Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T16:01:07.672Z Has data issue: false hasContentIssue false

3 - Sensory systems

Published online by Cambridge University Press:  08 February 2010

Aage R. Møller
Affiliation:
University of Texas, Dallas
Get access

Summary

Introduction

The five sensory systems, hearing, vision, tactile (somatosensory), smell and taste, provide conscious perceptions of physical stimuli from the environment. In addition to these five senses, temperature receptors in the skin and the mouth mediate the sensations of warmth and cool. These senses, together with motor systems, serve the purpose of communications between an organism and the environment. In fact, all input that the central nervous system (CNS) receives from the environment comes through sensory systems. Several disorders are directly associated with sensory systems. Some disorders are caused by various kinds of insults such as trauma and inflammation. Age-related changes are perhaps the most important cause of disorders of sensory systems. The symptoms of many of these disorders are caused by functional changes in the CNS induced by expression of neural plasticity.

The vestibular system that monitors head movements and proprioceptive systems that monitor motor activity may also be regarded as sensory systems, but many authors include these systems in their description of motor systems. The balance system and proprioception, together with vision and somesthesia, contribute to our perception of our body position. (The vestibular system, and disorders associated with it, is covered separately in Chapter 6.) Proprioceptive somatosensory systems, the receptors of which are found in muscles, tendons and joints, monitor the motor systems and other bodily functions. The role of the vestibular system in control of posture and walking is discussed in Chapter 5 where other forms of proprioception are also discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlington, P. and , J. Warrick, Stellate Ganglion Block in the Management of Tinnitus. J. Laryngol. Otol., 1971. 85: pp. 159–168.CrossRefGoogle ScholarPubMed
Ahissar, E., , R. Sosnik, and , S. Haidarliu, Transformation from Temporal to Rate Coding in a Somatosensory Thalamocortical Pathway. Nature, 2000. 406(6793): pp. 302–6.CrossRefGoogle Scholar
Aitkin, L. M., The Auditory Midbrain, Structure and Function in the Central Auditory Pathway. 1986, Humana Press: Clifton, NJ.Google Scholar
Aitkin, L. M., , L. Tran, and , J. Syka, The Responses of Neurons in Subdivisions of the Inferior Colliculus of Cats to Tonal, Noise and Vocal Stimuli. Exp. Brain Res., 1994. 98: pp. 53–64.CrossRefGoogle ScholarPubMed
Amassian, V. E., , R. Q. Cracco, , P. J. Maccabee, , J. B. Cracco, , A. Rudell, and , L. Eberle, Suppression of Visual Perception by Magnetic Coil Stimulation of Human Occipital Cortex. Electroenceph. Clin. Neurophysiol., 1989. 74(6): pp. 458–62.CrossRefGoogle ScholarPubMed
Andersen, R. G. and W. L. Meyerhoff, Otologic Pathology and Tinnitus, in Tinnitus and Its Management, , J. G. Clark and , P. Yanick, Editors. 1984, Charles C Thomas Publishers: Springfield, Ill.Google Scholar
Aran, J. M. and , I. Cazals, Electrical Suppression of Tinnitus, in Ciba Foundation Symposium 85. 1981, Pitman Books Ltd: London. pp. 217–225.Google Scholar
Bach, S., , M. F. Noreng, and , N. U. Tjellden, Phantom Limb Pain in Amputees During the First 12 Months Following Limb Amputation, after Preoperative Lumbar Epidural Blockade. Pain, 1988. 33: pp. 297–301.CrossRefGoogle ScholarPubMed
Bartels, S., , S. Ito, , D. R. Trune, and , A. L. Nuttall, Noise-Induced Hearing Loss: The Effect of Melanin in the Stria Vascularis. Hear. Res., 2001. 154: pp. 116–123.CrossRefGoogle ScholarPubMed
Berlin, C. I., , T. Morlet, and , L. J. Hood, Auditory Neuropathy/Dyssynchrony: Its Diagnosis and Management. Pediatric Clinics of North America, 2003. 50(2): pp. 331–40.CrossRefGoogle ScholarPubMed
Blackburn, S., Hyperbilirubinemia and Neonatal Jaundice. Neonatal Netw., 1995. 14: pp. 15–25.Google ScholarPubMed
Bluestone, C. D., Otitis Media: A Spectrum of Diseases, in Pediatric Otology and Neurotology, , A. K. Lalwani and , K. M. Grundfast, Editors. 1998, Lippincott-Raven: Philadelphia. pp. 233–40.Google Scholar
Blum, P. S., , L. D. Abraham, and , S. Gilman, Vestibular, Auditory, and Somatic Input to the Posterior Thalamus of the Cat. Exp. Brain Res, 1979. 34: pp. 1–9.CrossRefGoogle ScholarPubMed
Bocca, E., Distorted Speech Tests, in Sensory-Neural Hearing Processes and Disorders, , B. A. Graham, Editor. 1965, Little, Brown & Co: Boston.Google Scholar
Boivie, J., , G. Grant, and , H. Silfvenius, A Projection from the Nucleus Z to the Ventral Nuclear Complex of the Thalamus in the Cat. Acta Physiol. Scand., 1970. 80(4): pp. 11A.CrossRefGoogle Scholar
Bonin, G. and , P. Bailey, The Neocortex of the Macaca Mulatia. 1947, Urbana, IL: University of Illinois Press.Google Scholar
Borg, E. and , A. R. Møller, Noise and Blood Pressure: Effects on Lifelong Exposure in the Rat. Acta Physiol. Scand., 1978. 103: pp. 340–42.CrossRefGoogle ScholarPubMed
Borg, E., Noise Induced Hearing Loss in Rats with Renal Hypertension. Hear. Res., 1982. 8: pp. 93–99.CrossRefGoogle Scholar
Borg, E., Noise Induced Hearing Loss in Normotensive and Spontaneously Hypertensive Rats. Hear. Res., 1982. 8: pp. 117–130.CrossRefGoogle ScholarPubMed
Borsel, J., , L. M. G. Curfs, and , J. P. Fryns, Hyperacusis in Williams Syndrome: A Sample Survey Study. Genetic Counseling, 1997. 8(2): pp. 121–126.Google ScholarPubMed
Brackmann, D. E., , C. Shelton, and , M. A. Arriaga, Otologic Surgery. Vol. 2nd ed. 2001, Philadelphia: W. B. Saunders Co.Google Scholar
Braun, C. M., , M. Dumont, , J. Duval, , I. Hamel-Hebert, and , L. Godbout, Brain Modules of Hallucination: An Analysis of Multiple Patients with Brain Lesions. J Psychiatry Neurosci., 2003. 28(6): pp. 432–49.Google ScholarPubMed
Brodal, P., The Central Nervous System. 1998, Oxford University Press: New York.Google Scholar
Burns, W. and , D. W. Robinson, Hearing and Noise in Industry. 1970, Her Majesty's Stationery Office: London.Google Scholar
Cacace, A. T., , T. J. Lovely, , D. J. McFarland, , S. M. Parnes, and , D. F. Winter, Anomalous Cross-Modal Plasticity Following Posterior Fossa Surgery: Some Speculations on Gaze-Evoked Tinnitus. Hear. Res., 1994. 81: pp. 22–32.CrossRefGoogle ScholarPubMed
Cacace, A. T., , J. P. Cousins, , S. M. Parnes, , D. J. McFarland, , D. Semenoff, , T. Holmes, , C. Davenport, , K. Stegbauer, and , T. J. Lovely, Cutaneous-Evoked Tinnitus. Ii: Review of Neuroanatomical, Physiological and Functional Imaging Studies. Audiol. Neurotol., 1999. 4(5): pp. 258–268.CrossRefGoogle ScholarPubMed
Cacace, A. T., , J. P. Cousins, , S. M. Parnes, , D. Semenoff, , T. Holmes, , D. J. McFarland, , C. Davenport, , K. Stegbauer, and , T. J. Lovely, Cutaneous-Evoked Tinnitus. I: Phenomenology, Psychophysics and Functional Imaging. Audiol. Neurotology, 1999. 4(5): pp. 247–257.CrossRefGoogle ScholarPubMed
Cacace, A. T., Expanding the Biological Basis of Tinnitus: Crossmodal Origins and the Role of Neuroplasticity. Hear. Res., 2003. 175: pp. 112–132.CrossRefGoogle ScholarPubMed
Calza, L., L. Giardino, M. Zanni, R. Galetti, P. Parchi, and G. Galetti, Involvement of Cholinergic and Gabaergic Systems in Vestibular Compensation, in Vestibular Compensation: Facts, Theories and Clinical Perspectives, , M. Lacour, et al., Editors. 1989, Elsevier: Paris. pp. 189–199.Google Scholar
Canlon, B., , E. Borg, and , A. Flock, Protection against Noise Trauma by Pre-Exposure to a Low Level Acoustic Stimulus. Hear. Res., 1988. 34: pp. 197–200.CrossRefGoogle ScholarPubMed
Caspary, D. M., Raza, Lawhorn A., , B. A. Armour, , J. Pippin, and , S. P. Arneric, Immunocytochemical and Neurochemical Evidence for Age-Related Loss of Gamma aminobutyric acid in the Inferior Colliculus: Implications for Neural Presbycusis. J. Neurosci., 1990. 10: pp. 2363–2372.CrossRefGoogle ScholarPubMed
Caspary, D. M., , J. C. Milbrandt, and , R. H. Helfert, Central Auditory Aging: Gamma aminobutyric acid Changes in the Inferior Colliculus. Exp. Gerontol., 1995. 30: pp. 349–360.CrossRefGoogle ScholarPubMed
Caspary, D. M., , T. M. Holder, , L. F. Hughes, , J. C. Milbrandt, , R. M. McKernan, and , D. K. Naritoku, Age-Related Changes in Gamma aminobutyric acidA Receptor Subunit Composition and Function in Rat Auditory System. Neuroscience, 1999. 93(1): pp. 307–312.CrossRefGoogle Scholar
Cazals, Y., , M. Negrevergne, and , J. M. Aran, Electrical Stimulation of the Cochlea in Man: Hearing Induction and Tinnitus Suppression. J. Am. Audiol. Soc., 1978. 3: pp. 209–213.Google ScholarPubMed
Chowdhury, S. A. and , N. Suga, Reorganization of the Frequency Map of the Auditory Cortex Evoked by Cortical Electrical Stimulation in the Big Brown Bat. J. Neurophys., 2000. 83(4): pp. 1 856–63.CrossRefGoogle ScholarPubMed
Coad, M. L., , A. H. Lockwood, , R. J. Salvi, and , R. Burkhard, Characteristics of Patients with Gaze-Evoked Tinnitus. Otol. Neurotol., 2001. 22: pp. 650–4.CrossRefGoogle ScholarPubMed
Colletti, V., , F. G. Fiorino, , L. Sacchetto, , V. Miorelli, and , C. M., Hearing Habilitation with Auditory Brainstem Implantation in Two Children with Cochlear Nerve Aplasia. Int. J. Pediatric Otorhinolaryngol., 2001. 60(2): pp. 99–111.CrossRefGoogle ScholarPubMed
Conlon, B. J. and , D. W. Smith, Attenuation of Neomycin Ototoxicity by Iron Chelation. Laryngoscope, 1998. 108: pp. 284–7.CrossRefGoogle ScholarPubMed
Conlon, B. J., , J.-M. Aran, , J.-P. Erre, and , D. W. Smith, Attenuation of Aminoglycoside-Induced Cochlear Damage with the Metabolic Antioxidant a-Lipoic Acid. Hear. Res., 1999. 128: pp. 40–44.CrossRefGoogle Scholar
Dancer, A. L., , D. Henderson, , R. J. Salvi, and , R. P. Hamernik, Noise Induced Hearing Loss. 1990, Mosby Year Book: St. Louis.Google Scholar
Ridder, D., , G. De Mulder, , V. Walsh, , N. Muggleton, , S. Sunaert, and , A. Møller, Magnetic and Electrical Stimulation of the Auditory Cortex for Intractable Tinnitus. J Neurosurg, 2004. 100(3): pp. 560–4.CrossRefGoogle ScholarPubMed
Densert, B. and , K. Sass, Control of Symptoms in Patients with Ménière's Disease Using Middle Ear Pressure Applications: Two Years Follow-Up. Acta Otolaryng. (Stockh.), 2001. 121: pp. 616–621.CrossRefGoogle ScholarPubMed
Densert, O., Adrenergic Innervation in the Rabbit Cochlea. Acta Otolaryngol. (Stockh.), 1974. 78: pp. 345–356.CrossRefGoogle ScholarPubMed
Diamond, I. T., The Subdivisions of Neocortex: A Proposal to Revise the Traditional View of Sensory, Motor, and Association Areas., in Progress in Psychobiology and Physiological Psychology, , J. M. Sprague and , A. N. Epstein, Editors. 1979, Academic Press: New York. pp. 2–44.Google Scholar
Diamond, M. E. and , M. Armstrong-James, The Role of Parallel Sensory Pathways and Cortical Columns in Learning. Concepts Neurosci., 1992. 3: pp. 55–78.Google Scholar
Dinse, H. R., , B. Godde, , T. Hilger, , G. Reuter, , S. M. Cords, , T. Lenarz, and , W. Von Seelen, Optical Imaging of Cat Auditory Cortex Cochleotopic Selectivity Evoked by Acute Electrical Stimualtion of a Multi-Channel Cochlear Implant. Eur. J. Neurosci, 1997. 9(9): pp. 113–9.CrossRefGoogle Scholar
Dolan, T. R., , H. W. Ades, , G. Bredberg, and , W. D. Neff, Inner Ear Damage and Hearing Loss after Exposure to Tones of High Intensity. Acta Otolaryngol. (Stockholm), 1975. 80: pp. 343–352.CrossRefGoogle ScholarPubMed
Donoghue, J. P., , S. Suner, and , J. N. Sanes, Dynamic Organization of Primary Motor Cortex Output to Target Muscles in Adult Rats. Ii. Rapid Reorganization Following Motor Nerve Lesions. Exp. Brain Res., 1990. 79(3): pp. 492–503.CrossRefGoogle ScholarPubMed
Eggermont, J. J., On the Pathophysiology of Tinnitus: A Review and a Peripheral Model. Hear. Res., 1990. 48: pp. 111–124.CrossRefGoogle Scholar
Eggermont, J. J., Between Sound and Perception: Reviewing the Search for a Neural CodeHear. Res., 2001. 157: pp. 1–42.CrossRefGoogle ScholarPubMed
Engelberg, M. and , W. Bauer, Transcutaneous Electrical Stimulation for Tinnitus. Laryngoscope, 1985. 95: pp. 1167–1173.CrossRefGoogle ScholarPubMed
Evans, E. F. and , T. A. Borerwe, Ototoxic Effects of Salicylate on the Responses of Single Cochlear Nerve Fibers and on Cochlear Potentials. Br. J. Audiol., 1982. 16: pp. 101–108.CrossRefGoogle ScholarPubMed
Falck, B., , N. A. Hillarp, , G. Thieme, and , A. Torp, Fluorescence of Catcholamines and Related Compound Condensed with Formaldehyde. Brain Res. Bull., 1982. 9: pp. 1–6.CrossRefGoogle Scholar
Fitzgerald, D. C. and , A. S. Mark, Sudden Hearing Loss: Frequency of Abnormal Findings on Contrast-Enhanced Mr Studies. Am J Neuroradiol., 1998. 19(8): pp. 1433–6.Google ScholarPubMed
Flor, H., , T. Elbert, , S. Knecht, , C. Wienbruch, , C. Pantev, , N. Birbaumer, , L. W., and , E. Taub, Phantom-Limb Pain as a Perceptual Correlate of Cortical Reorganization Following Arm AmputationNature, 1995. 375(6531): pp. 482–4.CrossRefGoogle ScholarPubMed
Forge, A. and , J. Schacht, Aminoglycoside Antibiotics. Audiol. Neurotol., 2000. 5: pp. 3–22.CrossRefGoogle ScholarPubMed
Fowler, E. P., The Illusion of Loudness of Tinnitus – Its Etiology and Treatment. Ann. Otol. Laryngol., 1942. 52: pp. 275–285.Google Scholar
French, J. D., , M. Verzeano, and , H. W. Magoun, An Extralemniscal Sensory System of the Brain. AMA Arch. Neurol. Psychiat., 1953. 69: pp. 505–519.CrossRefGoogle Scholar
Fu, K. M., , T. A. Johnston, , A. S. Shah, , L. Arnold, , J. Smiley, , T. A. Hackett, , P. E. Garraghty, and , C. E. Schroeder, Auditory Cortical Neurons Respond to Somatosensory Stimulation. J. Neurosci., 2003. 23(20): pp. 7510–5.CrossRefGoogle ScholarPubMed
Galambos, R., , R. Myers, and , G. Sheatz, Extralemniscal Activation of Auditory Cortex in Cats. Am. J. Physiol., 1961. 200: pp. 23–28.Google ScholarPubMed
Gates, G. A., , N. N. Couropmitree, and , R. H. Myers, Genetic Associations in Age-Related Hearing Thresholds. Arch. Otolaryngol. Head & Neck Surg., 1999. 125(6): pp. 654–9.CrossRefGoogle ScholarPubMed
Gejrot, T., Intravenous Xylocaine in the Treatment of Attacks of Ménière's Disease. Acta Otolaryngol. (Stockh), 1963. Suppl 188: pp. 190–195.Google Scholar
Gerken, G. M., Temporal Summation of Pulsate Brain Stimulation in Normal and Deafened Cats. J. Acoust. Soc. Am., 1979(66): pp. 728–734.CrossRefGoogle ScholarPubMed
Gerken, G. M., , S. S. Saunders, and , R. E. Paul, Hypersensitivity to Electrical Stimulation of Auditory Nuclei Follows Hearing Loss in Cats. Hear. Res., 1984. 13: pp. 249–260.CrossRefGoogle ScholarPubMed
Gerken, G. M., , J. M. Solecki, and , F. A. Boettcher, Temporal Integration of Electrical Stimulation of Auditory Nuclei in Normal Hearing and Hearing-Impaired Cat. Hear. Res., 1991. 53: pp. 101–112.CrossRefGoogle ScholarPubMed
Gerken, G. M., , P. S. Hesse, and , J. J. Wiorkowski, Auditory Evoked Responses in Control Subjects and in Patients with Problem Tinnitus. Hear. Res., 2001. 157: pp. 52–64.CrossRefGoogle ScholarPubMed
Giardino, L., , M. Zanni, , M. Fernandez, , A. Battaglia, , O. Pigntaro, and , L. Calza, Plasticity of Gabaa System During Aging: Focus on Vestibular Compensation and Possible Pharmacological Intervention. Brain Res., 2002. 929: pp. 76–86.CrossRefGoogle Scholar
Glasgold, A. and , F. Altman, The Effect of Stapes Surgery on Tinnitus in Otosclerosis. Laryngoscope, 1966. 76: pp. 1524–1532.CrossRefGoogle ScholarPubMed
Glasscock, M. C., , B. A. Thedinger, and , P. A. Cueva, An Analysis of the Retrolabyrinthine Vs the Retrosigmoid Vestibular Nerve Section. Otolaryngol. Head Neck Surg., 1991. 104: pp. 88–95.CrossRefGoogle ScholarPubMed
Godde, B., , T. Berkefeld, , M. David-Jurgens, and , H. R. Dinse, Age-Related Changes in Primary Somatosensory Cortex of Rats: Evidence for Parallel Degenerative and Plastic-Adaptive Processes. Neurosci. Biobehavioral Rev., 2002. 26(7): pp. 743–52.CrossRefGoogle ScholarPubMed
Goodale, M. A. and , A. D. Milner, Separate Pathways for Perception and Action. Trends Neurosci., 1992. 15(1): pp. 20–25.CrossRefGoogle ScholarPubMed
Goodwin, P. E. and , P. M. Johnson, The Loudness of Tinnitus. Acta Otolaryngol. (Stockh), 1980. 90: pp. 353–359.CrossRefGoogle ScholarPubMed
Gordon, G. and , G. Grant, Dorsolateral Spinal Afferents to Some Medullary Sensory Nuclei. An Anatomical Study in the Cat. Exp. Brain Res., 1982. 46(1): pp. 12–23.CrossRefGoogle ScholarPubMed
Graybiel, A. M., Some Fiber Pathways Related to the Posterior Thalamic Region in the Cat. Brain Behavior Evol., 1972. 6: pp. 363–393.CrossRefGoogle ScholarPubMed
Gross, C. G., H. R. Rodman, P. M. Gochin, and M. W. Colombo, Inferior Temporal Cortex as a Pattern Recognition Device, in Computational Learning and Cognition, , E. Baum, Editor. 1993, SIAM Press: Philadelphia.Google Scholar
Grouios, G., Phantom Smelling. Percept Mot Skills., 2002. 94(3): pp. 841–50.CrossRefGoogle ScholarPubMed
Hackett, T. A., , I. Stepniewska, and , J. H. Kaas, Thalamocortical Connections of the Parabelt Auditory Cortex in Macaque Monkeys. J. Comp. Neurol., 1998. 400(2): pp. 271–86.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Halpern, M., The Organization and Function of the Vomeronasal System. Ann. Rev. Neurosci., 1987. 10: pp. 325–62.CrossRefGoogle ScholarPubMed
Hamernik, R. P., , D. Henderson, and , R. J. Salvi, New Perspectives on Noise-Induced Hearing Loss. 1982, Raven Press: New York.Google Scholar
Harrison, J. M. and M. E. Howe, Anatomy of the Descending Auditory System in Auditory System. Handbook of Sensory Physiology, ed. , W. D. Keidel and , W. D. Neff. Vol. V/1. 1974, Springer Verlag: Berlin.Google Scholar
Hartmann, R., , R. K. Shepherd, , S. Heid, and , R. Klinke, Response of the Primary Auditory Cortex to Electrical Stimulation of the Auditory Nerve in the Congenitally Deaf White Cat. Hear Res., 1997. 112: pp. 115–33.CrossRefGoogle ScholarPubMed
Hawkins, J. E., Auditory Physiologic History: A Surface View, in Physiology of the Ear, , A. F. Jahn and , J. Santos-Sacchi, Editors. 1988, Raven Press: New York.Google Scholar
Hebb, D. O., The Organization of Behavior. 1949, Wiley: New York.Google Scholar
Heid, S., , T. K. Jahn-Siebert, , R. Klinke, , R. Hartmann, and , G. Langner, Afferent Projection Patterns in the Auditory Brainstem in Normal and Congenitally Deaf White Cats. Hear. Res., 1997. 110: pp. 191–199.CrossRefGoogle ScholarPubMed
Henkin, R. I., , L. M. Levy, and , C. S. Lin, Taste and Smell Phantoms Revealed by Brain Functional Mri (FMRI). J. Comput. Assist. Tomogr., 2000. 24(1): pp. 106–23.CrossRefGoogle Scholar
Herbert, H. and , C. B. Saper, Organization of Medullary Adrenergic and Noradrenergic Projections to Periaqueductal Gray Matter in the Rat. J. Comp. Neurol., 1992. 315: pp. 34–52.CrossRefGoogle ScholarPubMed
Hilbig, H., , J. Holler, , H. R. Dinse, and , H. J. Bidmon, In Contrast to Neuronal Nos-I, the Inducible Nos-II Expression in Aging Brains Is Modifled by Enriched Environmental Conditions. Exp. & Toxicol. Pathol., 2002. 53(6): pp. 427–31.CrossRefGoogle ScholarPubMed
Hirose, K., , D. M. Hockenbery, and , E. W. Rubel, Reactive Oxygen Species in Chick Hair Cells after Gentamicin Exposure in Vitro. Hear. Res., 1997. 104: pp. 1–14.CrossRefGoogle ScholarPubMed
Hotta, T. and , K. Kameda, Interactions between Somatic and Visual or Auditory Responses in the Thalamus of the Cat. Exp. Neurol., 1963. 8: pp. 1–13.CrossRefGoogle Scholar
Hunter, J. P., , J. Katz, and , K. D. Davis, The Effect of Tactile and Visual Sensory Inputs on Phantom Limb Awareness. Brain, 2003. 126(3): pp. 579–89.CrossRefGoogle ScholarPubMed
Itoh, K., , H. Kamiya, , A. Mitani, , Y. Yasui, , M. Takada, and , N. Mizuno, Direct Projections from Dorsal Column Nuclei and the Spinal Trigeminal Nuclei to the Cochlear Nuclei in the Cat. Brain Res., 1987. 400: pp. 145–150.CrossRefGoogle ScholarPubMed
Jastreboff, P. J., Phantom Auditory Perception (Tinnitus): Mechanisms of Generation and Perception. Neurosci. Res., 1990. 8: pp. 221–254.CrossRefGoogle ScholarPubMed
Jastreboff, P. J. and , M. M. Jastreboff, Tinnitus Retraining Therapy (Tinnitus retraining therapy) as a Method for Treatment of Tinnitus and Hyperacusis Patients. J. Am. Acad. Audiol., 2000. 11(3): pp. 162–77.Google ScholarPubMed
Joachims, H. Z., , J. Segal, , A. Golz, , A. Netzer, and , D. Goldenberg, Antioxidants in Treatment of Idiopathic Sudden Hearing Loss. Otol. Neurotol., 2003. 24: pp. 572–5.CrossRefGoogle ScholarPubMed
Johnson, L. R., L. E. Westrum, and M. A. Henry, Anatomic Organization of the Trigeminal System and the Effects of Deafferentation, in Trigeminal Neuralgia, , G. H. Fromm and , B. J. Sessle, Editors. 1991, Butterworth-Heinemann: Boston. pp. 27–69.Google Scholar
Johnsson, L. G. and , H. L. Hawkins, Sensory and Neural Degeneration with Aging, as Seen in Microdissections of the Human Inner Ear. Ann. Otol. Rhinol. Laryngol., 1972. 81: pp. 179–193.CrossRefGoogle ScholarPubMed
Kaada, B., , S. Hognestad, and , J. Havstad, Transcutaneous Nerve Stimulation (Tns) in Tinnitus. Scand. Audiol. (Stockh), 1989. 18: pp. 211–217.CrossRefGoogle Scholar
Kaas, J. H., , L. A. Krubitzer, , Y. M. Chino, , A. L. Langston, , E. H. Polley, and , N. Blair, Reorganization of Retinotopic Cortical Maps in Adult Mammals after Lesions of the Retina. Science, 1990. 229–232.CrossRefGoogle ScholarPubMed
Kaltenbach, J. A. and , C. E. Afman, Hyperactivity in the Dorsal Cochlear Nucleus after Intense Sound Exposure and Its Resemblance to Tone-Evoked Activity: A Physiological Model for Tinnitus. Hear. Res., 2000. 140: pp. 165–72.CrossRefGoogle ScholarPubMed
Kauffman, T.. Theoret, and A. Pascual-Leone, Braille Character Discrimination in Blindfolded Human Subjects. NeuroReport, 2002. 13(5): pp. 571–4.CrossRefGoogle Scholar
Kawamoto, K., , S. Ishimoto, , R. Minoda, , D. E. Brough, and , Y. Raphael, Math1 Gene Transfer Generates New Cochlear Hair Cells in Mature Guinea Pigs in Vivo. J. Neurosci., 2003. 23(11): pp. 4395–400.CrossRefGoogle ScholarPubMed
Keay, K. A., , C. I. Clement, , A. Depaulis, and , R. Bandler, Different Representations of Inescapable Noxious Stimuli in the Periaqueductal Gray and Upper Cervical Spinal Cord of Freely Moving Rats. Neurosci Lett, 2001. 313(1–2): pp. 17–20.CrossRefGoogle ScholarPubMed
Khaslavskaia, S., , M. Ladouceur, and , T. Sinkjaer, Increase in Tibialis Anterior Motor Cortex Excitability Following Repetitive Electrical Stimulation of the Common Peroneal Nerve. Exp. Brain Res., 2002. 143(3): pp. 309–315.CrossRefGoogle Scholar
Kilgard, M. P. and , M. M. Merzenich, Plasticity of Temporal Information Processing in the Primary Auditory Cortex. Nature Neurosci., 1998. 1: pp. 727–731.CrossRefGoogle ScholarPubMed
Kilgard, M. P. and , M. M. Merzenich, Cortical Map Reorganization Enabled by Nucleus Basalis Activity. Science, 1998. 279: pp. 1714–1718.CrossRefGoogle ScholarPubMed
Klein, A. J., , B. L. Armstrong, , M. K. Greer, and , F. R. Brown, Hyperacusis and Otitis Media in Individuals with Williams Syndrome. J. Speech Hear. Dis., 1990. 55: pp. 339–344.CrossRefGoogle ScholarPubMed
Klinke, R., , R. Hartmann, , S. Heid, , J. Tillein, and , A. Kral, Plastic Changes in the Auditory Cortex of Congenitally Deaf Cats Following Cochlear Implantation. Audiol. Neurootol., 2001. 6: pp. 203–206.CrossRefGoogle ScholarPubMed
Kondo, A., , J. Ishikawa, , T. Yamasaki, and , T. Konishi, Microvascular Decompression of Cranial Nerves, Particularly of the Seventh Cranial Nerve. Neurol. Med. Chir. (Tokyo), 1980. 20: pp. 739–751.CrossRefGoogle Scholar
Koralek, K. A., , K. F. Jensen, and , H. P. Killackey, Evidence for Two Complementary Patterns of Thalamic Input to the Rat Somatosensory Cortex. Brain Res., 1988. 463(2): pp. 346–51.CrossRefGoogle ScholarPubMed
Korsan-Bengtsen, (Also Known as , M. B. Møller), , M., Distorted Speech Audiometry. Acta Otolaryng. (Stockholm), 1973. Suppl. 310: pp. 1–75.Google ScholarPubMed
Kral, A., , R. Hartmann, , J. Tillrin, , S. Heid, and , R. Klinke, Congenital Auditory Deprivation Reduces Synaptic Activity within the Auditory Cortex in Layer Specific Manner. Cerebral Cortex, 2000. 10: pp. 714–726.CrossRefGoogle ScholarPubMed
Kral, A., , R. Hartmann, , J. Tillein, , S. Heid, and , R. Klinke, Delayed Maturation and Sensitive Periods in the Auditory Cortex. Audiol. Neurootol., 2001. 6(346–362).CrossRefGoogle ScholarPubMed
Kral, A., , R. Hartmann, , J. Tillein, , S. Heid, and , R. Klinke, Hearing after Congenital Deafness: Central Auditory Plasticity and Sensory Deprivation. Cereb. Cortex, 2002. 12: pp. 797–807.CrossRefGoogle ScholarPubMed
Kvasnak, E., , D. Suta, , J. Popelar, and , J. Syka, Neuronal Connections in the Medial Geniculate Body of the Guinea-Pig. Exp. Brain Res., 2000. 132: pp. 87–102.CrossRefGoogle ScholarPubMed
Kwiat, G. C. and , A. I. Basbaum, The Origin of Brainstem Noradrenergic and Serotonergic Projections to the Spinal Cord Dorsal Horn in the Rat. Somatosensory and Motor Res., 1992. 9: pp. 157–173.CrossRefGoogle ScholarPubMed
Lamm, K., , H. Lamm, and , W. Arnold, Effect of Hyperbaric Oxygen Therapy in Comparison to Conventional or Placebo Therapy or No Treatment in Idiopathic Sudden Hearing Loss, Acoustic Trauma, Noise-Induced Hearing Loss and Tinnitus. A Literature Survey. Adv. Otorhinolaryngol., 1998. 54: pp. 86–99.Google ScholarPubMed
Landgren, S. and , H. Silfvenius, Nucleus Z, the Medullary Relay in the Projection Path to the Cerebral Cortex of Group I Muscle Afferents from the Cat's Hind Limb. J. Physiol. (Lond), 1971. 218: pp. 551–71.CrossRefGoogle Scholar
Laurikainen, E. A., , D. Kim, , A. Didier, , T. Ren, , J. M. Miller, , W. S. Quirk, and , A. L. Nuttall, Stellate Ganglion Drives Sympathetic Regulation of Cochlear Blood Flow. Hear. Res., 1993. 64: pp. 199–204.CrossRefGoogle ScholarPubMed
LeDoux, J. E., , A. Sakaguchi, and , D. J. Reis, Subcortical Efferent Projections of the Medial Geniculate Mediate Emotional Responses Conditioned by Acoustic Stimuli. J. Neurosci., 1984. 4: pp. 683–698.CrossRefGoogle ScholarPubMed
Ledoux, J. E., Brain Mechanisms of Emotion and Emotional Learning. Curr. Opin. Neurobiol., 1992. 2: pp. 191–197.CrossRefGoogle ScholarPubMed
Lenarz, T., Treatment of Tinnitus with Lidocaine and Tocainide. Scand. Audiol. (Stockh), 1986. 26: pp. 49–51.Google ScholarPubMed
Lessell, S. and , M. M. Cohen, Phosphenes Induced by Sound. Neurology, 1979. 29(11): pp. 1524–6.CrossRefGoogle Scholar
Leventhal, A. G., , J. Wang, , M. Pu, , Y. Zhou, and , Y. Ma, Gamma aminobutyric acid and Its Agonists Improved Visual Cortical Function in Senescent Monkeys. Science, 2003. 300: pp. 812–815.CrossRefGoogle ScholarPubMed
Levine, R. A., Somatic (Craniocervical) Tinnitus and the Dorsal Cochlear Nucleus Hypothesis. Am. J. Otolaryngol., 1999. 20(6): pp. 351–62.CrossRefGoogle ScholarPubMed
Liberman, M. C. and , N. Y. S. Kiang, Acoustic Trauma in Cats. Acta Otolaryngol. (Stockh), 1978. Suppl 358: pp. 1–63.Google ScholarPubMed
Liberman, M. C., Chronic Changes in Acoustic Trauma: Serial-Section Reconstruction of Stereocilia and Cuticular Plates. Hear. Res., 1987. 26: pp. 65–88.CrossRefGoogle ScholarPubMed
Lidén, G., Audiology. 1985, Almquist& Wiksell: Stockholm.Google Scholar
Lockwood, A., , R. Salvi, , M. Coad, , M. Towsley, , D. Wack, and , B. Murphy, The Functional Neuroanatomy of Tinnitus. Evidence for Limbic System Links and Neural Plasticity. Neurology, 1998. 50: pp. 114–120.CrossRefGoogle ScholarPubMed
Lu, S. M. and , R. C. Lin, Thalamic Afferents of the Rat Barrel Cortex: A Light- and Electron-Microscopic Study Using Phaseolus Vulgaris Leucoagglutinin as an Anterograde Tracer. Somatosensory & Motor Research., 1993. 10(1): pp. 1–16.CrossRefGoogle ScholarPubMed
Lumb, B. M., Inescapable and Escapable Pain Is Represented in Distinct Hypothalamic-Midbrain Circuits: Specific Roles of Ad- and C-Nociceptors. Exp. Physiol., 2002. 87: pp. 281–86.CrossRefGoogle Scholar
Maison, S. F. and , M. C. Liberman, Predicting Vulnerability to Acoustic Injury with a Non-Invasive Assay of Olivocochlear Reflex Strength. J. Neurosci., 2000. 20: pp. 4701–4707.CrossRefGoogle Scholar
Marczynski, T. J., , J. Artwohl, and , B. Marczynska, Chronic Administration of Flumazenil Increases Life Span and Protects Rats from Age-Related Loss of Cognitive Functions: A Benzodiazepine/Gabaergic Hypothesis of Brain Aging. Neurobiology of Aging, 1994. 15(1): pp. 69–84.CrossRefGoogle ScholarPubMed
Marczynski, T. J., Gamma aminobutyric acidergic Deafferentation Hypothesis of Brain Aging and Alzheimer's Disease Revisited. Brain Res Bull., 1998. 45(4): pp. 341–79.CrossRefGoogle Scholar
Martich-Kriss, V., , S. S. Kollias, and Ball, W. S. Jr., Mr Findings in Kernicterus. Am. J. Neuroradiol., 1995. 16: pp. 819–21.Google ScholarPubMed
Mattox, D. E. and , F. B. Simmons, Natural History of Sudden Hearing Loss. Otolaryngol. Head Neck Surg., 1977. 88: pp. 111–3.CrossRefGoogle Scholar
Maxwell, A. P., , S. M. Mason, and Donoghue, G. M. O', Cochlear Nerve Aplasia: Its Importance in Cochlear Implantation. Am. J. Otol., 1999. 20(3): pp. 335–337.Google ScholarPubMed
McCormick, M. S. and , J. N. Thomas, Mexiletine in the Relief of Tinnitus: A Report on a Sequential Double-Blind Crossover Trial. Clin. Otolaryngol. & Allied Sci., 1981. 6(4): pp. 255–8.CrossRefGoogle ScholarPubMed
McDonald, A. J., Cortical Pathways to the Mammalian Amygdala. Progr. Neurobiol., 1998. 55(3): pp. 257–332.CrossRefGoogle ScholarPubMed
Melding, P. S., , R. J. Goodey, and , P. R. Thorne, The Use of Lignocaine in the Diagnosis and Treatment of Tinnitus. J. Laryngol. Otol., 1978. 92: pp. 115–121.CrossRefGoogle ScholarPubMed
Melzack, R., Phantom Limbs. Sci. Am., 1992. 266: pp. 120–126.CrossRefGoogle ScholarPubMed
Merzenich, M. M., , J. H. Kaas, , J. Wall, , R. J. Nelson, , M. Sur, and , D. Felleman, Topographic Reorganization of Somatosensory Cortical Areas 3b and 1 in Adult Monkeys Following Restricted Deafferentiation. Neuroscience, 1983. 8(1): pp. 3–55.CrossRefGoogle Scholar
Miller, J. M., , C. S. Watson, and , W. P. Covell, Deafening Effects of Noise on the Cat. Acta Oto Laryng. Suppl. 176, 1963: pp. 1–91.Google Scholar
Milner, A. D. and , M. A. Goodale, Visual Pathways to Perception and Action. Progr. Brain Res., 1993. 95: pp. 317–37.CrossRefGoogle ScholarPubMed
Mishkin, M., , L. G. Ungerleider, and , K. A. Macko, Object Vision and Spatial Vision: Two Cortical Pathways. Trends Neurosci., 1983. 6: pp. 415–417.CrossRefGoogle Scholar
Møller, A. R. and M. B. Møller, Unpublished Observation. 1982.
Møller, A. R., Pathophysiology of Tinnitus. Ann. Otol. Rhinol. Laryngol., 1984. 93: pp. 39–44.CrossRefGoogle ScholarPubMed
Møller, A. R., , M. B. Møller, , P. J. Jannetta, and , H. D. Jho, Compound Action Potentials Recorded from the Exposed Eighth Nerve in Patients with Intractable Tinnitus. Laryngoscope, 1992. 102: pp. 187–197.Google ScholarPubMed
Møller, A. R., , M. B. Møller, and , M. Yokota, Some Forms of Tinnitus May Involve the Extralemniscal Auditory Pathway. Laryngoscope, 1992. 102: pp. 1165–1171.CrossRefGoogle ScholarPubMed
Møller, A. R., Tinnitus, in Neurotology, , R. K. Jackler and , D. Brackmann, Editors. 1994, Mosby Year Book, Inc.: St. Louis.Google Scholar
Møller, A. R., Intraoperative Neurophysiologic Monitoring. 1995, Harwood Academic Publishers: Luxembourg.Google ScholarPubMed
Møller, A. R., Similarities between Chronic Pain and Tinnitus. Am. J. Otol., 1997. 18: pp. 577–585.Google ScholarPubMed
Møller, A. R., Vascular Compression of Cranial Nerves. I: History of the Microvascular Decompression Operation. Neurol. Res., 1998. 20: pp. 727–731.CrossRefGoogle ScholarPubMed
Møller, A. R., Similarities between Severe Tinnitus and Chronic Pain. J. Amer. Acad. Audiol., 2000. 11: pp. 115–124.Google ScholarPubMed
Møller, A. R., Hearing: Its Physiology and Pathophysiology. 2000, Academic Press: San Diego.Google Scholar
Møller, A. R. and , P. Rollins, The Non-Classical Auditory System Is Active in Children but Not in Adults. Neurosci. Lett., 2002. 319: pp. 41–44.CrossRefGoogle Scholar
Møller, A. R., Sensory Systems: Anatomy and Physiology. 2003, Academic Press: Amsterdam.Google Scholar
Møller, A. R., Tinnitus, in Neurotology, , R. K. Jackler and , D. Brackmann, Editors. 2003. Mosby Year Book Inc.: St. Lauis.Google Scholar
Møller, A. R., Pathophysiology of Tinnitus, in Otolaryngologic Clinics of North America, , A. Sismanis, Editor. 2003, W. B.Saunders: Amsterdam. pp. 249–266.Google Scholar
Møller, A. R. and , J. K. Kern, Are the Non-Classical Auditory Pathways Involved in Autism and PDD?Neurol. Res. 2005. 27CrossRefGoogle ScholarPubMed
Møller, M. B., Hearing in 70 and 75 Year-Old People. Results from a Cross-Sectional and Longitudinal Population Study. Am. J. Otolaryngol., 1981. 2: pp. 22–29.CrossRefGoogle ScholarPubMed
Møller, M. B., , A. R. Møller, , P. J. Jannetta, and , H. D. Jho, Vascular Decompression Surgery for Severe Tinnitus: Selection Criteria and Results. Laryngoscope, 1993. 103: pp. 421–427.CrossRefGoogle ScholarPubMed
Møller, M. B., Audiological EvaluationJ. Clin. Neurophysiol., 1994. 11: pp. 309–318.CrossRefGoogle ScholarPubMed
Moore, C. I., , C. E. Stern, , C. Dunbar, , S. K. Kostyk, , A. Gehi, and , S. Gorkin, Referred Phantom Sensations and Cortical Reorganization after Spinal Cord Injury in Humans. Proc. Natl. Acad. Sci., 2000. 97(26): pp. 14703–8.CrossRefGoogle ScholarPubMed
Morest, D. K., , M. D. Ard, and , D. Yurgelun-Todd, Degeneration in the Central Auditory Pathways after Acoustic Deprivation or over-Stimulation in the Cat. Anat. Rec., 1979. 193: pp. 750.Google Scholar
Morest, D. K. and , B. A. Bohne, Noise-Induced Degeneration in the Brain and Representation of Inner and Outer Hair Cells. Hear. Res., 1983. 9: pp. 145–152.CrossRefGoogle ScholarPubMed
Morgan, D. H., Temporomandbular Joint Surgery. Correction of Pain, Tinnitus, and Vertigo. Dental Radiography and Photography, 1973. 46(2): pp. 27–46.Google Scholar
Morgan, D. H., Tinnitus of Tmj Origin. J. Craniomandibular Practice, 1992. 10(2): pp. 124–129.Google ScholarPubMed
Mountcastle, V. B., Neural Mechanisms in Somesthesia, in Medical Physiology, , V. B. Mountcastle, Editor. 1974, St. Louis: Mosby.Google Scholar
Mühlnickel, W., , E. T., , E. Taub, and , H. Flor, Reorganization of Auditory Cortex in Tinnitus. Proc. Nat. Acad. Sci. USA, 1998. 95(17): pp. 10340–3.CrossRefGoogle ScholarPubMed
Noikaido, A. M., Ellinwood, E. H. Jr., , D. G. Heatherly, and , S. K. Gupta, Age-Related Increase in Central nervous system Sensitivity to Benzodiazepines as Assessed by Task Difficulty. Psychopharmacology, 1990. 100: pp. 90–97.CrossRefGoogle Scholar
Page, N. G., , J. P. Bolger, and , M. D. Sanders, Auditory Evoked Phosphenes in Optic Nerve Disease. J. Neurol. Neurosurg. Psych., 1982. 45(1): pp. 7–12.CrossRefGoogle ScholarPubMed
Passe, E. G., Sympathectomy in Relation to Ménière's Disease, Nerve Deafness and Tinnitus. A Report of 110 Cases. Proc. Roy. Soc. Med., 1951. 44: pp. 760–772.Google Scholar
Penfield, W. and , E. Boldrey, Somatic Motor and Sensory Representation in the Cerebral Cortex of Man as Studied by Electrical Stimulation. Brain, 1937. 60: pp. 389–443.CrossRefGoogle Scholar
Pensak, M. L., , M. E. Glasscock, , A. F. Josey, , C. G. Jackson, and , A. J. Gulya, Sudden Hearing Loss and Cerebellopontine Angle Tumors. Laryngoscope, 1985. 95(10): pp. 1188–93.CrossRefGoogle ScholarPubMed
Pichler, M., , Z. Wang, , C. Grabner-Weiss, , D. Reimer, , S. Hering, , M. Grabner, , H. Glossmann, and , J. Striessning, Block of P/Q-Type Calcium Channels by Therapeutic Concentrations of Aminoglycoside Antibiotics. Biochemistry, 1996. 35: pp. 14659–14664.CrossRefGoogle ScholarPubMed
Pierson, L. L., , K. J. Gerhardt, , G. P. Rodriguez, and , R. B. Yanke, Relationship between Outer Ear Resonance and Permanent Noise-Induced Hearing Loss. Am. J. Otolaryngol., 1994. 15: pp. 37–40.CrossRefGoogle ScholarPubMed
Pierson, M. G. and , A. R. Møller, Prophylaxis of Kanamycin-Induced Ototoxitity by a Radioprotectant. Hear. Res., 1981. 4: pp. 79–87.CrossRefGoogle ScholarPubMed
Plewnia, C., , M. Bartels, and , C. Gerlof, Transient Suppression of Tinnitus by Transcranial Magnetic Stimulation. Ann. Neurol., 2003. 53(2): pp. 263–266.CrossRefGoogle ScholarPubMed
Portmann, G., The Saccus Endolymphaticus and an Operation for Draining the Same for the Relief of Vertigo. J. Laryng. Otol., 1927. 42: pp. 809.CrossRefGoogle Scholar
Portmann, M., , R. Dauman, and , J. M. Aran, Audiometric and Electrophysiological Correlations in Sudden Deafness. Acta Otolaryngol, 1985. 99(3–4): pp. 363–8.CrossRefGoogle ScholarPubMed
Priuska, E. M. and , J. Schacht, Formation of Free Radical by Gentamycin and Iron and Evidence for an Iron/Gentamycin Complex. Biochem. Pharmacol., 1995. 50: pp. 1749–52.CrossRefGoogle Scholar
Rahko, T. and , V. Kotti, Tinnitus Treatment by Transcutaneous Nerve Stimulation (TNS). Acta Otolaryngol. (Stockh), 1997. Suppl 529: pp. 88–89.CrossRefGoogle Scholar
Rauschecker, J. P., Auditory Cortical Plasticity: A Comparison with Other Sensory Systems. Trends Neurosci., 1999. 22: pp. 74–80.CrossRefGoogle ScholarPubMed
Rauschecker, J. P. and , B. Tian, Mechanisms and Streams for Processing of “What” and “Where” in Auditory Cortex. Proc. Nat. Acad. Sci. USA, 2000. 97: pp. 11800–11806.CrossRefGoogle Scholar
Reed, G. F., An Audiometric Study of 200 Cases of Subjective Tinnitus. Arch. Otolaryngol., 1960. 71: pp. 94–104.CrossRefGoogle Scholar
Robertson, D. and , D. R. Irvine, Plasticity of Frequency Organization in Auditory Cortex of Guinea Pigs with Partial Unilateral Deafness. J. Comp. Neurol., 1989. 282(3): pp. 456–471.CrossRefGoogle ScholarPubMed
Robertson, D., , B. M. Johnstone, and , T. McGill, Effects of Loud Tones on the Inner Ear: A Combined Electrophysiological and Ultrastructural Study. Hear. Res., 1990. 2: pp. 39–53.CrossRefGoogle Scholar
Rouiller, E. M., Functional Organization of the Auditory System, in The Central Auditory System, , G. Ehret and , R. Romand, Editors. 1997, Oxford University Press: New York. pp. 3–96.Google Scholar
Rubinstein, J. T., , R. S. Tyler, , A. Johnson, and , C. J. Brown, Electrical Suppression of Tinnitus with High-Rate Pulse Trains. Otology & Neurotology, 2003. 24: pp. 478–485.CrossRefGoogle ScholarPubMed
Sakai, M. D. and , N. Suga, Plasticity of the Cochleotopic (Frequency) Map in Specialized and Nonspecialized Cortices. Proc. Nat. Acad. Sci. USA, 2001. 98(6): pp. 3507–3512.CrossRefGoogle ScholarPubMed
Salt, A. N., Regulation of Endolymphatic Fluid Volume. Ann N Y Acad Sci, 2001. 942: pp. 306–12.CrossRefGoogle ScholarPubMed
Schleuning, A. J., Management of the Patient with Tinnitus. Med. Clin. N. Am., 1991. 75: pp. 1225–1237.CrossRefGoogle ScholarPubMed
Schulman, A., , J. Tonndorf, and , B. Goldstein, Electrical Tinnitus Control. Acta Otolaryngol. (Stockh), 1985. 99: pp. 318–325.CrossRefGoogle Scholar
Schwaber, M. K., Neuroplasticity of the Adult Primate Auditory Cortex Following Cochlear Hearing Loss. Am. J. Otol., 1993. 14(3): pp. 252–258.Google ScholarPubMed
Seligmann, H., , L. Podoshin, , J. Ben-David, , M. Fradis, and , G. M., Drug-Induced Tinnitus and Other Hearing Disorders. Drug Safety, 1996. 14(3): pp. 198–212.CrossRefGoogle ScholarPubMed
Sessle, B. J., Recent Development in Pain Research: Central Mechanism of Orofacial Pain and Its Control. J. Endodon., 1986. 12: pp. 435–444.CrossRefGoogle Scholar
Sessle, B. J., Physiology of the Trigeminal System, in Trigeminal Neuralgia, , G. H. Fromm and , B. J. Sessle, Editors. 1991, Butterworth-Heinemann: Boston. pp. 71–104.Google Scholar
Sha, S. H. and , J. Schacht, Stimulation of Free Radical Formation by Aminoglycoside Antibiotics. Hear. Res., 1999. 128: pp. 112–118.CrossRefGoogle ScholarPubMed
Shambaugh, G. E., Surgery of the Endolymphatic Sac. Arch. Otol., 1966. 83: pp. 302.CrossRefGoogle ScholarPubMed
Shepherd, G. M., Neurobiology. 3rd ed. 1994, Oxford University Press: New York.Google Scholar
Shore, S. E., , D. A. Godfrey, , R. H. Helfert, , R. A. Altschuler, and , S. C. Bledsoe, Connections between the Cochlear Nuclei in Guinea Pig. Hear. Res., 1992. 62(1): pp. 16–26.CrossRefGoogle ScholarPubMed
Shore, S. E., , Z. Vass, , N. L. Wys, and , R. A. Altschuler, Trigeminal Ganglion Innervates the Auditory Brainstem. J Comp. Neurol., 2000. 419(3): pp. 271–285.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Sie, K. C. Y. and , E. W. Rubel, Rapid Changes in Protein Synthesis and Cell Size in the Cochlear Nucleus Following Eighth Nerve Activity Blockade and Cochlea Ablation. J. Comp. Neurol., 1992. 320: pp. 501–508.CrossRefGoogle ScholarPubMed
Silverstein, H., , H. Norrell, , T. Haberkamp, and , A. B. McDaniel, The Unrecognized Rotation of the Vestibular and Cochlear Nerves from the Labyrinth to the Brain Stem: Its Implications to Surgery of the Eighth Cranial Nerve. Otolaryngol Head Neck Surg, 1986. 95: pp. 543–549.CrossRefGoogle ScholarPubMed
Silverstein, H., , J. Arruda, , S. I. Rosenberg, , D. Deems, and , T. O. Hester, Direct Round Window Membrane Application of Gentamicin in the Treatment of Ménière's Disease. Otolaryngol. Head & Neck Surg., 1999. 120(5): pp. 649–55.CrossRefGoogle ScholarPubMed
Simpson, J. J. and , E. Davies, Recent Advances in the Pharmacological Treatment of Tinnitus. Trends Pharmacol. Sci., 1999. 20: pp. 12–18.CrossRefGoogle ScholarPubMed
Song, B. B., , S. H. Sha, and , J. Schacht, Iron Chelators Protect from Aminoglycoside-Induced Cochleo- and Vestibulotoxitity in Guinea Pig. Free Rad. Biol. Med., 1998. 25: pp. 189–195.CrossRefGoogle Scholar
Soros, P., , O. Vo, , I. W. Husstedt, , S. Evers, and , H. Gerding, Phantom Eye Syndrome: Its Prevalence, Phenomenology, and Putative Mechanisms. Neurology, 2003. 60(9): pp. 1542–3.CrossRefGoogle ScholarPubMed
Spangler, K. M., , N. B. Cant, , C. K. Henkel, , G. R. Farley, and , W. B. Warr, Descending Projections from the Superior Olivary Complex to the Cochlear Nucleus of the Cat. J. Comp. Neurol., 1987. 259: pp. 452–465.CrossRefGoogle ScholarPubMed
Spencer, R. F., , W. T. Shaia, , A. T. Gleason, A. Sismanis, and S. M. Shapiro, Changes in Calcium-Binding Protein Expression in the Auditory Brainstem Nuclei of the Jaundiced Gunn Rat. Hear. Res., 2002. 171: pp. 129–141.CrossRefGoogle Scholar
Spoendlin, H., Structural Basis of Peripheral Frequency Analysis, in Frequency Analysis and Periodicity Detection in Hearing, , R. Plomp and , G. F. Smoorenburg, Editors. 1970, A. W. Sijthoff: Leiden. pp. 2–36.Google Scholar
Spoendlin, H., Anatomical Changes Following Noise Exposure, in Effects of Noise on Hearing, , D. Henderson, et al., Editors. 1976, Raven Press: New York.Google Scholar
Spoendlin, H. and , A. Schrott, Analysis of the Human Auditory Nerve. Hear. Res., 1989. 43: pp. 25–38.CrossRefGoogle ScholarPubMed
Spoor, A., Presbycusis Values in Relation to Noise Induced Hearing Loss. Int. Audiol., 1967. 6: pp. 48–57.CrossRefGoogle Scholar
Starr, A., , T. W. Picton, , Y. Sininger, , L. J. Hood, and , C. I. Berlin, Auditory Neuropathy. Brain, 1996. 119: pp. 741–53.CrossRefGoogle ScholarPubMed
Starzl, T. E. and , H. W. Magoun, Organization of the Diffuse Thalamic Projection System. J. Neurophysiol, 1951. 14: pp. 133–146.CrossRefGoogle ScholarPubMed
Starzl, T. E. and , D. G. Witlock, Diffuse Thalamic Projection System in the Monkey. J. Neurophysiol., 1952. 15: pp. 449–468.CrossRefGoogle ScholarPubMed
Stein, B. E., , M. W. Wallace, , T. R. Stanford, and , W. Jiang, Cortex Governs Multisensory Integration in the Midbrain. Neuroscientist, 2002. 8(4): pp. 306–14.CrossRefGoogle ScholarPubMed
Syka, J., , N. Rybalko, and , J. Popelar, Enhancement of the Auditory Cortex Evoked Responses in Awake Guinea Pigs after Noise Exposure. Hear. Res., 1994. 78: pp. 158–168.CrossRefGoogle ScholarPubMed
Syka, J., , J. Popelar, and , E. Kvasnak, Response Properties of Neurons in the Central Nucleus and External and Dorsal Cortices of the Inferior Colliculus in Guinea Pig. Exp. Brain Res., 2000. 133: pp. 254–266.CrossRefGoogle ScholarPubMed
Syka, J., Plastic Changes in the Central Auditory System after Hearing Loss, Restoration of Function, and During Learning. Physiol Rev, 2002. 82(3): pp. 601–36.CrossRefGoogle ScholarPubMed
Szczepaniak, W. S. and , A. R. Møller, Interaction between Auditory and Somatosensory Systems: A Study of Evoked Potentials in the Inferior Colliculus. Electroencephologr. Clin. Neurophysiol., 1993. 88: pp. 508–515.CrossRefGoogle ScholarPubMed
Szczepaniak, W. S. and , A. R. Møller, Effects of (-)-Baclofen, Clonazepam, and Diazepam on Tone Exposure-Induced Hyperexcitability of the Inferior Colliculus in the Rat: Possible Therapeutic Implications for Pharmacological Management of Tinnitus and Hyperacusis. Hear. Res., 1996. 97: pp. 46–53.Google ScholarPubMed
Szczepaniak, W. S. and , A. R. Møller, Evidence of Neuronal Plasticity within the Inferior Colliculus after Noise Exposure: A Study of Evoked Potentials in the Rat. Electroenceph. Clin. Neurophysiol., 1996. 100: pp. 158–164.CrossRefGoogle ScholarPubMed
Terayama, Y., , Y. Ishibe, and , J. Matsushima, Rapidly Progressive Sensorineural Hearing Loss. Acta Oto Laryng Suppl 456, 1988: pp. 43–48.CrossRefGoogle ScholarPubMed
Turner, J. G. and , J. F. Willott, Exposure to an Augmented Acoustic Environment Alters Auditory Function in Hearing-Impaired DBA/2j Mice. Hear. Res., 1998. 118: pp. 101–113.CrossRefGoogle Scholar
Ungerleider, L. G. and , J. V. Haxby, “What” and “Where” in the Human Brain. Curr. Opin. Neurobiol., 1994. 4: pp. 157–165.CrossRefGoogle ScholarPubMed
Vernon, J., The Loudness of Tinnitus. Hear Speech Action, 1976. 44: pp. 17–19.Google Scholar
Wahlig, J. B., , A. M. Kaufmann, , J. Balzer, , T. J. Lovely, and , P. J. Jannetta, Intraoperative Loss of Auditory Function Relieved by Microvascular Decompression of the Cochlear Nerve. Can J Neurol Sci., 1999. 26(1): pp. 44–7.Google ScholarPubMed
Wall, P. D., The Presence of Ineffective Synapses and Circumstances Which Unmask Them. Phil. Trans. Royal Soc. (Lond.), 1977. 278: pp. 361–372.CrossRefGoogle Scholar
Warr, W. B., Organization of Olivocochlear Systems in Mammals, in The Mammalian Auditory Pathway: Neuroanatomy, , D. B. Webster, , A. N. Popper, and , R. R. Fay, Editors. 1992, Springer-Verlag: New York.Google Scholar
Warren, E. H. and , M. C. Liberman, Effects of Contralateral Sound on Auditory-Nerve Responses. I. Contributions of Cochlear Efferents. Hear. Res., 1989. 37: pp. 89–104.CrossRefGoogle ScholarPubMed
Warrick, J. W., Stellate Ganglion Block in the Treatment of Ménière's Disease and in the Symptomatic Relief of Tinnitus. Br. J. Otol., 1969. 41: pp. 699–702.Google ScholarPubMed
Whitaker, S., Idiopathic Sudden Hearing Loss. Am. J. Otol., 1980. 1: pp. 180–3.Google ScholarPubMed
Willott, J. F. and , S. M. Lu, Noise Induced Hearing Loss Can Alter Neural Coding and Increase Excitability in the Central Nervous System. Science, 1981. 16: pp. 1331–1332.Google Scholar
Willott, J. F., Neurogerontology. 1999, Springer Publishing Company: New York.Google Scholar
Willott, J. F., , J. G. Turner, and , V. S. Sundin, Effects of Exposure to an Augmented Acoustic Environment on Auditory Function in Mice: Roles of Hearing Loss and Age During Treatment. Hear. Res., 2000. 142: pp. 79–88.CrossRefGoogle Scholar
Willott, J. F., , T. H. Chisolm, and , J. J. Lister, Modulation of Presbycusis: Current Status and Future Directions. Audiol. Neurotol., 2001. 6: pp. 231–249.CrossRefGoogle ScholarPubMed
Winer, J. A., , D. T. Larue, , J. J. Diehl, and , B. J. Hefti, Auditory Cortical Projections to the Cat Inferior Colliculus. J. Comp. Neurol., 1998. 400(2): pp. 147–74.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Winer, J. A., , J. J. Diehl, and , D. T. Larue, Projections of Auditory Cortex to the Medial Geniculate Body of the Cat. J. Comp. Neurol., 2001. 430(1): pp. 27–55.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Wladislavorsky-Wasserman, P., , G. W. Facer, , B. Mokri, and , L. T. Kurland, Ménière's Disease: A 30 Year Epidemiologic and Clinical Study in Rochester, MN, 1951–1980. Laryngoscope, 1984. 94: pp. 1098–1102.Google Scholar
Wu, W. J., , S. H. Sha, , J. D. McLaren, , K. Kawamoto, , Y. Raphael, and , J. Schacht, Aminoglycoside Ototoxicity in Adult CBA, C57BL and BALB Mice and the Sprague-Dawley Rat. Hear. Res., 2001. 158: pp. 165–178.CrossRefGoogle ScholarPubMed
Wu, W. J., , S. H. Sha, and , J. Schacht, Recent Advances in Understanding Aminoglycoside Ototoxicity and Its Prevention. Audiol. Neurootol., 2002. 7(171–4).CrossRefGoogle ScholarPubMed
Yoshida, M., , A. Rabin, and , A. Anderson, Monosynaptic Inhibition of Pallidal Neurons by Axon Collaterals of Caudatonigral Fibers. Exp. Brain Res, 1972. 15: pp. 33–347.CrossRefGoogle Scholar
Yoshida, N. and , M. C. Liberman, Sound Conditioning Reduces Noise-Induced Permanent Threshold Shift in Mice. Hear. Res., 2000. 148: pp. 213–219.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Sensory systems
  • Aage R. Møller, University of Texas, Dallas
  • Book: Neural Plasticity and Disorders of the Nervous System
  • Online publication: 08 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616228.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Sensory systems
  • Aage R. Møller, University of Texas, Dallas
  • Book: Neural Plasticity and Disorders of the Nervous System
  • Online publication: 08 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616228.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Sensory systems
  • Aage R. Møller, University of Texas, Dallas
  • Book: Neural Plasticity and Disorders of the Nervous System
  • Online publication: 08 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616228.004
Available formats
×