Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T03:32:09.768Z Has data issue: false hasContentIssue false

20 - Disorders of the feto-maternal unit

from Section VIII - Miscellaneous

Published online by Cambridge University Press:  05 February 2013

Pedro de Alarcón
Affiliation:
University of Illinois College of Medicine
Eric Werner
Affiliation:
Children's Hospital of the King's Daughters
Robert D. Christensen
Affiliation:
McKay-Dee Hospital, Utah
Get access

Summary

Introduction

The fetal–placental–maternal unit can produce significant abnormalities in the neonate’s hematologic health at birth. A newborn can have disorders in white blood cells, red blood cells, or platelets, or any combination thereof. Neonatal cytopenias can result from dilution, peripheral destruction, or a defect in cellular production (1). Maternal illness can be the cause of such abnormalities (Table 20.1). Close communication between the obstetrical provider and the pediatrician is important. This can allow for anticipation of a problem in order to mitigate the consequences, or to discover the cause if an unexpected cytopenia is detected.

Thrombocytopenia

While only 1%–5% of all neonates will have a platelet count below 150 000/µL, as many as 35% of infants admitted to the neonatal intensive care unit will have this finding (2). The most common cause of early onset thrombocytopenia is chronic fetal hypoxemia such as with intrauterine pre-eclampsia and its variants, and uncontrolled diabetes. This type of thrombocytopenia is usually self-limited and mild and results from a bone marrow effect with a resulting decrease in megakaryocytes.

Additional causes related to the maternal fetal unit include immune-mediated disorders such as neonatal alloimmune thrombocytopenia caused by isoimmunization of the mother against specific platelet antigens. Mothers with autoantibodies against platelet antigens can pass those antibodies transplacentally to the infant, resulting in neonatal thrombocytopenia. Other causes include intrauterine infections and neonatal sepsis.

Type
Chapter
Information
Neonatal Hematology
Pathogenesis, Diagnosis, and Management of Hematologic Problems
, pp. 337 - 368
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rivers, A, Slayton, WB. Congenital cytopenias and bone marrow failure syndromes. Semin Perinatol 2009;33:20–8.CrossRefGoogle ScholarPubMed
Roberts, I, Stanworth, S, Murray, NA. Thrombocytopenia in the neonate. Blood Rev 2008;22:173–86.CrossRefGoogle ScholarPubMed
Aher, S, Malwatkar, K, Kadam, S. Neonatal anemia. Semin Fetal Neonatal Med 2008;13:239–47.CrossRefGoogle ScholarPubMed
Christensen, RD, Calhoun, DA. Congenital neutropenia. Clin Perinatol 2004;31:29–38.CrossRefGoogle ScholarPubMed
Crane, JM, van den Hof, MC, Dodds, L, Armson, BA, Liston, R. Neonatal outcomes with placenta previa. Obst Gynecol 1999;93:541–4.Google ScholarPubMed
Faxelius, G, Raye, J, Gutberlet, R, et al. Red cell volume measurements and acute blood loss in high-risk newborn infants. J Pediatr 1977;90:273–81.CrossRefGoogle ScholarPubMed
McShane, PM, Heyl, PS, Epstein, MF. Maternal and perinatal morbidity resulting from placenta previa. Obstet Gynecol 1985;65:176–82.Google ScholarPubMed
Lubin, B. Neonatal anaemia secondary to blood loss. Clin Haematol 1978;7:19–34.Google ScholarPubMed
Oyelese, Y, Smulian, JC. Placenta previa, placenta accreta, and vasa previa. Obstet Gynecol 2006;107:927–41.CrossRefGoogle ScholarPubMed
Walker, C, Ward, J. Intrapartum umbilical cord rupture. Obstet Gynecol 2009;113:552–4.CrossRefGoogle ScholarPubMed
Tabor, A, Bang, J, Norgaard-Pedersen, B. Feto-maternal haemorrhage associated with genetic amniocentesis: results of a randomized trial. Br J Obstet Gynaecol 1987;94:528–34.CrossRefGoogle ScholarPubMed
Linderkamp, O, Versmold, HT, Strohhacker, I, Messow-Zahn, K, Riegel, KP, Betke, K. Capillary-venous hematocrit differences in newborn infants. I. Relationship to blood volume, peripheral blood flow, and acid base parameters. Eur J Pediatr 1977;127:9–14.CrossRefGoogle ScholarPubMed
Jorgensen, J. Feto-maternal bleeding. During pregnancy and at delivery. Acta Obstet Gynecol Scand 1977;56:487–90.CrossRefGoogle ScholarPubMed
Sebring, ES, Polesky, HF. Fetomaternal hemorrhage: incidence, risk factors, time of occurrence, and clinical effects. Transfusion 1990;30:344–57.CrossRefGoogle ScholarPubMed
Rubod, C, Deruelle, P, Le Goueff, F, Tunez, V, Fournier, M, Subtil, D. Long-term prognosis for infants after massive fetomaternal hemorrhage. Obstet Gynecol 2007;110:256–60.CrossRefGoogle ScholarPubMed
Huissoud, C, Divry, V, Dupont, C, Gaspard, M, Rudigoz, RC. Large fetomaternal hemorrhage: prenatal predictive factors for perinatal outcome. Am J Perinatol 2009;26:227–33.CrossRefGoogle ScholarPubMed
Laube, DW, Schauberger, CW. Fetomaternal bleeding as a cause for unexplained fetal death. Obstet Gynecol 1982;60:649–51.Google ScholarPubMed
Catalano, PM, Capeless, EL. Fetomaternal bleeding as a cause of recurrent fetal morbidity and mortality. Obstet Gynecol 1990;76:972–3.Google ScholarPubMed
Downing, GJ, Kilbride, HW, Yeast, JD. Nonimmune hydrops fetalis caused by a massive fetomaternal hemorrhage associated with elevated maternal serum alpha-fetoprotein levels. A case report. J Reprod Med 1990;35:444–6.Google ScholarPubMed
Duckett, JR, Constantine, G. The Kleihauer technique: an accurate method of quantifying fetomaternal haemorrhage?Br J Obstet Gynaecol 1997;104:845–6.CrossRefGoogle ScholarPubMed
Davis, BH, Olsen, S, Bigelow, NC, Chen, JC. Detection of fetal red cells in fetomaternal hemorrhage using a fetal hemoglobin monoclonal antibody by flow cytometry. Transfusion 1998;38:749–56.CrossRefGoogle ScholarPubMed
Fernandes, BJ, von Dadelszen, P, Fazal, I, Bansil, N, Ryan, G. Flow cytometric assessment of feto-maternal hemorrhage; a comparison with Betke–Kleihauer. Prenat Diagn 2007;27:641–3.CrossRefGoogle ScholarPubMed
Savithrisowmya, S, Singh, M, Kriplani, A, Agarwal, N, Mehra, NK, Bhatla, N. Assessment of fetomaternal hemorrhage by flow cytometry and Kleihauer–Betke test in Rh-negative pregnancies. Gynecol Obstet Invest 2008;65:84–8.CrossRefGoogle ScholarPubMed
Cunningham, FG, Leveno, K, Bloom, SL, Hauth, JC, Gilstrap, LC III, Wenstrom, KD, eds. Diseases and injuries of the fetus and newborn. Williams Obstetrics, 22e; McGraw, 2005.Google Scholar
Alter, BP, Weiner, MA, Harris, MB. Erythrocyte characteristics in childhood acute leukemia. Am J Pediatr Hematol Oncol 1989;11:8–15.CrossRefGoogle ScholarPubMed
Whitecar, PW, Moise, KJ, Jr. Sonographic methods to detect fetal anemia in red blood cell alloimmunization. Obstet Gynecol Surv 2000;55:240–50.CrossRefGoogle ScholarPubMed
Tsuda, H, Matsumoto, M, Sutoh, Y, Hidaka, A, Imanaka, M, Miyazaki, A. Massive fetomaternal hemorrhage. Int J Gynaecol Obstet 1995;50:47–9.CrossRefGoogle ScholarPubMed
Kecskes, Z. Large fetomaternal hemorrhage: clinical presentation and outcome. J Matern Fetal Neonatal Med 2003;13:128–32.CrossRefGoogle ScholarPubMed
Lopriore, E, Oepkes, D. Fetal and neonatal haematological complications in monochorionic twins. Semin Fetal Neonatal Med 2008;13:231–8.CrossRefGoogle ScholarPubMed
Habli, M, Lim, FY, Crombleholme, T.Twin-to-twin transfusion syndrome: a comprehensive update. Clin Perinatol 2009;36:391–416, x.CrossRefGoogle ScholarPubMed
Robyr, R, Lewi, L, Salomon, LJ, et al. Prevalence and management of late fetal complications following successful selective laser coagulation of chorionic plate anastomoses in twin-to-twin transfusion syndrome. Am J Obstet Gynecol 2006;194:796–803.CrossRefGoogle ScholarPubMed
Fesslova, V, Villa, L, Nava, S, Mosca, F, Nicolini, U. Fetal and neonatal echocardiographic findings in twin–twin transfusion syndrome. Am J Obstet Gynecol 1998;179:1056–62.CrossRefGoogle ScholarPubMed
Scott, F, Evans, N. Distal gangrene in a polycythemic recipient fetus in twin–twin transfusion. Obstet Gynecol 1995;86:677–9.CrossRefGoogle Scholar
Dawkins, RR, Marshall, TL, Rogers, MS. Prenatal gangrene in association with twin–twin transfusion syndrome. Am J Obstet Gynecol 1995;172:1055–7.CrossRefGoogle ScholarPubMed
Broadbent, RS. Recipient twin limb ischemia with postnatal onset. J Pediatr 2007;150:207–9.CrossRefGoogle ScholarPubMed
Bowden, JB, Hebert, AA, Rapini, RP. Dermal hematopoiesis in neonates: report of five cases. J Am Acad Dermatol 1989;20:1104–10.CrossRefGoogle ScholarPubMed
Schwartz, JL, Maniscalco, WM, Lane, AT, Currao, WJ. Twin transfusion syndrome causing cutaneous erythropoiesis. Pediatrics 1984;74:527–9.Google ScholarPubMed
Koenig, JM, Hunter, DD, Christensen, RD. Neutropenia in donor (anemic) twins involved in the twin–twin transfusion syndrome. J Perinatol 1991;11:355–8.Google ScholarPubMed
Pietrantoni, M, Stewart, DL, Ssemakula, N, Maxfield, C, Wills-Frank, L, Bendon, RW. Mortality conference: twin-to-twin transfusion. J Pediatr 1998;132:1071–6.CrossRefGoogle ScholarPubMed
Rainey, KE, DiGeronimo, RJ, Pascual-Baralt, J.Successful long-term peritoneal dialysis in a very low birth weight infant with renal failure secondary to feto-fetal transfusion syndrome. Pediatrics 2000;106:849–51.CrossRefGoogle Scholar
Blackwell, SC, Refuerzo, JS, Hassan, SS, Wolfe, HM, Berry, SM, Sorokin, Y. Nucleated red blood cell counts in term neonates with umbilical artery pH < or = 7.00. Am J Perinatol 2001;18:93–8.CrossRefGoogle ScholarPubMed
Martinelli, S, Francisco, RP, Bittar, RE, Zugaib, M. Hematological indices at birth in relation to arterial and venous Doppler in small-for-gestational-age fetuses. Acta Obstet Gynecol Scand 2009;88:888–93.CrossRefGoogle ScholarPubMed
Baschat, AA, Harman, CR, Gembruch, U. Haematological consequences of placental insufficiency. Arch Dis Child Fetal Neonatal Ed 2004;89:F94.CrossRefGoogle ScholarPubMed
Baschat, AA, Gungor, S, Kush, ML, Berg, C, Gembruch, U, Harman, CR. Nucleated red blood cell counts in the first week of life: a critical appraisal of relationships with perinatal outcome in preterm growth-restricted neonates. Am J Obstet Gynecol 2007;197:286 e1–8.CrossRefGoogle ScholarPubMed
Cordero, L, Landon, MB. Infant of the diabetic mother. Clin Perinatol 1993;20:635–48.CrossRefGoogle ScholarPubMed
Cowett, RM, Schwartz, R. The infant of the diabetic mother. Pediatr Clin North Am 1982;29:1213–31.CrossRefGoogle ScholarPubMed
Mimouni, F, Miodovnik, M, Siddiqi, TA, Butler, JB, Holroyde, J, Tsang, RC. Neonatal polycythemia in infants of insulin-dependent diabetic mothers. Obstet Gynecol 1986;68:370–2.CrossRefGoogle ScholarPubMed
Green, DW, Khoury, J, Mimouni, F. Neonatal hematocrit and maternal glycemic control in insulin-dependent diabetes. J Pediatr 1992;120:302–5.CrossRefGoogle ScholarPubMed
Stonestreet, BS, Goldstein, M, Oh, W, Widness, JA. Effects of prolonged hyperinsulinemia on erythropoiesis in fetal sheep. Am J Physiol 1989;257:R1199–204.Google ScholarPubMed
Perrine, SP, Greene, MF, Lee, PD, Cohen, RA, Faller, DV. Insulin stimulates cord blood erythroid progenitor growth: evidence for an aetiological role in neonatal polycythaemia. Br J Haematol 1986;64:503–11.CrossRefGoogle ScholarPubMed
Widness, JA, Teramo, KA, Clemons, GK, et al. Direct relationship of antepartum glucose control and fetal erythropoietin in human type 1 (insulin-dependent) diabetic pregnancy. Diabetologia 1990;33:378–83.CrossRefGoogle ScholarPubMed
Widness, JA, Susa, JB, Garcia, JF, et al. Increased erythropoiesis and elevated erythropoietin in infants born to diabetic mothers and in hyperinsulinemic rhesus fetuses. J Clin Invest 1981;67:637–42.CrossRefGoogle ScholarPubMed
Shannon, K, Davis, JC, Kitzmiller, JL, Fulcher, SA, Koenig, HM. Erythropoiesis in infants of diabetic mothers. Pediatr Res 1986;20:161–5.CrossRefGoogle ScholarPubMed
Green, DW, Mimouni, F. Nucleated erythrocytes in healthy infants and in infants of diabetic mothers [see comments]. J Pediatr 1990;116:129–31.CrossRefGoogle Scholar
Green, DW, Mimouni, F, Khoury, J. Decreased platelet counts in infants of diabetic mothers. Am J Perinatol 1995;12:102–5.CrossRefGoogle ScholarPubMed
Perrine, SP, Greene, MF, Faller, DV. Delay in the fetal globin switch in infants of diabetic mothers. N Engl J Med 1985;312:334–8.CrossRefGoogle ScholarPubMed
Bard, H, Prosmanne, J. Relative rates of fetal hemoglobin and adult hemoglobin synthesis in cord blood of infants of insulin-dependent diabetic mothers. Pediatrics 1985;75:1143–7.Google ScholarPubMed
Lesser, KB, Schoel, SB, Kling, PJ. Elevated zinc protoporphyrin/heme ratios in umbilical cord blood after diabetic pregnancy. J Perinatol 2006;26:671–6.CrossRefGoogle ScholarPubMed
Oppenheimer, EH, Esterly, JR. Thrombosis in the newborn: comparison between infants of diabetic and nondiabetic mothers. J Pediatr 1965;67:549–56.CrossRefGoogle ScholarPubMed
Lau, KK, Stoffman, JM, Williams, S, et al. Neonatal renal vein thrombosis: review of the English-language literature between 1992 and 2006. Pediatrics 2007;120:e1278–84.CrossRefGoogle ScholarPubMed
Van Allen, MI, Jackson, JC, Knopp, RH, Cone, R. In utero thrombosis and neonatal gangrene in an infant of a diabetic mother. Am J Med Genet 1989;33:323–7.CrossRefGoogle Scholar
Hathaway, WE, Mahasandana, C, Makowski, EL. Cord blood coagulation studies in infants of high-risk pregnant women. Am J Obstet Gynecol 1975;121:51–7.CrossRefGoogle ScholarPubMed
Stuart, MJ, Elrad, H, Graeber, JE, Hakanson, DO, Sunderji, SG, Barvinchak, MK. Increased synthesis of prostaglandin endoperoxides and platelet hyperfunction in infants of mothers with diabetes mellitus. J Lab Clin Med 1979;94:12–26.Google ScholarPubMed
Stuart, MJ, Sunderji, SG, Allen, JB. Decreased prostacyclin production in the infant of the diabetic mother. J Lab Clin Med 1981;98:412–16.Google ScholarPubMed
Sarkar, S, Hagstrom, NJ, Ingardia, CJ, Lerer, T, Herson, VC. Prothrombotic risk factors in infants of diabetic mothers. J Perinatol 2005;25:134–8.CrossRefGoogle ScholarPubMed
Easa, D, Coen, RW. Coagulation studies in infants of diabetic mothers. Am J Dis Child 1979;133:851–2.Google ScholarPubMed
Ambrus, CM, Ambrus, JL, Courey, N, et al. Inhibitors of fibrinolysis in diabetic children, mothers, and their newborn. Am J Hematol 1979;7:245–54.CrossRefGoogle ScholarPubMed
Fonseca, VA, Reynolds, T, Fink, LM. Hyperhomocysteinemia and microalbuminuria in diabetes. Diabetes Care 1998;21:1028.CrossRefGoogle ScholarPubMed
Mehta, R, Petrova, A. Neutrophil function in neonates born to gestational diabetic mothers. J Perinatol 2005;25:178–81.CrossRefGoogle ScholarPubMed
Lapolla, A, Sanzari, MC, Zancanaro, F, et al. A study on lymphocyte subpopulation in diabetic mothers at delivery and in their newborn. Diabetes Nutr Metab 1999;12:394–9.Google ScholarPubMed
ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet Gynecol 2002;99:159–67.Google Scholar
Manroe, BL, Weinberg, AG, Rosenfeld, CR, Browne, R. The neonatal blood count in health and disease. I. Reference values for neutrophilic cells. J Pediatr 1979;95:89–98.CrossRefGoogle ScholarPubMed
Engle, WD, Rosenfeld, CR. Neutropenia in high-risk neonates. J Pediatr 1984;105:982–6.CrossRefGoogle ScholarPubMed
Mouzinho, A, Rosenfeld, CR, Sanchez, PJ, Risser, R. Effect of maternal hypertension on neonatal neutropenia and risk of nosocomial infection. Pediatrics 1992;90:430–5.Google ScholarPubMed
Koenig, JM, Christensen, RD. Incidence, neutrophil kinetics, and natural history of neonatal neutropenia associated with maternal hypertension. N Engl J Med 1989;321:557–62.CrossRefGoogle ScholarPubMed
Doron, MW, Makhlouf, RA, Katz, VL, Lawson, EE, Stiles, AD. Increased incidence of sepsis at birth in neutropenic infants of mothers with preeclampsia. J Pediatr 1994;125:452–8.CrossRefGoogle ScholarPubMed
Christensen, RD, Henry, E, Wiedmeier, SE, Stoddard, RA, Lambert, DK. Low blood neutrophil concentrations among extremely low birth weight neonates: data from a multihospital health-care system. J Perinatol 2006;26:682–7.CrossRefGoogle ScholarPubMed
Teng, RJ, Wu, TJ, Garrison, RD, Sharma, R, Hudak, ML. Early neutropenia is not associated with an increased rate of nosocomial infection in very low-birth-weight infants. J Perinatol 2009;29:219–24.CrossRefGoogle Scholar
Sharma, G, Nesin, M, Feuerstein, M, Bussel, JB. Maternal and neonatal characteristics associated with neonatal neutropenia in hypertensive pregnancies. Am J Perinatol 2009;26:683–9.CrossRefGoogle ScholarPubMed
Gray, PH, Rodwell, RL. Neonatal neutropenia associated with maternal hypertension poses a risk for nosocomial infection. Eur J Pediatr 1999;158:71–3.CrossRefGoogle ScholarPubMed
Saini, H, Puppala, BL, Angst, D, Gilman-Sachs, A, Costello, M. Upregulation of neutrophil surface adhesion molecules in infants of pre-eclamptic women. J Perinatol 2004;24:208–12.CrossRefGoogle ScholarPubMed
Stoll, BJ, Hansen, N. Infections in VLBW infants: studies from the NICHD Neonatal Research Network. Semin Perinatol 2003;27:293–301.CrossRefGoogle ScholarPubMed
Makhlouf, RA, Doron, MW, Bose, CL, Price, WA, Stiles, AD. Administration of granulocyte colony-stimulating factor to neutropenic low birth weight infants of mothers with preeclampsia. J Pediatr 1995;126:454–6.CrossRefGoogle ScholarPubMed
Carr, R, Modi, N, Dore, C.G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst Rev 2003:CD003066.CrossRefGoogle ScholarPubMed
Chakravorty, S, Murray, N, Roberts, I. Neonatal thrombocytopenia. Early Hum Dev 2005;81:35–41.CrossRefGoogle ScholarPubMed
Brazy, JE, Grimm, JK, Little, VA. Neonatal manifestations of severe maternal hypertension occurring before the thirty-sixth week of pregnancy. J Pediatr 1982;100:265–71.CrossRefGoogle ScholarPubMed
Bhat, YR, Cherian, CS. Neonatal thrombocytopenia associated with maternal pregnancy induced hypertension. Indian J Pediatr 2008;75:571–3.CrossRefGoogle ScholarPubMed
McPherson, RJ, Juul, S. Patterns of thrombocytosis and thrombocytopenia in hospitalized neonates. J Perinatol 2005;25:166–72.CrossRefGoogle ScholarPubMed
Christensen, RD, Henry, E, Wiedmeier, SE, et al. Thrombocytopenia among extremely low birth weight neonates: data from a multihospital healthcare system. J Perinatol 2006;26:348–53.CrossRefGoogle ScholarPubMed
Raval, DS, Co, S, Reid, MA, Pildes, R. Maternal and neonatal outcome of pregnancies complicated with maternal HELLP syndrome. J Perinatol 1997;17:266–9.Google ScholarPubMed
Singhal, N, Amin, HJ, Pollard, JK, et al. Maternal haemolysis, elevated liver enzymes and low platelets syndrome: perinatal and neurodevelopmental neonatal outcomes for infants weighing less than 1250 g. J Paediatr Child Health 2004;40:121–6.CrossRefGoogle ScholarPubMed
Dotsch, J, Hohmann, M, Kuhl, PG. Neonatal morbidity and mortality associated with maternal haemolysis elevated liver enzymes and low platelets syndrome. Eur J Pediatr 1997;156:389–91.Google ScholarPubMed
Tsao, PN, Wei, SC, Su, YN, Chou, HC, Chen, CY, Hsieh, WS. Excess soluble fms-like tyrosine kinase 1 and low platelet counts in premature neonates of preeclamptic mothers. Pediatrics 2005;116:468–72.CrossRefGoogle ScholarPubMed
Tsao, PN, Teng, RJ, Chou, HC, Tsou, KI. The thrombopoietin level in the cord blood in premature infants born to mothers with pregnancy-induced hypertension. Biol Neonate 2002;82:217–21.CrossRefGoogle ScholarPubMed
Kurlat, I, Sola, A. Neonatal polycythemia in appropriately grown infants of hypertensive mothers. Acta Paediatr 1992;81:662–4.CrossRefGoogle ScholarPubMed
Silverman, ED, Laxer, RM. Neonatal lupus erythematosus. Rheum Dis Clin North Am 1997;23:599–618.CrossRefGoogle ScholarPubMed
Zuppa, AA, Fracchiolla, A, Cota, F, et al. Infants born to mothers with anti-SSA/Ro autoantibodies: neonatal outcome and follow-up. Clin Pediatr (Phila) 2008;47:231–6.CrossRefGoogle ScholarPubMed
Watson, R, Kang, JE, May, M, Hudak, M, Kickler, T, Provost, TT. Thrombocytopenia in the neonatal lupus syndrome. Arch Dermatol 1988;124:560–3.CrossRefGoogle ScholarPubMed
Neiman, AR, Lee, LA, Weston, WL, Buyon, JP. Cutaneous manifestations of neonatal lupus without heart block: characteristics of mothers and children enrolled in a national registry. J Pediatr 2000;137:674–80.CrossRefGoogle Scholar
Hariharan, D, Manno, CS, Seri, I. Neonatal lupus erythematosus with microvascular hemolysis. J Pediatr Hematol Oncol 2000;22:351–4.CrossRefGoogle ScholarPubMed
Brewster, JA, Shaw, NJ, Farquharson, RG. Neonatal and pediatric outcome of infants born to mothers with antiphospholipid syndrome. J Perinat Med 1999;27:183–7.CrossRefGoogle ScholarPubMed
Contractor, S, Hiatt, M, Kosmin, M, Kim, HC. Neonatal thrombosis with anticardiolipin antibody in baby and mother. Am J Perinatol 1992;9:409–10.CrossRefGoogle Scholar
Tabbutt, S, Griswold, WR, Ogino, MT, Mendoza, AE, Allen, JB, Reznik, VM. Multiple thromboses in a premature infant associated with maternal phospholipid antibody syndrome. J Perinatol 1994;14:66–70.Google Scholar
Sheridan-Pereira, M, Porreco, RP, Hays, T, Burke, MS. Neonatal aortic thrombosis associated with the lupus anticoagulant. Obstet Gynecol 1988;71:1016–18.Google ScholarPubMed
Motta, M, Chirico, G, Rebaioli, CB, et al. Anticardiolipin and anti-beta2 glycoprotein I antibodies in infants born to mothers with antiphospholipid antibody-positive autoimmune disease: a follow-up study. Am J Perinatol 2006;23:247–51.CrossRefGoogle ScholarPubMed
Bick, RL. Antiphospholipid syndrome in pregnancy. Hematol Oncol Clin North Am 2008;22:107–20, vii.CrossRefGoogle ScholarPubMed
Azim, HA, Jr., Pavlidis, N, Peccatori, FA. Treatment of the pregnant mother with cancer: a systematic review on the use of cytotoxic, endocrine, targeted agents and immunotherapy during pregnancy. Part II: Hematological tumors. Cancer Treat Rev 2010;36:110–21.CrossRefGoogle ScholarPubMed
Waalen, J. Pregnancy poses tough questions for cancer treatment [news]. J Natl Cancer Inst 1991;83:900–2.CrossRefGoogle Scholar
Azim, HA, Jr., Peccatori, FA, Pavlidis, N. Treatment of the pregnant mother with cancer: a systematic review on the use of cytotoxic, endocrine, targeted agents and immunotherapy during pregnancy. Part I: Solid tumors. Cancer Treat Rev 2010;36:101–9.CrossRefGoogle ScholarPubMed
Doll, DC, Ringenberg, QS, Yarbro, JW. Management of cancer during pregnancy. Arch Intern Med 1988;148:2058–64.CrossRefGoogle ScholarPubMed
Leslie, KK, Koil, C, Rayburn, WF. Chemotherapeutic drugs in pregnancy. Obstet Gynecol Clin North Am 2005;32:627–40.CrossRefGoogle ScholarPubMed
Doll, DC, Ringenberg, QS, Yarbro, JW. Antineoplastic agents and pregnancy. Semin Oncol 1989;16:337–46.Google Scholar
Zemlickis, D, Klein, J, Moselhy, G, Koren, G. Cisplatin protein binding in pregnancy and the neonatal period. Med Pediatr Oncol 1994;23:476–9.CrossRefGoogle ScholarPubMed
Schapira, DV, Chudley, AE. Successful pregnancy following continuous treatment with combination chemotherapy before conception and throughout pregnancy. Cancer 1984;54:800–3.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Hahn, KM, Johnson, PH, Gordon, N, et al. Treatment of pregnant breast cancer patients and outcomes of children exposed to chemotherapy in utero. Cancer 2006;107:1219–26.CrossRefGoogle ScholarPubMed
Pereg, D, Koren, G, Lishner, M. Cancer in pregnancy: gaps, challenges and solutions. Cancer Treat Rev 2008;34:302–12.CrossRefGoogle ScholarPubMed
Buekers, TE, Lallas, TA. Chemotherapy in pregnancy. Obstet Gynecol Clin North Am 1998;25:323–9.CrossRefGoogle ScholarPubMed
Achtari, C, Hohlfeld, P. Cardiotoxic transplacental effect of idarubicin administered during the second trimester of pregnancy. Am J Obstet Gynecol 2000;183:511–12.CrossRefGoogle ScholarPubMed
Aviles, A, Niz, J. Long-term follow-up of children born to mothers with acute leukemia during pregnancy. Med Pediatr Oncol 1988;16:3–6.CrossRefGoogle ScholarPubMed
Hurley, TJ, McKinnell, JV, Irani, MS. Hematologic malignancies in pregnancy. Obstet Gynecol Clin North Am 2005;32:595–614.CrossRefGoogle ScholarPubMed
Sorosky, JI, Sood, AK, Buekers, TE. The use of chemotherapeutic agents during pregnancy. Obstet Gynecol Clin North Am 1997;24:591–9.CrossRefGoogle ScholarPubMed
Decker, M, Rothermundt, C, Hollander, G, Tichelli, A, Rochlitz, C. Rituximab plus CHOP for treatment of diffuse large B-cell lymphoma during second trimester of pregnancy. Lancet Oncol 2006;7:693–4.CrossRefGoogle ScholarPubMed
Aviles, A, Diaz-Maqueo, JC, Talavera, A, Guzman, R, Garcia, EL. Growth and development of children of mothers treated with chemotherapy during pregnancy: current status of 43 children. Am J Hematol 1991;36:243–8.CrossRefGoogle ScholarPubMed
Cardonick, E, Usmani, A, Ghaffar, S. Perinatal outcomes of a pregnancy complicated by cancer, including neonatal follow-up after in utero exposure to chemotherapy: results of an international registry. Am J Clin Oncol 2010;33:221–8.Google ScholarPubMed
Cardonick, E, Dougherty, R, Grana, G, Gilmandyar, D, Ghaffar, S, Usmani, A. Breast cancer during pregnancy: maternal and fetal outcomes. Cancer J 2010;16:76–82.CrossRefGoogle ScholarPubMed
Mayr, NA, Wen, BC, Saw, CB. Radiation therapy during pregnancy. Obstet Gynecol Clin North Am 1998;25:301–21.CrossRefGoogle ScholarPubMed
Luis, SA, Christie, DR, Kaminski, A, Kenny, L, Peres, MH. Pregnancy and radiotherapy: management options for minimising risk, case series and comprehensive literature review. J Med Imaging Radiat Oncol 2009;53:559–68.CrossRefGoogle ScholarPubMed
Brent, RL. The effect of embryonic and fetal exposure to x-ray, microwaves, and ultrasound: counseling the pregnant and nonpregnant patient about these risks. Semin Oncol 1989;16:347–68.Google ScholarPubMed
Pentheroudakis, G, Pavlidis, N. Cancer and pregnancy: poena magna, not anymore. Eur J Cancer 2006;42:126–40.CrossRefGoogle Scholar
Walker, JW, Reinisch, JF, Monforte, HL. Maternal pulmonary adenocarcinoma metastatic to the fetus: first recorded case report and literature review. Pediatr Pathol Mol Med 2002;21:57–69.CrossRefGoogle ScholarPubMed
Mountain, KR, Hirsh, J, Gallus, AS. Neonatal coagulation defect due to anticonvulsant drug treatment in pregnancy. Lancet 1970;1:265–8.CrossRefGoogle ScholarPubMed
Hey, E. Effect of maternal anticonvulsant treatment on neonatal blood coagulation. Arch Dis Child Fetal Neonatal Ed 1999;81:F208–10.CrossRefGoogle ScholarPubMed
Howe, AM, Oakes, DJ, Woodman, PD, Webster, WS. Prothrombin and PIVKA-II levels in cord blood from newborn exposed to anticonvulsants during pregnancy. Epilepsia 1999;40:980–4.CrossRefGoogle ScholarPubMed
Bleyer, WA, Breckenridge, RT. Studies on the detection of adverse drug reactions in the newborn. II. The effects of prenatal aspirin on newborn hemostasis. JAMA 1970;213:2049–53.CrossRefGoogle ScholarPubMed
Stuart, MJ, Gross, SJ, Elrad, H, Graeber, JE. Effects of acetylsalicylic-acid ingestion on maternal and neonatal hemostasis. N Engl J Med 1982;307:909–12.CrossRefGoogle ScholarPubMed
Duley, L, Henderson-Smart, DJ, Meher, S, King, JF. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev 2007:CD004659.CrossRefGoogle ScholarPubMed
Souter, D, Harding, J, McCowan, L, O’Donnell, C, McLeay, E, Baxendale, H. Antenatal indomethacin – adverse fetal effects confirmed. Aust N Z J Obstet Gynaecol 1998;38:11–16.CrossRefGoogle ScholarPubMed
Amin, SB, Sinkin, RA, Glantz, JC. Metaanalysis of the effect of antenatal indomethacin on neonatal outcomes. Am J Obstet Gynecol 2007;197: 486 e1–10.CrossRefGoogle Scholar
Greinacher, A, Eckhardt, T, Mussmann, J, Mueller-Eckhardt, C. Pregnancy complicated by heparin associated thrombocytopenia: management by a prospectively in vitro selected heparinoid (Org 10172). Thromb Res 1993;71:123–6.CrossRefGoogle Scholar
Newall, F, Johnston, L, Ignjatovic, V, Monagle, P. Unfractionated heparin therapy in infants and children. Pediatrics 2009;123:e510–18.CrossRefGoogle ScholarPubMed
Spadone, D, Clark, F, James, E, Laster, J, Hoch, J, Silver, D. Heparin-induced thrombocytopenia in the newborn. J Vasc Surg 1992;15:306–11; discussion 11–12.CrossRefGoogle ScholarPubMed
Bates, SM, Greer, IA, Pabinger, I, Sofaer, S, Hirsh, J. Venous thromboembolism, thrombophilia, antithrombotic therapy, and pregnancy: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th ed). Chest 2008;133:844S–86S.CrossRefGoogle Scholar
Lukens, JN. Neonatal haematological abnormalities associated with maternal disease. Clin Haematol 1978;7:155–73.Google ScholarPubMed
Beutler, E. Glucose-6-phosphate dehydrogenase: new perspectives. Blood 1989;73:1397–401.Google ScholarPubMed
Barak, M, Cohen, A, Herschkowitz, S. Total leukocyte and neutrophil count changes associated with antenatal betamethasone administration in premature infants. Acta Paediatr 1992;81:760–3.CrossRefGoogle ScholarPubMed
Anday, EK, Harris, MC. Leukemoid reaction associated with antenatal dexamethasone administration. J Pediatr 1982;101:614–16.CrossRefGoogle ScholarPubMed
Juul, SE, Haynes, JW, McPherson, RJ. Evaluation of neutropenia and neutrophilia in hospitalized preterm infants. J Perinatol 2004;24:150–7.CrossRefGoogle ScholarPubMed
Calhoun, DA, Kirk, JF, Christensen, RD. Incidence, significance, and kinetic mechanism responsible for leukemoid reactions in patients in the neonatal intensive care unit: a prospective evaluation. J Pediatr 1996;129:403–9.CrossRefGoogle ScholarPubMed
Hsiao, R, Omar, SA. Outcome of extremely low birth weight infants with leukemoid reaction. Pediatrics 2005;116:e43–51.CrossRefGoogle ScholarPubMed
Zanardo, V, Savio, V, Giacomin, C, Rinaldi, A, Marzari, F, Chiarelli, S. Relationship between neonatal leukemoid reaction and bronchopulmonary dysplasia in low-birth-weight infants: a cross-sectional study. Am J Perinatol 2002;19:379–86.CrossRefGoogle ScholarPubMed
Bengtsson, BO, Milstein, JM, Sherman, MP. Indomethacin-associated neutropenia with subsequent Gram-negative sepsis in a preterm infant. Cause or coincidence?J Perinatol 2006;26:381–3.CrossRefGoogle ScholarPubMed
Calhoun, DA, Rosa, C, Christensen, RD. Transplacental passage of recombinant human granulocyte colony-stimulating factor in women with an imminent preterm delivery. Am J Obstet Gynecol 1996;174:1306–11.CrossRefGoogle ScholarPubMed
Dale, DC, Cottle, TE, Fier, CJ, et al. Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol 2003;72:82–93.CrossRefGoogle ScholarPubMed
Stoltzfus, RJ. Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. Summary: implications for research and programs. J Nutr 2001;131:697S–700S; discussion S-1S.CrossRefGoogle ScholarPubMed
Looker, AC, Dallman, PR, Carroll, MD, Gunter, EW, Johnson, CL. Prevalence of iron deficiency in the United States. JAMA 1997;277:973–6.CrossRefGoogle ScholarPubMed
Strain, JJ, Thompson, KA, Barker, ME, Carville, DG. Iron sufficiency in the population of Northern Ireland: estimates from blood measurements. Br J Nutr 1990;64:219–24.CrossRefGoogle ScholarPubMed
Beard, JL. Effectiveness and strategies of iron supplementation during pregnancy. Am J Clin Nutr 2000;71:1288S–94S.CrossRefGoogle ScholarPubMed
Choi, JW, Kim, CS, Pai, SH. Erythropoietic activity and soluble transferrin receptor level in neonates and maternal blood. Acta Paediatr 2000;89:675–9.CrossRefGoogle ScholarPubMed
Brugnara, C, Zurakowski, D, DiCanzio, J, Boyd, T, Platt, O. Reticulocyte hemoglobin content to diagnose iron deficiency in children. JAMA 1999;281:2225–30.CrossRefGoogle ScholarPubMed
Milman, N, Bergholt, T, Byg, KE, Eriksen, L, Graudal, N. Iron status and iron balance during pregnancy. A critical reappraisal of iron supplementation. Acta Obstet Gynecol Scand 1999;78:749–57.CrossRefGoogle ScholarPubMed
Werner, EJ, Stockman, JA, 3rd. Red cell disturbances in the feto-maternal unit. Semin Perinatol 1983;7:139–58.Google ScholarPubMed
Allen, LH. Anemia and iron deficiency: effects on pregnancy outcome. Am J Clin Nutr 2000;71:1280S–4S.CrossRefGoogle ScholarPubMed
Chaparro, CM. Setting the stage for child health and development: prevention of iron deficiency in early infancy. J Nutr 2008;138:2529–33.CrossRefGoogle ScholarPubMed
Harthoorn-Lasthuizen, EJ, Lindemans, J, Langenhuijsen, MM. Does iron-deficient erythropoiesis in pregnancy influence fetal iron supply?Acta Obstet Gynecol Scand 2001;80:392–6.CrossRefGoogle ScholarPubMed
Preziosi, P, Prual, A, Galan, P, Daouda, H, Boureima, H, Hercberg, S. Effect of iron supplementation on the iron status of pregnant women: consequences for newborns. Am J Clin Nutr 1997;66:1178–82.CrossRefGoogle ScholarPubMed
Rao, R, Georgieff, MK. Iron in fetal and neonatal nutrition. Semin Fetal Neonatal Med 2007;12:54–63.CrossRefGoogle ScholarPubMed
Pickering, LK, Baker, CJ, Kimberlin, DW, Long, SS. Red Book: 2009 Report of the Committee on Infectious Diseases. 28 ed. Elk Grove, IL: American Academy of Pediatrics, 2009.Google Scholar
Hohlfeld, P, Daffos, F, Costa, JM, Thulliez, P, Forestier, F, Vidaud, M. Prenatal diagnosis of congenital toxoplasmosis with a polymerase-chain-reaction test on amniotic fluid. N Engl J Med 1994;331:695–9.CrossRefGoogle ScholarPubMed
Remington, JS, McLeod, R, Thulliez, P, Desmonts, G. Toxoplasmosis. In Remington, JS, Klein, JO, eds. Infectious Disease of the Fetus and Newborn. Philadelphia: W B Saunders Company, 2001.Google Scholar
Petersen, E. Toxoplasmosis. Semin Fetal Neonatal Med 2007;12:214–23.CrossRefGoogle ScholarPubMed
Guerina, NG, Hsu, HW, Meissner, HC, et al. Neonatal serologic screening and early treatment for congenital Toxoplasma gondii infection. The New England Regional Toxoplasma Working Group [see comments]. N Engl J Med 1994;330:1858–63.CrossRefGoogle Scholar
Romand, S, Wallon, M, Franck, J, Thulliez, P, Peyron, F, Dumon, H. Prenatal diagnosis using polymerase chain reaction on amniotic fluid for congenital toxoplasmosis. Obstet Gynecol 2001;97:296–300.Google ScholarPubMed
American Academy of Pediatrics. Committee on fetus and newborn. Committee on infectious diseases. In Pickering, LK, ed. Red Book: 2003 Report of the Committee on Infectious Disease. 26 ed. Elk Grove, IL: American Academy of Pediatrics, 2003:631–5.
Koskiniemi, M, Lappalainen, M, Hedman, K. Toxoplasmosis needs evaluation. Am J Dis Childh 1989;143:724–8.CrossRefGoogle ScholarPubMed
Alford, CA, Jr., Stagno, S, Reynolds, DW. Congenital toxoplasmosis: clinical, laboratory, and therapeutic considerations, with special reference to subclinical disease. Bull NY Acad Med 1974;50:160–81.Google ScholarPubMed
Barron, SD, Pass, RF. Infectious causes of hydrops fetalis. Semin Perinatol 1995;19:493–501.CrossRefGoogle ScholarPubMed
Hohlfeld, P, Forestier, F, Kaplan, C, Tissot, JD, Daffos, F. Fetal thrombocytopenia: a retrospective survey of 5,194 fetal blood samplings. Blood 1994;84:1851–6.Google ScholarPubMed
Hohlfeld, P, Forestier, F, Marion, S, Thulliez, P, Marcon, P, Daffos, F. Toxoplasma gondii infection during pregnancy: T lymphocyte subpopulations in mothers and fetuses. Pediatr Infect Dis J 1990;9:878–81.CrossRefGoogle ScholarPubMed
Ingall, D, Sanchez, PJ. Syphilis. In Remington, JW, Klein, JO, eds. Infectious Diseases of the Fetus and Newborn Infant. Philadelphia: WB Saunders Company, 2001:643–81.Google Scholar
Syphilis, . 2009. (Accessed 12–6–2009, 2009, at
Hurtig, AK, Nicoll, A, Carne, C, et al. Syphilis in pregnant women and their children in the United Kingdom: results from national clinician reporting surveys 1994–7. Br Med J 1998;317:1617–19.CrossRefGoogle ScholarPubMed
Sheffield, JS, Sanchez, PJ, Morris, G, et al. Congenital syphilis after maternal treatment for syphilis during pregnancy. Am J Obstet Gynecol 2002;186:569–73.CrossRefGoogle ScholarPubMed
Woods, CR. Congenital syphilis-persisting pestilence. Pediatr Infect Dis J 2009;28:536–7.CrossRefGoogle ScholarPubMed
Mavrov, GI, Goubenko, TV. Clinical and epidemiological features of syphilis in pregnant women: the course and outcome of pregnancy. Gynecol Obstet Invest 2001;52:114–18.CrossRefGoogle ScholarPubMed
American Academy of Pediatrics. Syphilis. In Pickering, LK, Baker, CJ, Kimberlin, DW, Long, SS, ed. Red Book: 2009 Report of the Committee on Infectious Diseases. Elk Grove, IL: American Academy of Pediatrics, 2009.Google Scholar
Chhabra, RS, Brion, LP, Castro, M, Freundlich, L, Glaser, JH. Comparison of maternal sera, cord blood, and neonatal sera for detecting presumptive congenital syphilis: relationship with maternal treatment. Pediatrics 1993;91:88–91.Google ScholarPubMed
Whitaker, JA, Sartain, P, Shaheedy, MD. Hematologic aspects of congenital syphilis. Journal of Pediatrics 1965;66:629.CrossRefGoogle Scholar
Freiman, I, Super, M. Thrombocytopenia and congenital syphilis in South African Bantu infants. Archives of Disease in Childhood 1965;41:87–90.CrossRefGoogle Scholar
Karayalcin, G, Khanijou, A, Kim, KY, Aballi, AJ, Lanzkowsky, P. Monocytosis in congenital syphilis. Am J Dis Child 1977;131:782–3.Google ScholarPubMed
Shah, AA, Desai, AB. Paroxysmal cold hemoglobinuria (case report). Indian Pediatr 1977;14:219–21.Google Scholar
Pohl, M, Niemeyer, CM, Hentschel, R, Duffner, U, Bergstrasser E, Brandis M. Haemophagocytosis in early congenital syphilis. Eur J Pediatr 1999;158:553–5.CrossRefGoogle ScholarPubMed
Brown, HL, Abernathy, MP. Cytomegalovirus infection. Semin Perinatol 1998;22:260–6.CrossRefGoogle ScholarPubMed
Nelson, CT, Demmler, GJ. Cytomegalovirus infection in the pregnant mother, fetus, and newborn infant. Clin Perinatol 1997;24:151–60.CrossRefGoogle ScholarPubMed
Stagno, S. Cytomegalovirus. In Remington, JS, Klein, JO, eds. Infectious Diseases of the Fetus and Newborn Infant. Philadelphia: WB Saunders Company, 2001:389–424.Google Scholar
Boppana, SB, Rivera, LB, Fowler, KB, Mach, M, Britt, WJ. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med 2001;344:1366–71.CrossRefGoogle ScholarPubMed
Schopfer, K, Lauber, E, Krech, U. Congenital cytomegalovirus infection in newborn infants of mothers infected before pregnancy. Arch Dis Child 1978;53:536–9.CrossRefGoogle ScholarPubMed
Adler, SP. Transfusion-acquired CMV infection in premature infants. Transfusion 1989;29:278–90.CrossRefGoogle ScholarPubMed
Yeager, AS, Palumbo, PE, Malachowski, N, Ariagno, RL, Stevenson, DK. Sequelae of maternally derived cytomegalovirus infections in premature infants. J Pediatr 1983;102:918–22.CrossRefGoogle ScholarPubMed
Fowler, KB, Stagno, S, Pass, RF, Britt, WJ, Boll, TJ, Alford, CA. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 1992;326:663–7.CrossRefGoogle ScholarPubMed
Pass, RF, Stagno, S, et al. Gestational age at time of maternal infection and outcome of congenital cytomegalovirus infection. Pediatr Res 1994;35:191A.Google Scholar
Moxley, K, Knudtson, EJ. Resolution of hydrops secondary to cytomegalovirus after maternal and fetal treatment with human cytomegalovirus hyperimmune globulin. Obstet Gynecol 2008;111:524–6.CrossRefGoogle ScholarPubMed
American Academy of Pediatrics. Cytomegalovirus infections. In Pickering, LK, ed. Red Book: 2003 Report from the Committee on Infectious Diseases. Elk Grove Ill: American Academy of Pediatrics, 2003:259–60.
Boppana, SB, Fowler, KB, Britt, WJ, Stagno, S, Pass, RF. Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus. Pediatrics 1999;104:55–60.CrossRefGoogle ScholarPubMed
Epps, RE, Pittelkow, MR, Su, WP. TORCH syndrome. Semin Dermatol 1995;14:179–86.CrossRefGoogle ScholarPubMed
Fowler, KB, McCollister, FP, Dahle, AJ, Boppana, S, Britt, WJ, Pass, RF. Progressive and fluctuating sensorineural hearing loss in children with asymptomatic congenital cytomegalovirus infection. J Pediatr 1997;130:624–30.CrossRefGoogle ScholarPubMed
Weiner, CP. The elusive search for fetal infection. Changing the gold standards. Obstet Gynecol Clin North Am 1997;24:19–32.CrossRefGoogle ScholarPubMed
Lazzarotto, T, Guerra, B, Lanari, M, Gabrielli, L, Landini, MP. New advances in the diagnosis of congenital cytomegalovirus infection. J Clin Virol 2008;41:192–7.CrossRefGoogle Scholar
Hagay, ZJ, Biran, G, Ornoy, A, Reece, EA. Congenital cytomegalovirus infection: a long-standing problem still seeking a solution. Am J Obstet Gynecol 1996;174:241–5.CrossRefGoogle ScholarPubMed
Gouarin, S, Palmer, P, Cointe, D, et al. Congenital HCMV infection: a collaborative and comparative study of virus detection in amniotic fluid by culture and by PCR. J Clin Virol 2001;21:47–55.CrossRefGoogle ScholarPubMed
Goegebuer, T, Van Meensel, B, Beuselinck, K, et al. Clinical predictive value of real-time PCR quantification of human cytomegalovirus DNA in amniotic fluid samples. J Clin Microbiol 2009;47:660–5.CrossRefGoogle ScholarPubMed
Lanari, M, Lazzarotto, T, Venturi, V, et al. Neonatal cytomegalovirus blood load and risk of sequelae in symptomatic and asymptomatic congenitally infected newborns. Pediatrics 2006;117:e76–83.CrossRefGoogle ScholarPubMed
Barbi, M, Binda, S, Primache, V, Novelli, C. Cytomegalovirus in peripheral blood leukocytes of infants with congenital or postnatal infection. Pediatr Infect Dis J 1996;15:898–903.CrossRefGoogle ScholarPubMed
Boppana, SB, Pass, RF, Britt, WJ, Stagno, S, Alford, CA. Symptomatic congenital cytomegalovirus infection: neonatal morbidity and mortality. Pediatr Infect Dis J 1992;11:93–9.CrossRefGoogle ScholarPubMed
Arav-Boger, R, Reif, S, Bujanover, Y. Portal vein thrombosis caused by protein C and protein S deficiency associated with cytomegalovirus infection. J Pediatr 1995;126:586–8.CrossRefGoogle ScholarPubMed
Hathaway, WE, Mull, MM, Pechet, GS. Disseminated intravascular coagulation in the newborn. Pediatrics 1969;43:233–40.Google ScholarPubMed
Mizutani, K, Azuma, E, Komada, Y, et al. An infantile case of cytomegalovirus induced idiopathic thrombocytopenic purpura with predominant proliferation of CD10 positive lymphoblast in bone marrow. Acta Paediatr Jpn 1995;37:71–4.CrossRefGoogle ScholarPubMed
Crapnell, K, Zanjani, ED, Chaudhuri, A, Ascensao, JL, St Jeor, S, Maciejewski, JP. In vitro infection of megakaryocytes and their precursors by human cytomegalovirus. Blood 2000;95:487–93.Google ScholarPubMed
Hoekelman, RA, Anderson, VM. Congenital thrombocytopenia, hepatosplenomegaly, and growth retardation. A clinicopathologic conference. Am J Dis Child 1982;136:258–64.CrossRefGoogle ScholarPubMed
Liesner, RJ. Non-immune neonatal anemias. In Lilleyman, JS, Hann, IM, Blanchette, VS, eds. Pediatric Hematology. London: Churchill Livingstone, 1999:185–202.Google Scholar
Murray, JC, Bernini, JC, Bijou, HL, Rossmann, SN, Mahoney, DH, Jr., Morad AB. Infantile cytomegalovirus-associated autoimmune hemolytic anemia. J Pediatr Hematol Oncol 2001;23:318–20.CrossRefGoogle ScholarPubMed
Maciejewski, JP, Bruening, EE, Donahue, RE, Mocarski, ES, Young, NS, St Jeor, SC. Infection of hematopoietic progenitor cells by human cytomegalovirus. Blood 1992;80:170–8.Google ScholarPubMed
Cole, FS. Viral infections of the fetus and newborn. In Avery, , ed. Neonatology.
Ivarsson, SA, Ljung, R. Neutropenia and congenital cytomegalovirus infection. Pediatr Infect Dis J 1988;7:436–7.CrossRefGoogle ScholarPubMed
Cooper, LZ, Charles, A, Rubella, Alford J.. In Remington, JS, Klein, JO, eds. Infectious Diseases of the Fetus and Newborn Infant. 5th edn. Philadelphia: WB Saunders Company, 2001:347–88.Google Scholar
Reef, SE, Redd, SB, Abernathy, E, Zimmerman, L, Icenogle, JP. The epidemiological profile of rubella and congenital rubella syndrome in the United States, 1998–2004: the evidence for absence of endemic transmission. Clin Infect Dis 2006;43 Suppl 3:S126–32.CrossRefGoogle ScholarPubMed
Freij, BJ, South, MA, Sever, JL. Maternal rubella and the congenital rubella syndrome. Clin Perinatol 1988;15:247–57.CrossRefGoogle ScholarPubMed
Robinson, J, Lemay, M, Vaudry, WL. Congenital rubella after anticipated maternal immunity: two cases and a review of the literature. Pediatr Infect Dis J 1994;13:812–15.CrossRefGoogle Scholar
Barfield, W, Gardner, R, Lett, S, Johnsen, C. Congenital rubella reinfection in a mother with anti-cardiolipin and anti-platelet antibodies. Pediatr Infect Dis J 1997;16:249–51.CrossRefGoogle Scholar
Peckham, CS. Clinical and laboratory study of children exposed in utero to maternal rubella. Arch Dis Child 1972;47:571–7.CrossRefGoogle ScholarPubMed
American Academy of Pediatrics. Rubella. In: Pickering, LK, ed. Red Book: Report of the Committee on Infectious Diseases. 26th edn. Elk Grove, Il: American Academy of Pediatrics, 2003:536–41.
Brough, AJ, Jones, D, Page, RH, Mizukami, I. Dermal erythropoiesis in neonatal infants. A manifestation of intra-uterine viral disease. Pediatrics 1967;40:627–35.Google ScholarPubMed
Thomas, HI, Morgan-Capner, P, Cradock-Watson, JE, Enders, G, Best, JM, O’Shea, S. Slow maturation of IgG1 avidity and persistence of specific IgM in congenital rubella: implications for diagnosis and immunopathology. J Med Virol 1993;41:196–200.CrossRefGoogle ScholarPubMed
Bosma, TJ, Corbett, KM, Eckstein, MB, et al. Use of PCR for prenatal and postnatal diagnosis of congenital rubella. J Clin Microbiol 1995;33:2881–7.Google ScholarPubMed
Janner, D. Growth retardation, congenital heart disease and thrombocytopenia in a newborn infant. Pediatr Infect Dis J 1991;10:874–7.Google Scholar
Franklin, SL, Kelley, R. Congenital rubella and interstitial pneumonitis. Clin Pediatr (Phila) 2001;40:101–3.CrossRefGoogle ScholarPubMed
Zinkham, WH, Medearis, DN, Jr., Osborn, JE. Blood and bone-marrow findings in congenital rubella. J Pediatr 1967;71:512–24.CrossRefGoogle ScholarPubMed
Bayer, WL, Sherman, FE, Michaels, RH, Szeto, IL, Lewis, JH. Purpura in congenital and acquired rubella. N Engl J Med 1965;273:1362–6.CrossRefGoogle ScholarPubMed
Cooper, LZ, Green, RH, Krugman, S, Giles, JP, Mirick, GS. Neonatal thrombocytopenic purpura and other manifestations of rubella contracted in utero. Am J Dis Child 1965;110:416–27.Google ScholarPubMed
Rausen, AR, Richter, P, Tallal, L, Cooper, LZ. Hematologic effects of intrauterine rubella. JAMA 1967;199:75–8.CrossRefGoogle ScholarPubMed
Lafer, CZ, Morrison, AN. Thrombocytopenic purpura progressing to transient hypoplastic anemia in a newborn with rubella syndrome. Pediatrics 1966;38:499–501.Google Scholar
Scott, LL, Hollier, LM, Dias, K. Perinatal herpesvirus infections. Herpes simplex, varicella, and cytomegalovirus. Infect Dis Clin North Am 1997;11:27–53.CrossRefGoogle ScholarPubMed
Arvin, AM, Whitley, RJ. Herpes simplex viral infections. In Remington, JS, Klein, JO, eds. Infectious Diseases of the Fetus and Newborn Infant. Philadelphia: WB Saunders Company, 2001:425–46.Google Scholar
Whitley, RJ, Lakeman, F. Herpes simplex virus infections of the central nervous system: therapeutic and diagnostic considerations. Clin Infect Dis 1995;20:414–20.CrossRefGoogle ScholarPubMed
Koch, LH, Fisher, RG, Chen, C, Foster, MM, Bass, WT, Williams, JV. Congenital herpes simplex virus infection: two unique cutaneous presentations associated with probable intrauterine transmission. J Am Acad Dermatol 2009;60:312–15.CrossRefGoogle ScholarPubMed
Kohl, S. Neonatal herpes simplex virus infection. Clin Perinatol 1997;24:129–50.CrossRefGoogle ScholarPubMed
Douglas, J, Schmidt, O, Corey, L. Acquisition of neonatal HSV-1 infection from a paternal source contact. J Pediatr 1983;103:908–10.CrossRefGoogle ScholarPubMed
Kimberlin, DW, Lakeman, FD, Arvin, AM, et al. Application of the polymerase chain reaction to the diagnosis and management of neonatal herpes simplex virus disease. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis 1996;174:1162–7.CrossRefGoogle ScholarPubMed
Shershow, LW, Ekert, H, Swanson, VL, Wright, HT, Jr., Gilchrist, GS. Intravascular coagulation in generalized herpes simplex infection of the newborn. Acta Paediatr Scand 1969;58:535–9.CrossRefGoogle ScholarPubMed
Ekert, H. Coagulation abnormalities in generalised herpes-simplex infection of newborn. Lancet 1970;2:775–6.CrossRefGoogle ScholarPubMed
Miller, DR, Hanshaw, JB, O’Leary, DS, Hnilicka, JV. Fatal disseminated herpes simplex virus infection and hemorrhage in the neonate. Coagulation studies in a case and a review. J Pediatr 1970;76:409–15.CrossRefGoogle Scholar
Cherry, JD. Enteroviruses. In Remington, JS, Klein, JO, eds. Infectious Diseases of the Fetus and Newborn Infant. Philadelphia: WB Saunders Company, 2001:477–518.Google Scholar
Brown, GC, Karunas, RS. Relationship of congenital anomalies and maternal infection with selected enteroviruses. Am J Epidemiol 1972;95:207–17.CrossRefGoogle ScholarPubMed
Ross, CA, Bell, EJ, Kerr, MM, Williams, KA. Infective agents and embryopathy in the west of Scotland 1966–1970. Scott Med J 1972;17:252–8.CrossRefGoogle ScholarPubMed
Lake, AM, Lauer, BA, Clark, JC, Wesenberg, RL, McIntosh, K. Enterovirus infections in neonates. J Pediatr 1976;89:787–91.CrossRefGoogle ScholarPubMed
Abzug, MJ, Levin, MJ, Rotbart, HA. Profile of enterovirus disease in the first two weeks of life. Pediatr Infect Dis J 1993;12:820–4.CrossRefGoogle ScholarPubMed
Abzug, M. Perinatal enteroviral infections. In Rotbart, HA, ed. Human Enterovirus Infections. Washington, D.C.: American Society for Microbiology Press, 1995:211–38.Google Scholar
Abzug, MJ, Loeffelholz, M, Rotbart, HA. Diagnosis of neonatal enterovirus infection by polymerase chain reaction. J Pediatr 1995;126:447–50.CrossRefGoogle ScholarPubMed
Kessler, HH, Santner, B, Rabenau, H, et al. Rapid diagnosis of enterovirus infection by a new one-step reverse transcription-PCR assay. J Clin Microbiol 1997;35:976–7.Google ScholarPubMed
Abzug, MJ. Prognosis for neonates with enterovirus hepatitis and coagulopathy. Pediatr Infect Dis J 2001;20:758–63.CrossRefGoogle ScholarPubMed
Modlin, JF. Fatal echovirus 11 disease in premature neonates. Pediatrics 1980;66:775–80.Google ScholarPubMed
Abzug, MJ, Johnson, SM. Catastrophic intracranial hemorrhage complicating perinatal viral infections. Pediatr Infect Dis J 2000;19:556–9.CrossRefGoogle ScholarPubMed
Tarcan, A, Ozbek, N, Gurakan, B. Bone marrow failure with concurrent enteroviral infection in a newborn. Pediatr Infect Dis J 2001;20:719–21.CrossRefGoogle Scholar
Barre, V, Marret, S, Mendel, I, Lesesve, JF, Fessard, CI. Enterovirus-associated haemophagocytic syndrome in a neonate. Acta Paediatr 1998;87:469–71.CrossRefGoogle Scholar
Brown, KE, Anderson, SM, Young, NS. Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 1993;262:114–17.CrossRefGoogle ScholarPubMed
Parvovirus B19. In Pickering, LK, ed. Red Book: 2003 Report of the Committee on Infectious Disease. 26th edn. Elk Grove, IL: American Academy of Pediatrics, 2003:459–61.
Brown, KE, Young, NS. Parvovirus B19 in human disease. Annu Rev Med 1997;48:59–67.CrossRefGoogle ScholarPubMed
Harger, JH, Adler, SP, Koch, WC, Harger, GF. Prospective evaluation of 618 pregnant women exposed to parvovirus B19: risks and symptoms. Obstet Gynecol 1998;91:413–20.CrossRefGoogle Scholar
Gratacos, E, Torres, PJ, Vidal, J, et al. The incidence of human parvovirus B19 infection during pregnancy and its impact on perinatal outcome. J Infect Dis 1995;171:1360–3.CrossRefGoogle ScholarPubMed
Skjoldebrand-Sparre, L, Fridell, E, Nyman, M, Wahren, B. A prospective study of antibodies against parvovirus B19 in pregnancy. Acta Obstet Gynecol Scand 1996;75:336–9.CrossRefGoogle ScholarPubMed
Gay, NJ, Hesketh, LM, Cohen, BJ, et al. Age specific antibody prevalence to parvovirus B19: how many women are infected in pregnancy?Commun Dis Rep CDR Rev 1994;4:R104–7.Google ScholarPubMed
Rodis, JF, Quinn, DL, Gary, GW, Jr., et al. Management and outcomes of pregnancies complicated by human B19 parvovirus infection: a prospective study [see comments]. Am J Obstet Gynecol 1990;163:1168–71.CrossRefGoogle Scholar
Miller, E, Fairley, CK, Cohen, BJ, Seng, C. Immediate and long term outcome of human parvovirus B19 infection in pregnancy [see comments]. Br J Obstet Gynaecol 1998;105:174–8.CrossRefGoogle Scholar
Simms, RA, Liebling, RE, Patel, RR, et al. Management and outcome of pregnancies with parvovirus B19 infection over seven years in a tertiary fetal medicine unit. Fetal Diagn Ther 2009;25:373–8.CrossRefGoogle Scholar
Markenson, GR, Yancey, MK. Parvovirus B19 infections in pregnancy. Semin Perinatol 1998;22:309–17.CrossRefGoogle ScholarPubMed
Koch, WC, Harger, JH, Barnstein, B, Adler, SP. Serologic and virologic evidence for frequent intrauterine transmission of human parvovirus B19 with a primary maternal infection during pregnancy. Pediatr Infect Dis J 1998;17:489–94.CrossRefGoogle ScholarPubMed
Gallagher, PG, Forget, BG, Lux, SE. Disorders of the erythrocyte membrane. In Nathan, DG, Orkin, SH, eds. Nathan and Oski’s Hematology of Infancy and Childhood. 5th edn. Philadelphia: WB Saunders Company, 1998:544–664.Google Scholar
Katz, VL, Chescheir, NC, Bethea, M. Hydrops fetalis from B19 parvovirus infection. J Perinatol 1990;10:366–8.Google ScholarPubMed
Giannakopoulou, C, Hatzidaki, E, Giannakopoulos, K, et al. Congenital infection by human parvovirus B19 ascites-anaemia. Clin Exp Obstet Gynecol 1998;25:92–3.Google ScholarPubMed
Hadi, HA, Easley, KO, Finley, J. Clinical significance of human parvovirus B19 infection in pregnancy. Am J Perinatol 1994;11:398–400.CrossRefGoogle ScholarPubMed
Brown, KE, Young, NS. Human parvovirus B19 infections in infants and children. Adv Pediatr Infect Dis 1997;13:101–26.Google ScholarPubMed
Smoleniec, JS, Pillai, M. Management of fetal hydrops associated with parvovirus B19 infection. Br J Obst Gynecol 1994;101:1079–81.CrossRefGoogle ScholarPubMed
Bahl, PS, Davies, NJ. Spontaneous resolution of non-immune hydrops foetalis secondary to transplacental parvovirus B19 infection. Ultrasound Obst Gynecol 1996;7:55–7.CrossRefGoogle Scholar
Faure, JM, Giacalone, PL, Deschamps, F, Boulot, P. Nonimmune hydrops fetalis caused by intrauterine human parvovirus B19 infection: a case of spontaneous reversal in utero. Fetal Diagn Ther 1997;12:66–7.CrossRefGoogle ScholarPubMed
Fairley, CK, Smoleniec, JS, Caul, OE, Miller, E. Observational study of effect of intrauterine transfusions on outcome of fetal hydrops after parvovirus B19 infection. Lancet 1995;346:1335–7.CrossRefGoogle ScholarPubMed
Forestier, F, Tissot, JD, Vial, Y, Daffos, F, Hohlfeld, P. Haematological parameters of parvovirus B19 infection in 13 fetuses with hydrops foetalis. Br J Haematol 1999;104:925–7.CrossRefGoogle ScholarPubMed
Gulen, H, Basarir, F, Hakan, N, Ciftdogan, DY, Tansug, N, Onag, A. Premature labor and leukoerythroblastosis in a newborn with parvovirus B19 infection. Haematologica 2005;90 Suppl:ECR38.Google Scholar
Rodis, JF, Rodner, C, Hansen, AA, Borgida, AF, Deoliveira, I, Shulman Rosengren, S. Long-term outcome of children following maternal human parvovirus B19 infection. Obstet Gynecol 1998;91:125–8.CrossRefGoogle ScholarPubMed
Nagel, HT, de Haan, TR, Vandenbussche, FP, Oepkes, D, Walther, FJ. Long-term outcome after fetal transfusion for hydrops associated with parvovirus B19 infection. Obstet Gynecol 2007;109:42–7.CrossRefGoogle ScholarPubMed
Brown, KE, Green, SW, Antunez de Mayolo, J, et al. Congenital anaemia after transplacental B19 parvovirus infection. Lancet 1994;343:895–6.CrossRefGoogle ScholarPubMed
Kurtzman, G, Frickhofen, N, Kimball, J, Jenkins, DW, Nienhuis, AW, Young, NS. Pure red-cell aplasia of 10 years’ duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy. N Engl J Med 1989;321:519–23.CrossRefGoogle ScholarPubMed
Rates of mother-to-child transmission of HIV-1 in Africa, America, and Europe: results from 13 perinatal studies. The Working Group on Mother-To-Child Transmission of HIV. J Acquir Immune Defic Syndr Hum Retrovirol 1995;8:506–10.
Owen, WC, Werner, EJ. Hematologic problems. In Zeichner, SL, Read, JS, eds. Handbook of Pediatric HIV Care. Philadelphia: Lippincott Williams and Wilkins, 1999:403–13.Google Scholar
El Beitune, P, Duarte, G. Antiretroviral agents during pregnancy: consequences on hematologic parameters in HIV-exposed, uninfected newborn infant. Eur J Obstet Gynecol Reprod Biol 2006;128:59–63.CrossRefGoogle ScholarPubMed
Hankin, C, Throne, C, Peckham, C, Newell, M-L.Exposure to antiretroviral therapy in utero or early life: the health of uninfected children born to HIV-infected women. J Acquir Immune Defic Syndr 2003;32:380–7.Google Scholar
Fernández Ibieta, M, Ramos Amador, JT, González Tomé, MI, Guillén Martín, S, et al. Anaemia and neutropenia in a cohort of non-infected children of HIV-positive mothers. An Pediatr (Barc) 2008;69:533–43.CrossRefGoogle Scholar
Bae, WH, Wester, C, Smeaton, LM, et al. Hematologic and hepatic toxicities associated with antenatal and postnatal exposure to maternal highly active antiretroviral therapy among infants. AIDS 2008;22:1633–40.CrossRefGoogle ScholarPubMed
Feiterna-Sperling, C, Weizsaecker, K, Buhrer, C, et al. Hematologic effects of maternal antiretroviral therapy and transmission prophylaxis in HIV-1-exposed uninfected newborn infants. J Acquir Immune Defic Syndr 2007;45:43–51.CrossRefGoogle ScholarPubMed
Russo, F, Collantes, C, Guerrero, J. Severe paronychia due to zidovudine-induced neutropenia in a neonate. J Am Acad Dermatol 1999;40:322–4.CrossRefGoogle Scholar
Myers, SA, Torrente, S, Hinthorn, D, Clark, PL. Life-threatening maternal and fetal macrocytic anemia from antiretroviral therapy. Obstet Gynecol 2005;106:1189–91.CrossRefGoogle ScholarPubMed
Boucher, FD, Modlin, JF, Weller, S, et al. Phase I evaluation of zidovudine administered to infants exposed at birth to the human immunodeficiency virus. J Pediatr 1993;122:137–44.CrossRefGoogle ScholarPubMed
Kuritzkes, DR. Neutropenia, neutrophil dysfunction, and bacterial infection in patients with human immunodeficiency virus disease: the role of granulocyte colony-stimulating factor. Clin Infect Dis 2000;30:256–60.CrossRefGoogle ScholarPubMed
Le, CT, Chang, RS, Lipson, MH. Epstein–Barr virus infections during pregnancy. A prospective study and review of the literature. Am J Dis Child 1983;137:466–8.CrossRefGoogle ScholarPubMed
Fleisher, G, Bologonese, R. Epstein–Barr virus infections in pregnancy: a prospective study. J Pediatr 1984;104:374–9.CrossRefGoogle ScholarPubMed
Goldberg, GN, Fulginiti, VA, Ray, CG, et al. In utero Epstein–Barr virus (infectious mononucleosis) infection. JAMA 1981;246:1579–81.CrossRefGoogle ScholarPubMed
Horwitz, CA, McClain, K, Henle, W, Henle, G, Anderson, SJ. Fatal illness in a 2-week-old infant: diagnosis by detection of Epstein–Barr virus genomes from a lymph node biopsy. J Pediatr 1983;103:752–5.CrossRefGoogle Scholar
Fleisher, G, Bologonese, R. Infectious mononucleosis during gestation: report of three women and their infants studied prospectively. Pediatr Infect Dis 1984;3:308–11.CrossRefGoogle ScholarPubMed
Oski, FA, Naiman, JL. Anemia in the neonatal period. In Oski, FA, Naiman, JL, eds. Hematologic Problems in the Newborn. 3rd edn. Philadelphia: WB Saunders Company, 1982:56–86.Google ScholarPubMed
Ozer, EA, Duman, N, Kumral, A, et al. Chorioangiomatosis presenting with severe anemia and heart failure in a newborn. Fetal Diagn Ther 2008;23:5–6.CrossRef
Nagel, HT, Vandenbussche, FP, Smit, VT, Wasser, MN, Peters, AA. Intraplacental choriocarcinoma as an unexpected cause of death at term. Int J Gynecol Cancer 2007;6:1337–9.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×