventricular nucleus in the rat. Brain Res. 782, 18–23.CrossRefGoogle Scholar
Giraudo, S. Q., Kotz, C. M., Billington, C. J. & Levine, A. S. (1998b). Association between the amygdala and the nucleus of the solitary tract in mu opioid induced feeding in the rat. Brain Res. 802, 184–8.CrossRefGoogle Scholar
Glass, M. J., Hahn, B., Joseph, A. & Bodnar, R. J. (1994). Central opioid receptor subtype mediation of isoproterenol-induced drinking in rats. Brain Res. 657, 310–14.CrossRefGoogle ScholarPubMed
Glass, M. J., Grace, M., Cleary, J. P., Billington, C. J. & Levine, A. S. (1996). Potency of naloxone's anorectic effect in rats is dependent on diet preference. Am. J. Physiol. 271, R217–21.Google ScholarPubMed
Glass, M. J., Billington, C. J. & Levine, A. S. (2000). Naltrexone administered to central nucleus of amygdala or PVN: neural dissociation of diet and energy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R86–92.CrossRefGoogle ScholarPubMed
Goldstein, A., Fischli, W., Lowney, L. I., Hunkapiller, M. & Hood, L. (1981). Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc. Natl. Acad. Sci. USA 74, 7219–23.CrossRefGoogle Scholar
Gosnell, B. A. (1988). Involvement of mu opioid receptors in the amygdala in the control of feeding. Neuropharmacology 27, 319–26.CrossRefGoogle ScholarPubMed
Gosnell, B. A. & Majchrzak, M. J. (1989). Centrally administered opioid peptides stimulate saccharin intake in nondeprived rats. Pharmacol. Biochem. Behav. 33, 805–10.CrossRefGoogle ScholarPubMed
Gosnell, B. A. & Majchrzak, M. J. (1990). Effects of a selective mu opioid receptor agonist and naloxone on the intake of sodium chloride solutions. Psychopharmacology 100, 66–71.CrossRefGoogle ScholarPubMed
Gosnell, B. A., Levine, A. S. & Morley, J. E. (1986a). The stimulation of food intake by selective agonists of mu, kappa and delta opioid receptors. Life Sci. 38, 1081–8.CrossRefGoogle Scholar
Gosnell, B. A., Morley, J. E. & Levine, A. S. (1986b). Opioid-induced feeding: localization of sensitive brain sites. Brain Res. 369, 177–84.CrossRefGoogle Scholar
Gosnell, B. A., Grace, M. & Levine, A. S. (1987). Effects of beta-chlornaltrexamine on food intake, body weight and opioid-induced feeding. Life Sci. 40, 1459–67.CrossRefGoogle ScholarPubMed
Gosnell, B. A., Krahn, D. D. & Majchrzak, M. J. (1990a). The effects of morphine on diet selection are dependent upon baseline diet preferences. Pharm. Biochem. Behav. 37, 207–12.CrossRefGoogle Scholar
Gosnell, B. A., Majchrzak, M. J. & Krahn, D. D. (1990b). Effects of preferential delta and kappa opioid receptor agonists on the intake of hypotonic saline. Physiol. Behav. 47, 601–3.CrossRefGoogle Scholar
Grandison, L. & Guidotti, A. (1977). Stimulation of food intake by muscimol and beta-endorphin. Neuropharmacology 16, 533–6.CrossRefGoogle ScholarPubMed
Grossman, H. C., Hadjimarkou, M. M., Silva, R. M., Giraudo, S. Q. & Bodnar, R. J. (2003). Interrelationships between mu opioid and melanocortin receptors in mediating food intake in rats. Brain Res. 991, 240–4.CrossRefGoogle ScholarPubMed
Hadjimarkou, M. M., Silva, R. M., Rossi, G. C., Pasternak, G. W. & Bodnar, R. J. (2002). Feeding induced by food deprivation is differentially reduced by G-protein alpha-subunit antisense probes in rat. Brain Res. 955, 45–54.CrossRefGoogle Scholar
Hadjimarkou, M. M., Khaimova, E., Pan, Y. -X., Rossi, G. C., Pasternak, G. W. & Bodnar, R. J. (2003). Feeding induced by food deprivation is differentially reduced by opioid receptor antisense oligodeoxynucleotide probes in rats. Brain Res. 987, 223–32.CrossRefGoogle ScholarPubMed
Hadjimarkou, M. M., Singh, A., Kandov, Y.et al. (2004). Opioid receptor involvement in food deprivation-induced feeding: evaluation of selective antagonist and antisense oligodeoxynucleotides probe effects in mice and rats. J. Pharmacol. Exp. Ther. 311, 1188–202.CrossRefGoogle Scholar
Hagan, M. M. & Moss, D. E. (1991). An animal model of bulimia nervosa: opioid sensitivity to fasting episodes. Pharmacol. Biochem. Behav. 39, 421–2.CrossRefGoogle ScholarPubMed
Hamilton, M. E. & Bozarth, M. A. (1988). Feeding elicited by dynorphin (1–13) microinjections into the ventral tegmental area. Life Sci. 43, 941–6.CrossRefGoogle ScholarPubMed
Hawkins, M. F., Cubic, B., Baumeister, A. A. & Bartin, C. (1992). Microinjection of opioid antagonists into the substantia nigra reduces stress-induced eating in rats. Brain Res. 584, 261–5.CrossRefGoogle ScholarPubMed
Haywood, M. D. & Low, M. J. (2005). Naloxone's suppression of spontaneous and food-conditioned locomotor activity is diminished in mice lacking either the dopamine D(2) receptor or enkephalin. Mol. Brain Res. 140, 91–8.Google Scholar
Haywood, M. D., Pintar, J. E. & Low, M. J. (2002). Selective reward deficit in mice lacking beta-endorphin and enkephalin. J. Neurosci. 22, 8251–8.Google Scholar
Haywood, M. D., Hansen, S. T., Pintar, J. E. & Low, M. J. (2004). Operant self-administration of ethanol in C57BL/6 mice lacking beta-endorphin and enkephalin. Pharmacol. Biochem. Behav. 79, 171–81.Google Scholar
Holtzman, S. G. (1974). Behavioral effects of separate and combined administration of naloxone and d-amphetamine. J. Pharmacol. Exp. Ther. 189, 51–60.Google ScholarPubMed
Holtzman, S. G. (1975). Effects of narcotic antagonists on fluid intake in the rat. Life Sci. 16, 1465–70.CrossRefGoogle ScholarPubMed
Hughes, J., Smith, T., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A. & Morris, H. R. (1975). Identification of two related penta-peptides from the brain with potent opiate agonist activity. Nature 258, 577–9.CrossRefGoogle Scholar
Israel, Y., Kandov, Y., Kest, A., Lewis, S. R. & Bodnar, R. J. (2005). Neuropeptide Y-induced feeding: pharmacological characterization using selective opioid antagonists and antisense probes in rats. Peptides 26, 1167–75.CrossRefGoogle Scholar
Jackson, A. & Cooper, S. J. (1985). Effects of K opiate agonists on palatable food consumption in non-deprived rats with and without food preloads. Brain Res. Bull. 15, 391–6.CrossRefGoogle Scholar
Jackson, A. & Cooper, S. J. (1986). An observational analysis of the effect of the selective kappa opioid agonist, U50488H, on feeding and related behaviors in the rat. Psychopharmacology 90, 217–21.CrossRefGoogle ScholarPubMed
Jackson, H. C. & Sewell, R. D. E. (1985a). Are delta opioid receptors involved in the regulation of food and water intake?Neuropharmacology 24, 885–8.CrossRefGoogle Scholar
Jackson, H. C. & Sewell, R. D. E. (1985b). Hyperphagia induced by 2-deoxy-D-glucose in the presence of the delta-opioid antagonist, ICI174864. Neuropharmacology 24, 815–17.CrossRefGoogle Scholar
Jalowiec, J. E., Panksepp, J., Zolovick, A. J., Najam, N. & Herman, B. (1981). Opioid modulation of ingestive behavior. Pharmacol. Biochem. Behav. 15, 477–84.CrossRefGoogle ScholarPubMed
Jenck, F., Gratton, A. & Wise, R. A. (1986). Opioid receptor subtypes associated with ventral tegmental facilitation and periaqueductal gray inhibition of feeding. Brain Res. 423, 39–44.CrossRefGoogle Scholar
Jenck, F., Gratton, A. & Wise, R. A. (1987). Opioid receptor subtypes associated with ventral tegmental area facilitation of lateral hypothalamic brain stimulation reward. Brain Res. 423, 34–8.CrossRefGoogle ScholarPubMed
Jewett, D. C., Grace, M. K., Jones, R. M.et al. (2001). The kappa-opioid antagonist GNTI reduces U50,488-, DAMGO-, and deprivation-induced feeding, but not butorphanol- and neuropeptide Y-induced feeding in rats. Brain Res. 909, 75–80.CrossRefGoogle Scholar
Jiang, Q., Takemori, A. E., Sultana, M.et al. (1991). Differential antagonism of opioid delta antinociception by [D-Ala2, Leu5, Cys6]-enkephalin (DALCE) and naltrindole 5′-isothiocyanate (5′-NTII): evidence for delta receptor subtypes. J. Pharmacol. Exp. Ther. 257, 1069–75.Google Scholar
Jones, J. E. & Corp, E. S. (2003). Effect of naltrexone on food intake and body weight in Syrian hamsters depends on metabolic status. Physiol. Behav. 78, 67–72.CrossRefGoogle ScholarPubMed
Kangawa, K., Minamino, N., Chino, N., Sakakibara, S. & Matsuo, H. (1981). The complete amino acid sequence of alpha-neo-endorphin. Biochem. Biophys. Res. Commun. 99, 871–8.CrossRefGoogle ScholarPubMed
Kelley, A. E., Bless, E. P. & Swanson, C. J. (1996). Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats. J. Pharmacol. Exp. Ther. 278, 1499–507.Google ScholarPubMed
Kelley, A. E., Will, M. J., Steininger, T. L., Zhang, M. & Haber, S. N. (2003). Restricted daily consumption of a highly palatable food (chocolate Ensure(R)) alters striatal enkephalin gene expression. Eur. J. Neurosci. 18, 2592–8.CrossRefGoogle ScholarPubMed
Kieffer, B. L. (1995). Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cell. Mol. Neurobiol. 15, 615–35.CrossRefGoogle ScholarPubMed
Kim, E. -M., Welch, C. C., Grace, M. K., Billington, C. J. & Levine, A. S. (1996). Chronic food restriction and acute food deprivation decrease mRNA levels of opioid peptides in the arcuate nucleus. Am. J. Physiol. 270, R1019–24.Google ScholarPubMed
Kim, E. -M., Grace, M. K., Welch, C. C., Billington, C. J. & Levine, A. S. (1999). STZ-induced diabetes decreases and insulin normalizes POMC mRNA in arcuate nucleus and pituitary in rats. Am. J. Physiol. 276, R1320–6.Google ScholarPubMed
Kimura, S., Lewis, R. V., Stern, A. S., Rossier, J., Stein, S. & Undenfriend, S. (1980). Probable precursors of (leu) and (met)-enkephalin in adrenal medulla: peptides of 3–5 kilodaltons. Proc. Natl. Acad. Sci. USA 77, 1681–5.CrossRefGoogle ScholarPubMed
King, B. M., Castellanos, F. X., Kastin, A. J.et al. (1979). Naloxone-induced suppression of food intake in normal and hypothalamic obese rats. Pharmacol. Biochem. Behav. 11, 729–32.CrossRefGoogle ScholarPubMed
Kirkham, T. C. & Blundell, J. E. (1984). Dual action of naloxone on feeding revealed by behavioral analysis: separate effects on initiation and termination of eating. Appetite 5, 45–52.CrossRefGoogle ScholarPubMed
Kirkham, T. C. & Blundell, J. E. (1986). Effects of naloxone and naltrexone on the development of satiation measured in the runway: comparisons with d-amphetamine and d-fenfluramine. Pharm. Biochem. Behav. 25, 123–8.CrossRefGoogle ScholarPubMed
Kirkham, T. C. & Cooper, S. J. (1988a). Attenuation of sham feeding by naloxone is stereospecific: evidence for opioid mediation of orosensory reward. Physiol. Behav. 43, 845–7.CrossRefGoogle Scholar
Kirkham, T. C. & Cooper, S. J. (1988b). Naloxone attenuation of sham feeding is modified by manipulation of sucrose concentration. Physiol. Behav. 44, 491–4.CrossRefGoogle Scholar
Koch, J. E. & Bodnar, R. J. (1993). Involvement of mu-1 and mu-2 opioid receptor subtypes in tail-pinch feeding in rats. Physiol. Behav. 53, 603–5.CrossRefGoogle Scholar
Koch, J. E., Pasternak, G. W., Arjune, D. & Bodnar, R. J. (1992). Naloxone benzoylhydrazone, a kappa-3 opioid agonist, stimulates food intake in rats. Brain Res. 581, 311–14.CrossRefGoogle ScholarPubMed
Koch, J. E., Glass, M. J., Cooper, M. L. & Bodnar, R. J. (1995). Alterations in deprivation, glucoprivic and sucrose intake following general, mu and kappa opioid antagonists in the hypothalamic paraventricular nucleus of rats. Neuroscience 66, 951–7.CrossRefGoogle ScholarPubMed
Kotz, C. M., Grace, M. K., Billington, C. J. & Levine, A. S. (1993). The effect of nor-binaltorphamine, beta-funaltrexamine and naltrindole on NPY-induced feeding. Brain Res. 631, 325–8.CrossRefGoogle Scholar
Kotz, C. M., Grace, M. K., Briggs, J., Levine, A. S. & Billington, C. J. (1995). Effects of opioid antagonists naloxone and naltrexone on neuropeptide Y-induced feeding and brown fat thermogenesis in the rat. Neural site of action. J. Clin. Invest. 96, 163–70.CrossRefGoogle Scholar
Kotz, C. M., Billington, C. J. & Levine, A. S. (1997). Opioids in the nucleus of the solitary tract are involved in feeding in the rat. Am. J. Physiol. 272, R1028–32.Google ScholarPubMed
Kumar, R., Mitchell, E. & Stolerman, I. P. (1971). Disturbed patterns of behaviour in morphine tolerant and abstinent rats. Br. J. Pharmacol. 42, 473–84.CrossRefGoogle ScholarPubMed
Lamonte, N., Echo, J. A., Ackerman, T. F., Christian, G. & Bodnar, R. J. (2002). Analysis of opioid receptor subtype antagonist effects upon mu opioid agonist-induced feeding elicited from the ventral tegmental area of rats. Brain Res. 929, 96–100.CrossRefGoogle ScholarPubMed
Leibowitz, S. F. & Hor, L. (1982). Endorphinergic and alpha-noradrenergic systems in the paraventricular nucleus: effects on eating behavior. Peptides 3, 421–8.CrossRefGoogle ScholarPubMed
Leventhal, L. & Bodnar, R. J. (1996). Different central opioid receptor subtype antagonists modify maltose dextrin and deprivation-induced water intake in sham feeding and sham drinking rats. Brain Res. 741, 300–8.CrossRefGoogle ScholarPubMed
Leventhal, L., Kirkham, T. C., Cole, J. L. & Bodnar, R. J. (1995). Selective actions of central mu and kappa opioid antagonists upon sucrose intake in sham-feeding rats. Brain Res. 685, 205–10.CrossRefGoogle Scholar
Leventhal, L., Cole, J. L., Rossi, G. C., Pan, Y. X., Pasternak, G. W. & Bodnar, R. J. (1996). Antisense oligodeoxynucleotides against the MOR-1 clone alter weight and ingestive responses in rats. Brain Res. 719, 78–84.CrossRefGoogle ScholarPubMed
Leventhal, L., Stevens, L. B., Rossi, G. C., Pasternak, G. W. & Bodnar, R. J. (1997). Antisense mapping of the MOR-1 opioid receptor clone: modulation of hyperphagia induced by DAMGO. J. Pharmacol. Exp. Ther. 282, 1402–7.Google ScholarPubMed
Leventhal, L., Mathis, J. P., Rossi, G. C., Pasternak, G. W. & Bodnar, R. J. (1998a). Orphan opioid receptor antisense probes block orphanin FQ-induced hyperphagia. Eur. J. Pharmacol. 349, R1–3.CrossRefGoogle Scholar
Leventhal, L., Silva, R. M., Rossi, G. C., Pasternak, G. W. & Bodnar, R. J. (1998b). Morphine-6beta-glucuronide-induced hyperphagia: characterization of opioid action by selective antagonists and antisense mapping in rats. J. Pharmacol. Exp. Ther. 287, 538–44.Google Scholar
Levin, B. E. & Dunn-Meynell, A. A. (2002). Defense of body weight depends on dietary composition and palatability in rats with diet-induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R46–54.CrossRefGoogle ScholarPubMed
Levine, A. S. & Billington, C. J. (2004). Opioids as agents of reward-related feeding: a consideration of the evidence. Physiol. Behav. 82, 57–61.CrossRefGoogle Scholar
Levine, A. S. & Morley, J. E. (1981). Peptidergic control of insulin-induced feeding. Peptides 2, 261–4.CrossRefGoogle ScholarPubMed
Levine, A. S. & Morley, J. E. (1983). Butorphenol tartrate induces feeding in rats. Life Sci. 32, 781–5.CrossRefGoogle Scholar
Levine, A. S., Morley, J. E., Brown, D. M. & Handwerger, B. S. (1982a). Extreme sensitivity of diabetic mice to naloxone-induced suppression of food intake. Physiol. Behav. 28, 987–9.CrossRefGoogle Scholar
Levine, A. S., Murray, S. S., Kneip, J., Grace, M. & Morley, J. E. (1982b). Flavor enhances the antidipsogenic effect of naloxone. Physiol. Behav. 28, 23–5.CrossRefGoogle Scholar
Levine, A. S., Morley, J. E., Kneip, J., Grace, M. & Brown, D. M. (1985). Environment modulates naloxone's suppressive effect on feeding in diabetic and non-diabetic rats. Physiol. Behav. 34, 391–3.CrossRefGoogle ScholarPubMed
Levine, A. S., Grace, M. & Billington, C. J. (1990a). The effect of centrally administered naloxone on deprivation and drug-induced feeding. Pharmacol. Biochem. Behav. 36, 409–12.CrossRefGoogle Scholar
Levine, A. S., Grace, M., Billington, C. J. & Portoghese, P. S. (1990b). Nor-binaltorphamine decreases deprivation and opioid-induced feeding. Brain Res. 534, 60–4.CrossRefGoogle Scholar
Levine, A. S., Grace, M. & Billington, C. J. (1991a). B-funaltrexamine (B-FNA) decreases deprivation and opioid-induced feeding. Brain Res. 562, 281–4.CrossRefGoogle Scholar
Levine, A. S., Grace, M., Billington, C. J. & Zimmerman, D. M. (1991b). Central administration of the opioid antagonist LY255582 decreases short- and long-term food intake in rats. Brain Res. 566, 193–7.CrossRefGoogle Scholar
Levine, A. S., Grace, M., Portoghese, P. S. & Billington, C. J. (1994). The effect of selective opioid antagonists on butorphanol-induced feeding. Brain Res. 637, 242–8.CrossRefGoogle ScholarPubMed
Levine, A. S., Weldon, D. T., Grace, M., Cleary, J. P. & Billington, C. J. (1995). Naloxone blocks that portion of feeding driven by sweet taste in food-restricted rats. Am. J. Physiol. 268, R248–52.Google ScholarPubMed
Levine, A. S., Grace, M. K., Cleary, J. P. & Billington, C. J. (2002). Naltrexone infusion inhibits the development of preference for a high-sucrose diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R1149–54.CrossRefGoogle ScholarPubMed
Locatelli, V., Petraglia, F., Tirloni, N. & Muller, E. E. (1986). Beta-endorphin concentrations in the hypothalamus, pituitary and plasma of streptozotocin-diabetic rats with and without insulin substitution therapy. Life Sci. 38, 379–86.CrossRefGoogle ScholarPubMed
Locke, K. W., Brown, D. R. & Holtzman, S. G. (1982). Effects of opiate antagonists and putative mu- and kappa-agonists on milk intake in rat and squirrel monkey. Pharmacol. Biochem. Behav. 17, 1275–9.CrossRefGoogle ScholarPubMed
Lord, J. A. H., Waterfield, A. A., Hughes, J. & Kosterlitz, H. (1977). Endogenous opioid peptides: multiple agonists and receptors. Nature 267, 495–9.CrossRefGoogle ScholarPubMed
Low, M. J., Haywood, M. D., Appleyard, S. M. & Rubinstein, M. (2003). State-dependent modulation of feeding behavior by proopiomelanocortin-derived beta-endorphin. Ann. N. Y. Acad. Sci. 994, 192–201.CrossRefGoogle ScholarPubMed
Lowe, M. R. & Levine, A. S. (2005). Eating motives and the controversy over dieting: eating less than needed versus less than wanted. Obes. Res. 13, 797–806.CrossRefGoogle ScholarPubMed
Lowy, M. T. & Yim, G. K. W. (1983). Stimulation of food intake following opiate agonists in rats but not hamsters. Psychopharmacology 81, 28–32.CrossRefGoogle Scholar
Lowy, M. T., Maickel, R. P. & Yim, G. K. W. (1980). Naloxone reduction of stress-related feeding. Life Sci. 26, 2113–18.CrossRefGoogle ScholarPubMed
Lynch, W. C. (1986). Opiate blockade inhibits saccharin intake and blocks normal preference acquisition. Pharmacol. Biochem. Behav. 24, 833–6.CrossRefGoogle ScholarPubMed
Lynch, W. C. & Burns, G. (1990). Opioid effects on intake of sweet solutions depend both on prior drug experience and on prior ingestive experience. Appetite 15, 23–32.CrossRefGoogle ScholarPubMed
Lynch, W. C. & Libby, L. (1983). Naloxone suppresses intake of highly preferred saccharin solutions in food deprived and sated rats. Life Sci. 33, 1909–14.CrossRefGoogle ScholarPubMed
MacDonald, A. F., Billington, C. J. & Levine, A. S. (2003). Effects of the opioid antagonist naltrexone on feeding induced by DAMGO in the ventral tegmental area and in the nucleus accumbens shell region in the rat. Am. J. Physiol. 285, R999–1004.Google ScholarPubMed
MacDonald, A. F., Billington, C. J. & Levine, A. S. (2004). Alterations in food intake by opioid and dopamine signaling pathways between the ventral tegmental area and the shell of the nucleus accumbens. Brain Res. 1018, 78–85.CrossRefGoogle ScholarPubMed
Maickel, R. P., Braude, M. C. & Zabik, J. E. (1977). The effects of various narcotic agonists and antagonists on deprivation-induced fluid consumption. Neuropharmacology 16, 863–6.CrossRefGoogle Scholar
Mains, R. E., Eipper, B. A. & Ling, N. (1977). Common precursor to corticotropins and endorphin. Proc. Natl. Acad. Sci. USA 197, 3014–18.CrossRefGoogle Scholar
Majeed, N. H., Przewlocka, B., Wedzony, K. & Przewlocki, R. (1986). Stimulation of food intake following opioid microinjection into the nucleus accumbens septi in rats. Peptides 7, 711–16.CrossRefGoogle ScholarPubMed
Mandenoff, A., Fumeron, F., Apfelbaum, M. & Margules, D. L. (1982). Endogenous opiates and energy balance. Science 215, 1536–7.CrossRefGoogle ScholarPubMed
Mann, P. E., Arjune, D., Romero, M. T., Pasternak, G. W., Hahn, E. F. & Bodnar, R. J. (1988a). Differential sensitivity of opioid-induced feeding to naloxone and naloxonazine. Psychopharmacology 94, 330–41.CrossRefGoogle Scholar
Mann, P. E., Pasternak, G. W., Hahn, E. F., Curreri, G., Lubin, E. & Bodnar, R. J. (1988b). Comparison of chronic naloxone and naloxonazine effects upon food intake and body weight maintainance in rats. Neuropharmacology 27, 349–55.CrossRefGoogle Scholar
Margules, D. L., Moisset, B., Lewis, M. J., Shibuya, H. & Pert, C. B. (1978). Beta-endorphin is associated with overeating in genetically-obese mice (ob/ob) and rats (fa/fa). Science 202, 988–91.CrossRefGoogle Scholar
Marks-Kaufman, R., Balmagiya, T. & Gross, E. (1984). Modifications in food intake and energy metabolism in rats as a function of chronic naltrexone infusions. Pharmacol. Biochem. Behav. 20, 911–16.CrossRefGoogle ScholarPubMed
Martin, W. R., Wikler, A., Eades, C. G. & Pescor, F. T. (1963). Tolerance to and physical dependence on morphine in rats. Psychopharmacology 4, 247–60.CrossRefGoogle ScholarPubMed
Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E. & Gilbert, P. E. (1976). The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 197, 517–32.Google ScholarPubMed
Mattia, A., Vanderah, T., Mosberg, H. I. & Porreca, F. (1991). Lack of antinociceptive cross-tolerance between [D-Pen2, D-Pen5]-enkephalin and [D-Ala2]-deltorphan II in mice: evidence for delta receptor subtypes. J. Pharmacol. Exp. Ther. 258, 583–7.Google Scholar
McLaughlin, C. L. & Baile, C. A. (1983). Nalmefene decreases meal size, food and water intake and weight gain in Zucker rats. Pharmacol. Biochem. Behav. 19, 235–40.CrossRefGoogle ScholarPubMed
McLaughlin, C. L. & Baile, C. A. (1984). Feeding behavior responses of Zucker rats to naloxone. Physiol. Behav. 32, 755–61.CrossRefGoogle ScholarPubMed
McLean, S. & Hoebel, B. G. (1982). Opiate and norepinephrine-induced feeding from the paraventricular nucleus of the hypothalamus are dissociable. Life Sci. 31, 2379–82.CrossRefGoogle ScholarPubMed
Mehiel, R. (1996). The effects of naloxone on flavor-calorie preference learning indicate involvement of opioid reward systems. Psychol. Rec. 46, 435–50.CrossRefGoogle Scholar
Meunier, J. C., Mollereau, C., Toll, L.et al. (1995). Isolation and structure of the endogenous agonist of the opioid receptor like ORL1 receptor. Nature 377, 532–5.CrossRefGoogle ScholarPubMed
Millan, M. J. & Morris, B. J. (1988). Long-term blockade of mu-opioid receptors suggests a role in control of ingestive behavior, body weight and core temperature in the rat. Brain Res. 450, 247–58.CrossRefGoogle ScholarPubMed
Morley, J. E. & Levine, A. S. (1980). Stress-induced eating is mediated through endogenous opiates. Science 209, 1259–61.CrossRefGoogle ScholarPubMed
Morley, J. E. & Levine, A. S. (1981). Dynorphin (1–13) induces spontaneous feeding in rats. Life Sci. 29, 1901–3.CrossRefGoogle ScholarPubMed
Morley, J. E. & Levine, A. S. (1983). Involvement of dynorphin and the kappa opioid receptor in feeding. Peptides 4, 797–800.CrossRefGoogle Scholar
Morley, J. E., Levine, A. S., Grace, M. & Kneip, J. (1982). An investigation of the role of kappa opiate receptors in the initiation of feeding. Life Sci. 31, 2617–26.CrossRefGoogle ScholarPubMed
Morley, J. E., Levine, A. S., Kneip, J., Grace, M., Zeugner, H. & Shearman, G. T. (1985). The K opioid receptor and food intake. Eur. J. Pharmacol. 112, 17–25.CrossRefGoogle Scholar
Mucha, R. F. & Iversen, S. D. (1986). Increased food intake after opioid microinjections into nucleus accumbens and ventral tegmental area of rat. Brain Res. 397, 214–24.CrossRefGoogle ScholarPubMed
Myers, K. J. & Dean, N. M. (2000). Sensible use of antisense: how to use oligonucleotides as research tools. Trends Pharmacol. Sci. 21, 19–23.CrossRefGoogle ScholarPubMed
Nencini, P. & Stewart, J. (1990). Chronic systemic administration of amphetamine increases food intake to morphine, but not to U50488H, microinjected into the ventral tegmental area in rats. Brain Res. 527, 254–8.CrossRefGoogle Scholar
Nock, B., Rajpara, A., O'Connor, L. H. & Cicero, T. J. (1988). Autoradiography of [3-H]-U69,593 binding sites in rat brain: evidence for K opioid receptor subtypes. Eur. J. Pharmacol. 154, 27–34.CrossRefGoogle Scholar
Noel, M. B. & Wise, R. A. (1993). Ventral tegmental injections of morphine but not U50488H enhance feeding in food-deprived rats. Brain Res. 632, 68–73.CrossRefGoogle Scholar
Noel, M. B. & Wise, R. A. (1995). Ventral tegmental injections of a selective mu or delta opioid enhance feeding in food-deprived rats. Brain Res. 673, 304–12.CrossRefGoogle ScholarPubMed
O'Hare, E., Cleary, J. P., Billington, C. J. & Levine, A. S. (1997). Naloxone administration following operant training of sucrose/water discrimination in the rat. Psychopharmacology 129, 289–94.CrossRefGoogle ScholarPubMed
Olson, G. A., DeLatte, S. W., Kastin, A. J., McLean, J. H., Phillpott, D. F. & Olson, R. D. (1985). Naloxone and fluid consumption in rats: dose-response relationship for 15 days. Pharmacol. Biochem. Behav. 23, 1065–8.CrossRefGoogle ScholarPubMed
Olszewski, P. K., Grace, M. K., Billington, C. J. & Levine, A. S. (2000). The effect of [Phe(1)psi(CH(2)-NH)Gly(2)]-nociceptin(1–13)NH(2) on feeding and c-Fos immunoreactivity in selected brain sites. Brain Res. 876, 95–102.CrossRefGoogle ScholarPubMed
Ostrowski, N. L., Rowland, N., Foley, T. L., Nelson, J. L. & Reid, L. D. (1981). Morphine antagonists and consummatory behaviors. Pharmacol. Biochem. Behav. 14, 549–59.CrossRefGoogle ScholarPubMed
Pan, Y. X., Xu, J., Bolan, E.et al. (1999). Identification and characterization of three new alternatively spliced MOR-1 opioid receptor isoforms. Mol. Pharmacol. 56, 396–403.CrossRefGoogle ScholarPubMed
Pan, Y. X., Xu, J., Mahurter, L., Bolan, E., Xu, M. & Pasternak, G. W. (2001). Generation of the mu opioid receptor (MOR-1) protein by three new splice variants of the Oprm gene. Proc. Natl. Acad. Sci. USA 98, 14084–9.CrossRefGoogle ScholarPubMed
Papadouka, V. & Carr, K. D. (1994). The role of multiple opioid receptors in the maintenance of stimulation-induced feeding. Brain Res. 639, 42–8.CrossRefGoogle ScholarPubMed
Parker, L. A., Maier, S., Rennie, M. & Crebolder, J. (1992). Morphine- and naltrexone-induced modification of palatability: analysis by the taste reactivity test. Behav. Neurosci. 106, 999–1010.CrossRefGoogle ScholarPubMed
Pasternak, G. W. & Standifer, K. M. (1995). Mapping of opioid receptors using antisense oligodeoxynucleotides: correlating their molecular biology and pharmacology. Trends Pharmacol. Sci. 16, 344–50.CrossRefGoogle ScholarPubMed
Pasternak, G. W. & Wood, P. L. (1986). Multiple mu opiate receptors. Life Sci. 38, 1889–96.CrossRefGoogle ScholarPubMed
Pecina, S. & Berridge, K. (2000). Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res. 863, 71–86.CrossRefGoogle Scholar
Pert, C. B. & Snyder, S. H. (1973). Opiate receptor: demonstration in nervous tissue. Science 179, 1011–14.CrossRefGoogle ScholarPubMed
Plata-Salaman, C. R., Wilson, C. D., Sonti, G., Borkoski, J. P. & ffrench-Mullen, J. M. H. (1995). Antisense oligodeoxynucleotides to G-protein alpha-subunit subclasses identify a transductional requirement for the modulation of normal feeding dependent on Goa alpha subunit. Mol. Brain Res. 33, 72–8.CrossRefGoogle Scholar
Polidori, C., deCaro, G. & Massi, M. (2000). The hyperphagic effect of nociceptin/orphanin FQ in rats. Peptides 21, 1051–62.CrossRefGoogle ScholarPubMed
Pomonis, J. D., Billington, C. J. & Levine, A. S. (1996). Orphanin FQ, agonist of orphan opioid receptor ORL1, stimulates feeding in rats. Neuroreport 8, 369–71.CrossRefGoogle ScholarPubMed
Pomonis, J. D., Jewett, D. C., Kotz, C. M., Briggs, J. E., Billington, C. J. & Levine, A. S. (2000). Sucrose consumption increases naloxone-induced c-fos immunoreactivity in limbic forebrain. Am. J. Physiol. 278, R712–19.Google ScholarPubMed
Quinn, J. G., O'Hare, E., Levine, A. S. & Kim, E. M. (2003). Evidence for a mu-opioid-opioid connection between the paraventricular nucleus and ventral tegmental area in the rat. Brain Res. 991, 206–11.CrossRefGoogle ScholarPubMed
Ragnauth, A., Ruegg, H. & Bodnar, R. J. (1997). Evaluation of opioid receptor subtype antagonist effects in the ventral tegmental area upon food intake under deprivation, glucoprivic and palatable conditions. Brain Res. 767, 8–16.CrossRefGoogle ScholarPubMed
Ragnauth, A., Moroz, M. & Bodnar, R. J. (2000). Multiple opioid receptors mediate feeding elicited by mu and delta opioid receptor subtype agonists in the nucleus accumbens shell in rats. Brain Res. 876, 76–87.CrossRefGoogle ScholarPubMed
Ragnauth, A., Schuller, A., Morgan, M.et al. (2001). Female preproenkephalin-knockout mice display altered emotional responses. Proc. Natl. Acad. Sci. USA 98, 1958–63.CrossRefGoogle ScholarPubMed
Ramirez, I. (1997). Intragastric carbohydrate exerts both intake-stimulating and intake-suppressing effects. Behav. Neurosci. 111, 612–22.CrossRefGoogle ScholarPubMed
Recant, L., Voyles, N. R., Luciano, M. & Pert, C. B. (1980). Naltrexone reduced weight gain, alters beta-endorphin and reduces insulin output from pancreatic islets of genetically obese mice. Peptides 1, 309–13.CrossRefGoogle ScholarPubMed
Reicine, T. & Bell, G. I. (1993). Molecular biology of opioid receptors. Trends Neurosci. 16, 506–10.CrossRefGoogle Scholar
Reinscheid, R. K., Nothacker, H. P., Bourson, A.et al. (1995). Orphanin FQ: a neuropeptide that activates an opioid-like G protein-coupled receptor. Science 270, 792–4.CrossRefGoogle Scholar
Rizzi, A., Salis, M. B., Ciccocioppo, R.et al. (2002). Pharmacological characterisation of [(pX)Phe4]nociceptin(1–13)NH2 analogues. 2. In vivo studies. Naunyn Schmiedebergs Arch. Pharmacol. 365, 450–6.CrossRefGoogle Scholar
Roberts, J. L., Seeburg, P. H., Shine, J., Herbert, E., Baxter, J. D. & Goodman, H. M. (1979). Corticotropin and β-endorphin: construction of analysis of recombinant DNA complementary to mRNA for the common precursor. Proc. Natl. Acad. Sci. USA 76, 2153–7.CrossRefGoogle ScholarPubMed
Rodi, D., Polidori, C., Bregola, G., Zucchini, S., Simonato, M. & Massi, M. (2002). Pro-nociceptin/orphanin FQ and NOP receptor mRNA levels in the forebrain of food deprived rats. Brain Res. 957, 354–61.CrossRefGoogle ScholarPubMed
Roerig, S. C. (1998). Opioid regulation of second messenger systems. Analgesia 3, 231–50.Google Scholar
Rossi, G. C., Standifer, K. M. & Pasternak, G. W. (1995). Differential blockade of morphine and morphine-6B-glucuronide analgesia by antisense oligodeoxynucleotides directed against MOR-1 and G-protein alpha subunits in rats. Neurosci. Lett. 198, 99–102.CrossRefGoogle ScholarPubMed
Rossi, G. C., Leventhal, L., Pan, Y. -X.et al. (1997). Antisense mapping of MOR-1 in rats: distinguishing between morphine and morphine-6beta-glucuronide antinociception. J. Pharmacol. Exp. Ther. 281, 109–14.Google ScholarPubMed
Rowland, N. (1982). Comparison of the suppression by naloxone of water intake induced in rats by hyperosmolarity, hypovolemia and angiotensin. Pharmacol. Biochem. Behav. 16, 87–91.CrossRefGoogle ScholarPubMed
Rowland, N. & Bartness, T. J. (1982). Naloxone suppresses insulin-induced food intake in novel and familiar environments, but does not affect hypoglycemia. Pharmacol. Biochem. Behav. 16, 1001–3.CrossRefGoogle Scholar
Rudski, J. M., Schaal, D. W., Thompson, T., Cleary, J., Billington, C. J. & Levine, A. S. (1992). Effects of methadone on free feeding in satiated rats. Pharmacol. Biochem. Behav. 43, 1033–7.CrossRefGoogle ScholarPubMed
Rudski, J. M., Billington, C. J. & Levine, A. S. (1994). Naloxone's effects on operant responding depend upon level of deprivation. Pharmacol. Biochem. Behav. 49, 377–83.CrossRefGoogle ScholarPubMed
Rudski, J. M., Thomas, D., Billington, C. J. & Levine, A. S. (1995). Buprenorphine increases intake of freely available and operant-contingent food in satiated rats. Pharmacol. Biochem. Behav. 50, 271–6.CrossRefGoogle ScholarPubMed
Ruegg, H., Hahn, B., Koch, J. E. & Bodnar, R. J. (1994). Differential modulation of angiotensin II and hypertonic saline-induced drinking by opioid receptor subtype antagonists in rats. Brain Res. 635, 203–10.CrossRefGoogle ScholarPubMed
Ruegg, H., Yu, W. -Z. & Bodnar, R. J. (1997). Opioid receptor subtype agonist-induced enhancements of sucrose intake are dependent upon sucrose concentration. Physiol. Behav. 62, 121–8.CrossRefGoogle ScholarPubMed
Sanger, D. J. (1981). Endorphinergic mechanisms in the control of food and water intake. Appetite 2, 193–208.CrossRefGoogle ScholarPubMed
Sanger, D. J. & McCarthy, P. S. (1980). Differential effects of morphine on food and water intake in food deprived and freely feeding rats. Psychopharmacology 72, 103–6.CrossRefGoogle ScholarPubMed
Sanger, D. J. & McCarthy, P. S. (1981). Increased food and water intake produced by rats by opiate receptor agonists. Psychopharmacology 74, 217–20.CrossRefGoogle ScholarPubMed
Schulz, R., Wilhelm, A. & Dirlich, G. (1984). Intracerebral microinjection of different antibodies against the endogenous opioids suggests alpha-neoendorphin participation in control of feeding behavior. Naunyn Schmiedebergs Arch. Pharmacol. 326, 222–6.CrossRefGoogle Scholar
Shaw, W. N., Mitch, C. H., Leander, J. D. & Zimmerman, D. M. (1990). Effect of phenylpiperidine opioid antagonists on food consumption and weight gain of the obese Zucker rat. J. Pharmacol. Exp. Ther. 253, 85–9.Google ScholarPubMed
Shide, D. J. & Blass, E. M. (1991). Opioid mediation of odor preferences induced by sugar and fat in 6-day-old rats. Physiol. Behav. 50, 961–6.CrossRefGoogle ScholarPubMed
Shimomura, Y., Oku, J., Glick, Z. & Bray, G. A. (1982). Opiate receptors, food intake and obesity. Physiol. Behav. 28, 441–5.CrossRefGoogle ScholarPubMed
Silva, R. M., Rossi, G. C., Mathis, J. P., Standifer, K. M., Pasternak, G. W. & Bodnar, R. J. (2000). Morphine and morphine-6beta-glucuronide-induced feeding are differentially reduced by G-protein alpha-subunit antisense probes in rats. Brain Res. 876, 62–75.CrossRefGoogle ScholarPubMed
Silva, R. M., Hadjimarkou, M. M., Rossi, G. C., Pasternak, G. W. & Bodnar, R. J. (2001). Beta-endorphin-induced feeding: pharmacological characterization using selective opioid antagonists and antisense probes in rats. J. Pharmacol. Exp. Ther. 297, 590–6.Google ScholarPubMed
Silva, R. M., Grossman, H. C., Hadjimarkou, M. M., Rossi, G. C., Pasternak, G. W. & Bodnar, R. J. (2002a). Dynorphin A1-17-induced feeding: pharmacological characterization using selective opioid antagonists and antisense probes in rats. J. Pharmacol. Exp. Ther. 301, 513–18.CrossRefGoogle Scholar
Silva, R. M., Grossman, H. C., Rossi, G. C., Pasternak, G. W. & Bodnar, R. J. (2002b). Pharmacological characterization of beta-endorphin- and dynorphin A-induced feeding using g-protein alpha subunit antisense probes in rats. Peptides 23, 1101–6.CrossRefGoogle Scholar
Simon, E. J., Hiller, J. M. & Edelman, I. (1973). Stereospecific binding of the potent narcotic analgesic (3H)etorphine to rat brain homogenate. Proc. Natl. Acad. Sci. USA 70, 1947–9.CrossRefGoogle ScholarPubMed
Simone, D. A., Bodnar, R. J., Goldman, E. J. & Pasternak, G. W. (1985). Involvement of opioid receptor subtypes in rat feeding behavior. Life Sci. 36, 829–33.CrossRefGoogle ScholarPubMed
Sipols, A. J., Bayer, J., Bennett, R. & Figlewicz, D. P. (2002). Intraventricular insulin decreases kappa opioid-mediated sucrose intake in rats. Peptides 23, 2181–7.CrossRefGoogle ScholarPubMed
Siviy, S. M., Bermudez-Rattoni, F., Rockwood, G. A., Dargie, C. M. & Reid, L. D. (1981). Intracerebral administration of naloxone and drinking in water-deprived rats. Pharmacol. Biochem. Behav. 15, 257–62.CrossRefGoogle ScholarPubMed
Smith, G. P. (1996). The direct and indirect controls of meal size. Neurosci. Biobehav. Rev. 20, 41–6.CrossRefGoogle ScholarPubMed
Spencer, R. L., Deupree, D., Hsiao, S.et al. (1986). Centrally-administered opioid selective agonists inhibit drinking in the rat. Pharmacol. Biochem. Behav. 25, 77–82.CrossRefGoogle ScholarPubMed
Standifer, K. M., Chien, C. C., Wahlestedt, C., Brown, G. P. & Pasternak, G. W. (1994). Selective loss of delta opioid analgesia and binding by oligodeoxynucleotides to a delta opioid receptor. Neuron 12, 805–10.CrossRefGoogle ScholarPubMed
Standifer, K. M., Jenab, S., Su, W.et al. (1995). Antisense oligodeoxynucleotides to the cloned receptor, DOR-1: Uptake, stability and regulation of gene expression. J. Neurochem. 65, 1981–7.CrossRefGoogle ScholarPubMed
Standifer, K. M., Rossi, G. C. & Pasternak, G. W. (1996). Differential blockade of opioid analgesia by antisense oligodeoxynucleotides directed against various G protein alpha subunits. Mol. Pharmacol. 50, 293–8.Google ScholarPubMed
Stanley, B. G., Lanthier, D. & Leibowitz, S. F. (1989). Multiple brain sites sensitive to feeding stimulation by opioid agonists: a cannula-mapping study. Pharmacol. Biochem. Behav. 31, 825–32.CrossRefGoogle Scholar
Stein, J. A., Znamensky, V., Baumer, F., Rossi, G. C., Pasternak, G. W. & Bodnar, R. J. (2000). Mercaptoacetate induces feeding through central opioid-mediated mechanisms in rats. Brain Res. 864, 240–51.CrossRefGoogle ScholarPubMed
Stratford, T. R., Holahan, M. R. & Kelley, A. E. (1997). Injections of nociceptin into nucleus accumbens shell or ventromedial hypothalamic nucleus increase food intake. Neuroreport 8, 423–6.CrossRefGoogle ScholarPubMed
Summy-Long, J. Y., Rosella, L. M. & Keil, L. C. (1981). Effects of centrally administered endogenous opioid peptides on drinking behavior, increased plasma vasopressin concentration and pressor response to hypertonic sodium chloride. Brain Res. 221, 343–57.CrossRefGoogle ScholarPubMed
Sweet, D. C., Levine, A. S. & Kotz, C. M. (2004). Functional opioid pathways are necessary for hypocretin-1 (orexin-A)-induced feeding. Peptides 25, 307–14.CrossRefGoogle ScholarPubMed
Tang, A. H. & Collins, R. J. (1985). Behavioral effects of a novel kappa opioid analgesic, U50488, in rats and rhesus monkeys. Psychopharmacology 85, 309–14.CrossRefGoogle ScholarPubMed
Tepperman, F. S. & Hirst, M. (1983). Effects of intrahypothalamic injection of D-Ala-2,D-Leu-5-enkephalin on feeding and temperature in the rat. Eur. J. Pharmacol. 96, 243–9.CrossRefGoogle Scholar
Tepperman, F. S., Hirst, M. & Gowdey, C. W. (1981). Hypothalamic injection of morphine: feeding and temperature responses. Life Sci. 28, 2459–67.CrossRefGoogle ScholarPubMed
Terenius, L. (1973). Stereospecific interaction between narcotic analgesia and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol. Toxicol. 32, 317–20.CrossRefGoogle Scholar
Thornhill, J. A., Taylor, B., Marshall, W. & Parent, K. (1982). Central, as well as peripheral naloxone administration suppresses feeding in food-deprived Sprague-Dawley and genetically obese (Zucker) rats. Physiol. Behav. 29, 841–6.CrossRefGoogle ScholarPubMed
Tsujii, S., Nakai, Y., Fukata, J.et al. (1986a). Effects of food deprivation and high fat diet on opioid receptor binding in rat brain. Neurosci. Lett. 72, 169–73.CrossRefGoogle Scholar
Tsujii, S., Nakai, Y., Koh, T.et al. (1986b). Effects of food deprivation on opioid receptor binding in the brain of lean and fatty Zucker rats. Brain Res. 399, 200–3.CrossRefGoogle Scholar
Uhl, G. R., Childers, S. R. & Pasternak, G. W. (1994). An opiate receptor gene family reunion. Trends Neurosci. 17, 89–93.CrossRefGoogle ScholarPubMed
Ukai, M. & Holtzman, S. G. (1988a). Effects of beta-funaltrexamine on ingestive behaviors in the rat. Eur. J. Pharmacol. 153, 161–5.CrossRefGoogle Scholar
Ukai, M. & Holtzman, S. G. (1988b). Effects of intrahypothalamic administration of opioid peptides selective for mu, kappa and delta receptors on different schedules of water intake in rats. Brain Res. 459, 275–81.CrossRefGoogle Scholar
Ukai, M., Nakayama, S. & Kameyama, T. (1988). The opioid antagonist, MR2266, specifically decreases saline intake in the mouse. Neuropharmacology 27, 1027–31.CrossRefGoogle ScholarPubMed
Wahlestedt, C. (1994). Antisense oligodeoxynucleotide strategies in neuropharmacology. Trends Pharmacol. Sci. 15, 42–6.CrossRefGoogle Scholar
Walker, J. M., Katz, R. J. & Akil, H. (1980). Behavioral effects of dynorphin (1–13) in the mouse and rat: initial observations. Peptides 1, 341–5.CrossRefGoogle ScholarPubMed
Welch, C. C., Grace, M. K., Billington, C. J. & Levine, A. S. (1994). Preference and diet type affect macronutrient selection after morphine, NPY, norepinephrine, and deprivation. Am. J. Physiol. 266, R426–33.Google ScholarPubMed
Welch, C. C., Kim, E. -M., Grace, M. K., Billington, C. J. & Levine, A. S. (1996). Palatability-induced hyperphagia increases hypothalamic dynorphin peptide and mRNA levels. Brain Res. 721, 126–31.CrossRefGoogle ScholarPubMed
Wilson, J. D., Nicklous, D. M., Aloyo, V. J. & Simansky, K. J. (2003). An orexigenic role for mu-opioid receptors in the lateral parabrachial nucleus. Am. J. Physiol. 285, R1055–65.Google ScholarPubMed
Wolinsky, T. D., Carr, K. D., Hiller, J. M. & Simon, E. J. (1994). Effects of chronic food restriction on mu and kappa opioid binding in rat forebrain: a quantitative autoradiographic study. Brain Res. 656, 274–80.CrossRefGoogle ScholarPubMed
Wolinsky, T. D., Abrahamsen, G. C. & Carr, K. D. (1996a). Diabetes alters mu and kappa opioid binding in rat brain: comparison with effects of food restriction. Brain Res. 738, 167–71.CrossRefGoogle Scholar
Wolinsky, T. D., Carr, K. D., Hiller, J. M. & Simon, E. J. (1996b). Chronic food restriction alters mu and kappa opioid receptor binding in the parabrachial nucleus of the rat: a quantitative autoradiographic study. Brain Res. 706, 333–6.CrossRefGoogle Scholar
Wolozin, B. L. & Pasternak, G. W. (1981). Classification of multiple morphine and enkephalin binding sites in the central nervous system. Proc. Natl. Acad. Sci. USA 78, 6181–5.CrossRefGoogle ScholarPubMed
Woods, J. S. & Leibowitz, S. F. (1985). Hypothalamic sites sensitive to morphine and naloxone: effects on feeding behavior. Pharmacol. Biochem. Behav. 23, 431–8.CrossRefGoogle ScholarPubMed
Yirmiya, R., Lieblich, I. & Liebeskind, J. C. (1988). Reduced saccharin preference in CXBK (opioid receptor-deficient) mice. Brain Res. 438, 339–42.CrossRefGoogle ScholarPubMed
Yu, W. -Z. & Bodnar, R. J. (1997). Interactions between Angiotensin II and delta opioid receptor subtype agonists upon water intake in rats. Peptides 18, 241–5.CrossRefGoogle ScholarPubMed
Yu, W. -Z., Ruegg, H. & Bodnar, R. J. (1997). Delta and kappa opioid receptor subtypes and ingestion: antagonist and glucoprivic effects. Pharmacol. Biochem. Behav. 56, 353–61.CrossRefGoogle ScholarPubMed
Yu, W. -Z., Sclafani, A., Delamater, A. R. & Bodnar, R. J. (1999). Pharmacology of flavor preference conditioning in sham-feeding rats: effects of naltrexone. Pharmacol. Biochem. Behav. 64, 573–84.CrossRefGoogle ScholarPubMed
Zadina, J. E., Hackler, L., Ge, L. -J. & Kastin, A. J. (1997). A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386, 499–502.CrossRefGoogle ScholarPubMed
Zhang, M. & Kelley, A. E. (2000). Enhanced intake of high-fat food following striatal mu-opioid stimulation: microinjection mapping and fos expression. Neuroscience 99, 267–77.CrossRefGoogle ScholarPubMed
Zhang, M. & Kelley, A. E. (2002). Intake of saccharin, salt, and ethanol solutions is increased by infusion of a mu opioid agonist into the nucleus accumbens. Psychopharmacology 159, 415–23.CrossRefGoogle Scholar
Zhang, M., Gosnell, B. A. & Kelley, A. E. (1998). Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J. Pharmacol. Exp. Ther. 285, 908–14.Google ScholarPubMed
Zukin, R. S., Eghbalai, M., Olive, D., Unterwald, E. M. & Tempel, A. (1988). Characterization and visualization of rat and guinea pig brain K opioid receptors: evidence for K-1 and K-2 opioid receptors. Proc. Natl. Acad. Sci. USA 85, 4061–5.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×