Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T12:37:29.779Z Has data issue: false hasContentIssue false

12 - Congenital thrombocytopenias and thrombocytopathies

from Section III - Platelet disorders

Published online by Cambridge University Press:  05 February 2013

Pedro de Alarcón
Affiliation:
University of Illinois College of Medicine
Eric Werner
Affiliation:
Children's Hospital of the King's Daughters
Robert D. Christensen
Affiliation:
McKay-Dee Hospital, Utah
Get access

Summary

Introduction

Inherited disorders of platelet function or number are rare. The understanding of the etiology of these inherited defects has contributed not only to the knowledge of the specific disease processes but also to the better understanding of platelet physiology. In this chapter we will describe these rare but important inherited defects, some that present in the neonatal period and others whose clinical presentation is delayed to later in life when there is sufficient hemostatic stress to manifest clinical symptoms. Inherited disorders of platetet numbers overlap with bone marrow failure disorders and therefore are also presented in Chapter 5.

Diagnostic approach

Thrombocytopenia occurs in less than 1% of all newborns. However, thrombocytopenia is a common finding in the intensive-care nursery where it is present in up to 25 to 35 percent of admitted infants. The approach to diagnosis and management can be based on the time of onset of thrombocytopenia, on the underlying mechanism, or on whether the thrombocytopenia is due to maternal or infant factors or individualized to the particular infant (1–4). Critical parameters that are common to all these approaches include the severity of thrombocytopenia, the time of onset of thrombocytopenia, the clinical history including maternal history, the health status of the infant, and the presence or absence of other congenital malformations. The approach to the diagnosis of thrombocytopenia must be practical and tailored to the individual infant. We present here a simplified approach based on an algorithm (Fig. 12.1) and a table (Table 12.1) that takes these factors into account, especially the severity of thrombocytopenia and the level of illness of the neonate.

Type
Chapter
Information
Neonatal Hematology
Pathogenesis, Diagnosis, and Management of Hematologic Problems
, pp. 172 - 208
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sola-Visner, M, Saxonhouse, MA, Brown, RE. Neonatal thrombocytopenia: what we do and don’t know. Early Hum Dev 2008;84:499–506.CrossRefGoogle ScholarPubMed
Chakravorty, S, Murray, N, Roberts, I. Neonatal thrombocytopenia. Early Hum Dev 2005;81:35–41.CrossRefGoogle ScholarPubMed
Roberts, I, Murray, NA. Neonatal thrombocytopenia. Semin Fetal Neonatal Med 2008;13:256–64.CrossRefGoogle ScholarPubMed
Roberts, I, Stanworth, S, Murray, NA. Thrombocytopenia in the neonate. Blood Rev 2008;22:173–86.CrossRefGoogle ScholarPubMed
Murray, NA, Howarth, LJ, McCloy, MP, Letsky, EA, Roberts, IA. Platelet transfusion in the management of severe thrombocytopenia in neonatal intensive care unit patients. Transfus Med 2002;12:35–41.CrossRefGoogle ScholarPubMed
Castle, V, Andrew, M, Kelton, J, Giron, D, Johnston, M, Carter, C. Frequency and mechanism of neonatal thrombocytopenia. J Pediatr 1986;108:749.CrossRefGoogle ScholarPubMed
Mehta, P, Vasa, R, Neumann, L, Karpatkin, M. Thrombocytopenia in the high-risk infant. J Pediatr 1980;97:791–4.CrossRefGoogle ScholarPubMed
Zucker-Franklin, D. Megakaryocyte and platelet structure in thrombocytopoiesis: the effect of cytokines. Stem Cells 1996;14:S1–17.CrossRefGoogle ScholarPubMed
Moake, JL. Platelet function, surface structure and antigenicity. Prog Clin Biol Res 1990;337:41–3.Google ScholarPubMed
Parise, LV. The structure and function of platelet integrins. Curr Opin Cell Biol 1989;1:947–52.CrossRefGoogle ScholarPubMed
Fox, JE, Boyles, JK. Structure and function of the platelet membrane skeleton. Soc Gen Physiol Ser 1988;43:111–23.Google ScholarPubMed
Crawford, N. Structure and organisation of platelet membranes. Adv Exp Med Biol 1985;192:1–13.CrossRefGoogle ScholarPubMed
White, JG. Current concepts of platelet structure. Am J Clin Pathol 1979;71:363–78.CrossRefGoogle ScholarPubMed
Harrison, P. Platelet function analysis. Blood Rev 2005;19:111–23.CrossRefGoogle ScholarPubMed
Bolton-Maggs, PH, Chalmers, EA, Collins, PW, et al. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO. Br J Haematol 2006;135:603–33.CrossRefGoogle Scholar
Nieswandt, B, Varga-Szabo, D, Elvers, M. Integrins in platelet activation. J Thromb Haemost 2009;7:S206–9.CrossRefGoogle ScholarPubMed
Bennett, JS, Berger, BW, Billings, PC. The structure and function of platelet integrins. J Thromb Haemost 2009;7:S200–5.CrossRefGoogle ScholarPubMed
Clemetson, KJ. Platelet receptors. In Michelson, AD, ed. Platelets. 1st edn. Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Academic Press, 2002;65–84.Google Scholar
Paulus, J-M. Platelet size in man. Blood 1975;46:321–36.Google ScholarPubMed
O’Malley, T, Ludlam, CA, Fox, KA, Elton, RA. Measurement of platelet volume using a variety of different anticoagulant and antiplatelet mixtures. Blood Coagul Fibrinolysis 1996;7:431–6.CrossRefGoogle ScholarPubMed
McShine, RL, Sibinga, S, Brozovic, B. Differences between the effects of EDTA and citrate anticoagulants on platelet count and mean platelet volume. Clin Lab Haematol 1990;12:277–85.CrossRefGoogle ScholarPubMed
Bath, PM. The routine measurement of platelet size using sodium citrate alone as the anticoagulant. Thromb Haemost 1993;70:687–90.Google ScholarPubMed
Thompson, CB, Diaz, DD, Quinn, PG, Lapins, M, Kurtz, SR, Valeri, CR. The role of anticoagulation in the measurement of platelet volumes. Am J Clin Pathol 1983;80:327–32.CrossRefGoogle ScholarPubMed
Stenberg, PE, Levin, J. Ultrastructural analysis of acute immune thrombocytopenia in mice: dissociation between alterations in megakaryocytes and platelets. J Cell Physiol 1989;141:160–9.CrossRefGoogle ScholarPubMed
Thompson, CB, Jakubowski, JA. The pathophysiology and clinical relevance of platelet heterogeneity. Blood 1988;72:1–8.Google ScholarPubMed
Thompson, CB, Jakubowski, JA, Quinn, PG, Deykin, D, Valeri, CR. Platelet size and age determine platelet function independently. Blood 1984;63:1372–5.Google ScholarPubMed
Thompson, CB, Love, DG, Quinn, PG, Valeri, CR. Platelet size does not correlate with platelet age. Blood 1983;62:487–94.Google Scholar
Saving, KL, Jennings, DE, Aldag, JC, Caughey, RC. Platelet ultrastructure of high-risk premature infants. Thromb Res 1994;73:371–84.CrossRefGoogle ScholarPubMed
Corby, DG, O’Barr, TP. Decreased alpha-adrenergic receptors in newborn platelets: cause of abnormal response to epinephrine. Dev Pharmacol Therap 1981;2:215–25.Google Scholar
Saving, KL, Mankin, P, Maragos, J, Adams, D, Caughy, R. Association of whole blood aggregation response with immunogold-labeled glycoproteins in adult and neonatal platelets. Thromb Res 2001;101:73–81.CrossRefGoogle ScholarPubMed
Israels, SJ, Odaibo, FS, Robertson, C, McMillan, EM, McNicol, A. Deficient thromboxane synthesis and response in platelets from premature infants. Pediatr Res 1997;41:218–23.CrossRefGoogle ScholarPubMed
Israels, SJ, Daniels, M, McMillan, EM. Deficient collagen-induced activation in the newborn platelet. Pediatr Res 1990;27:337–43.CrossRefGoogle ScholarPubMed
Gruel, Y, Boizard, B, Daffos, F, Forestier, F, Caen, J, Wautier, JL. Determination of platelet antigens and glycoproteins in the human fetus. Blood 1986;68:488–92.Google ScholarPubMed
Shenkman, B, Linder, N, Savion, N, et al. Increased neonatal platelet deposition on subendothelium under flow conditions: the role of plasma von Willebrand factor. Pediatr Res 1999;45:270–5.CrossRefGoogle ScholarPubMed
Simak, J, Holada, K, Janota, J, Stranak, Z. Surface expression of major membrane glycoproteins on resting and TRAP-activated neonatal platelets. Pediatr Res 1999;46:445–9.CrossRefGoogle ScholarPubMed
Saving, KL, Mankin, PE, Gorman, MJ. Differences in adhesion receptor expression between immature and older platelets and red blood cells of neonates and adults. J Pediatr Hematol Oncol 2002;24:120–4.CrossRefGoogle ScholarPubMed
Wasiluk, A, Mantur, M, Szczepanski, M, Kemona, H, Baran, E, Kemona-Chetnik, I. The effect of gestational age on platelet surface expression of CD62P in preterm newborns. Platelets 2008;19:236–8.CrossRefGoogle ScholarPubMed
Kipper, SL, Sieger, L. Whole blood platelet volumes in newborn infants. J Pediatr 1982;101:763–6.CrossRefGoogle ScholarPubMed
Arad, ID, Alpan, G, Sznajderman, SD, Eldor, A. The mean platelet volume (MPV) in the neonatal period. American Journal of Perinatology 1986;3:1–3.CrossRefGoogle ScholarPubMed
Molchanova, TP, Wilson, JB, Gu, LH, et al. A second observation of the fetal methemoglobin variant Hb F-M-Fort Ripley or alpha 2G gamma 2(92)(F8)His – – Tyr. Hemoglobin 1992;16:389–98.CrossRefGoogle ScholarPubMed
Meher-Homji, NJ, Montemagno, R, Thilaganathan, B, Nicolaides, KH. Platelet size and glycoprotein Ib and IIIa expression in normal fetal and maternal blood. Am J Obst Gynecol 1994;171:791–6.CrossRefGoogle ScholarPubMed
Wiedmeier, SE, Henry, E, Sola-Visner, MC, Christensen, RD. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol 2009;29:130–6.CrossRefGoogle Scholar
Hartwig, JH. Platelet structure. In Michelson, AD, ed. Platelets. 1st edn. Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Academic Press, 2002:37–64.Google Scholar
Woulfe, D, Yang, J, Prevost, N, O’Brien, PJ, Brass, LF. Signal transduction during the initiation, extension, and perpetuation of platelet plug formation. In Michelson, AD, ed. Platelets. 1st edn. Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Academic Press, 2002:197–213.Google ScholarPubMed
Born, GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962;194:927–9.CrossRefGoogle ScholarPubMed
O’Brien, J.Platelet aggregation. II. Some results from a new method of study. Journal of Clinical Pathology 1962;15:452–81.Google Scholar
Del Vecchio, A, Sola, MC. Performing and interpreting the bleeding time in the neonatal intensive care unit. Clin Perinatol 2000;27:643–54.CrossRefGoogle ScholarPubMed
Andrew, M, Paes, B, Bowker, J, Vegh, P. Evaluation of an automated bleeding time device in the newborn. Am J Hematol 1990;35:275–7.CrossRefGoogle ScholarPubMed
Andrew, M, Castle, V, Mitchell, L, Paes, B. Modified bleeding time in the infant. Am J Hematol 1989;30:190–1.CrossRefGoogle ScholarPubMed
Rand, ML, Carcao, MD, Blanchette, VS. Use of the PFA-100 (R) in the assessment of primary, platelet-related hemostasis in a pediatric setting. Seminars in Thrombosis & Hemostasis 1998;24:523–9.CrossRefGoogle Scholar
Roschitz, B, Sudi, K, Kostenberger, M, Muntean, W. Shorter PFA-100 closure times in neonates than in adults: role of red cells, white cells, platelets and von Willebrand factor. Acta Paediatr 2001;90:664–70.CrossRefGoogle ScholarPubMed
Quiroga, T, Goycoolea, M, Munoz, B, et al. Template bleeding time and PFA-100 have low sensitivity to screen patients with hereditary mucocutaneous hemorrhages: comparative study in 148 patients. J Thromb Haemost 2004;2:892–8.CrossRefGoogle ScholarPubMed
Knofler, R, Weissbach, G, Kuhlisch, E. Platelet function tests in childhood. Measuring aggregation and release reaction in whole blood. Semin Thromb Hemost 1998;24:513–21.CrossRefGoogle ScholarPubMed
Oritani, K, Tomiyama, Y, Kincade, PW, et al. Both stat3-activation and Stat3-independent BCL2 downregulation are important for interleukin-6 induced apoptosis of 1A9-M cells. Blood 1999;93:1346–54.Google ScholarPubMed
Gruel, Y, Boizard, B, Daffos, F, Forestier, F, Caen, J, Wautier, JL. Determination of platelet antigens and glycoproteins in the human fetus. Blood 1986;68:488–92.Google ScholarPubMed
Rajasekhar, D, Barnard, MR, Bednarek, FJ, Michelson, AD. Platelet hyporeactivity in very low birth weight neonates. Thrombosis & Haemostasis 1997;77:1002–7.Google ScholarPubMed
Klein, B, Faridi, A, Baffour, KA-T, Heilmann, L, von Tempelhoff, GF, Rath, W. Neonatal platelet activation in preeclampsia. Clin Appl Thromb Hemost 2001;7:29–32.CrossRefGoogle ScholarPubMed
Corby, DG, Zuck, TF. Newborn platelet dysfunction: a storage pool and release defect. Thromb Haemost 1976;36:200–7.Google ScholarPubMed
Foley, ME, Clayton, JK, McNicol, GP. Haemostatic mechanisms in maternal, umbilical vein and umbilical artery blood at the time of delivery. Br J Obst Gynaecol 1977;84:81–7.CrossRefGoogle ScholarPubMed
Ts’ao, CH, Green, D, Schultz, K. Function and ultrastructure of platelets of neonates: enhanced ristocetin aggregation of neonatal platelets. BJH 1976;32:225–33.CrossRefGoogle ScholarPubMed
Stuart, MJ. Platelet function in the neonate. Am J Pediatr Hematol Oncol 1979;1:227–34.CrossRefGoogle ScholarPubMed
Stuart, MJ, Allen, JB. Arachidonic acid metabolism in the neonatal platelet. Pediatrics 1982;69:714–18.Google ScholarPubMed
Gader, AM, Bahakim, H, Jabbar, FA, Lambourne, AL, Gaafar, TH, Edrees, YB. Dose-response aggregometry in maternal/neonatal platelets. Thromb Haemost 1988;60:314–18.Google ScholarPubMed
Ochs, HD, Slichter, SJ, Harker, LA, von Behrens, WE, Clark, RA, Wedgwood, RJ. The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and platelets. Blood 1980;55:243–52.Google ScholarPubMed
Ahlsten, G, Ewald, U, Kindahl, H, Tuvemo, T. Aggregation of and thromboxane B2 synthesis in platelets from newborn infants of smoking and non-smoking mothers. Prostaglandins, Leukotrienes & Medicine 1985;19:167–76.CrossRefGoogle ScholarPubMed
Stuart, MJ, Dusse, J, Clark, DA, Walenga, RW. Differences in thromboxane production between neonatal and adult platelets in response to arachidonic acid and epinephrine. Pediatr Res 1984;18:823–6.CrossRefGoogle ScholarPubMed
Israels, SJ, Cheang, T, Roberston, C, McMillan-Ward, EM, McNicol, A. Impaired signal transduction in neonatal platelets. Pediatr Res 1999;45:687–91.CrossRefGoogle ScholarPubMed
Andrew, M, Vegh, P, Johnston, M, Bowker, J, Ofosu, F, Mitchell, L. Maturation of the hemostatic system during childhood. Blood 1992;80:1998–2005.Google ScholarPubMed
Bednarek, FJ, Bean, S, Barnard, MR, Frelinger, AL, Michelson, AD. The platelet hyporeactivity of extremely low birth weight neonates is age-dependent. Thromb Res 2009;124:42–5.CrossRefGoogle ScholarPubMed
Hayashi, T, Suzuki, K. Molecular pathogenesis of Bernard–Soulier syndrome. Semin Thromb Hemost 2000;26:53–9.CrossRefGoogle ScholarPubMed
Lopez, JA, Andrews, RK, Afshar-Kharghan, V, Berndt, MC. Bernard–Soulier syndrome. Blood 1998;91:4397–418.Google ScholarPubMed
Nakagawa, M, Okuno, M, Okamoto, N, Fujino, H, Kato, H. Bernard-Soulier syndrome associated with 22q11.2 microdeletion. Am J Med Genet 2001;99:286–8.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Peitsidis, P, Datta, T, Pafilis, I, Otomewo, O, Tuddenham, EG, Kadir, RA. Bernard-Soulier syndrome in pregnancy: a systematic review. Haemophilia 2010;16:584–91.Google ScholarPubMed
Beltrame, MP, Malvezzi, M, Zanis, J, Pasquini, R. Flow cytometry as a tool in the diagnosis of Bernard-Soulier syndrome in Brazilian patients. Platelets 2009;20:229–34.CrossRefGoogle Scholar
Pham, A, Wang, J. Bernard-Soulier syndrome: an inherited platelet disorder. Arch Pathol Lab Med 2007;131:1834–6.Google Scholar
Strassel, C, Eckly, A, Leon, C, et al. Intrinsic impaired proplatelet formation and microtubule coil assembly of megakaryocytes in a mouse model of Bernard–Soulier syndrome. Haematologica 2009;94:800–10.CrossRefGoogle Scholar
Pallotta, R, Evangelista, V, Margaglione, M, Bucci, I, Saponari, A. Macrothrombocytopenia in velocardiofacial syndrome. J Thromb Haemost 2005;3:601–3.CrossRefGoogle ScholarPubMed
Liang, HP, Morel-Kopp, MC, Curtin, J, et al. Heterozygous loss of platelet glycoprotein (GP) Ib-V-IX variably affects platelet function in velocardiofacial syndrome (VCFS) patients. Thromb Haemost 2007;98:1298–308.CrossRefGoogle ScholarPubMed
Aziz, KA. An acquired form of Bernard–Soulier syndrome associated with acute myeloid leukemia. Saudi Med J 2005;26:1095–8.Google ScholarPubMed
Nurden, AT, Nurden, P. Inherited disorders of platelets: an update. Curr Opin Hematol 2006;13:157–62.CrossRefGoogle ScholarPubMed
Ozelo, MC, Svirin, P, Larina, L. Use of recombinant factor VIIa in the management of severe bleeding episodes in patients with Bernard–Soulier syndrome. Ann Hematol 2005;84:816–22.CrossRefGoogle ScholarPubMed
Hacihanefioglu, A, Tarkun, P, Gonullu, E. Use of recombinant factor VIIa in the management and prophylaxis of bleeding episodes in two patients with Bernard–Soulier syndrome. Thromb Res 2007;120:455–7.CrossRefGoogle ScholarPubMed
Almeida, AM, Khair, K, Hann, I, Liesner, R. The use of recombinant factor VIIa in children with inherited platelet function disorders. Br J Haematol 2003;121:477–81.CrossRefGoogle ScholarPubMed
White, GC. Congenital and acquired platelet disorders: current dilemmas and treatment strategies. Semin Hematol 2006;43:S37–41.CrossRefGoogle ScholarPubMed
Rieger, C, Rank, A, Fiegl, M, et al. Allogeneic stem cell transplantation as a new treatment option for patients with severe Bernard–Soulier Syndrome. Thromb Haemost 2006;95:190–1.Google ScholarPubMed
George, JN, Caen, JP, Nurden, AT. Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood 1990;75:1383–95.Google ScholarPubMed
Reichert, N, Seligsohn, U, Ramot, B. Clinical and genetic aspects of Glanzmann’s thrombasthenia in Israel: report of 22 cases. Thromb Diath Haemorrh 1975;34:806–20.Google ScholarPubMed
Nurden, AT. Glanzmann thrombasthenia. Orphanet J Rare Dis 2006;1:10.CrossRefGoogle ScholarPubMed
Franchini, M, Favaloro, EJ, Lippi, G. Glanzmann thrombasthenia: an update. Clin Chim Acta 2010;411:1–6.CrossRefGoogle ScholarPubMed
Boussemart, T, Marechaud, M, van Ditzhuyzen, O, Millot, F, Oriot, D. Hepatic haematoma related to Glanzmann thrombasthenia in a newborn infant. Br J Obstet Gynaecol 1996;103:179–80.CrossRefGoogle Scholar
Kuijpers, TW, van Bruggen, R, Kamerbeek, N, et al. Natural history and early diagnosis of LAD-1/variant syndrome. Blood 2007;109:3529–37.CrossRefGoogle ScholarPubMed
Kuijpers, TW, van de Vijver, E, Weterman, MA, et al. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood 2009;113:4740–6.CrossRefGoogle ScholarPubMed
Hennewig, U, Laws, HJ, Eisert, S, Gobel, U. Bleeding and surgery in children with Glanzmann thrombasthenia with and without the use of recombinant factor VII a. Klin Padiatr 2005;217:365–70.CrossRefGoogle ScholarPubMed
Poon, MC. The evidence for the use of recombinant human activated factor VII in the treatment of bleeding patients with quantitative and qualitative platelet disorders. Transfus Med Rev 2007;21:223–36.CrossRefGoogle ScholarPubMed
Chuansumrit, A, Suwannuraks, M, Sri-Udomporn, N, Pongtanakul, B, Worapongpaiboon, S. Recombinant activated factor VII combined with local measures in preventing bleeding from invasive dental procedures in patients with Glanzmann thrombasthenia. Blood Coagul Fibrinolysis 2003;14:187–90.CrossRefGoogle ScholarPubMed
Poon, MC, Demers, C, Jobin, F, Wu, JWY. Recombinant factor VIIa is effective for bleeding and surgery in patients with Glanzmann thrombasthenia. Blood 1999;94:3951–3.Google ScholarPubMed
Connor, P, Khair, K, Liesner, R, et al. Stem cell transplantation for children with Glanzmann thrombasthenia. Br J Haematol 2008;140:568–71.CrossRefGoogle ScholarPubMed
Nurden, P, Nurden, AT. Congenital disorders associated with platelet dysfunctions. Thromb Haemost 2008;99:253–63.Google ScholarPubMed
Salles, II, Feys, HB, Iserbyt, BF, De Meyer, SF, Vanhoorelbeke, K, Deckmyn, H. Inherited traits affecting platelet function. Blood Rev 2008;22:155–72.CrossRefGoogle ScholarPubMed
Moroi, M, Jung, SM. Platelet receptors for collagen. Thromb Haemost 1997;78:439–44.Google ScholarPubMed
Moroi, M, Jung, SM, Shinmyozu, K, Tomiyama, Y, Ordinas, A, Diaz-Ricart, M. Analysis of platelet adhesion to a collagen-coated surface under flow conditions: the involvement of glycoprotein VI in the platelet adhesion. Blood 1996;88:2081–92.Google ScholarPubMed
Arai, M, Yamamoto, N, Moroi, M, Akamatsu, N, Fukutake, K, Tanoue, K. Platelets with 10% of the normal amount of glycoprotein VI have an impaired response to collagen that results in a mild bleeding tendency. Br J Haematol 1995;89:124–30.CrossRefGoogle Scholar
Moroi, M, Jung, SM, Okuma, M, Shinmyozu, K. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin Invest 1989;84:1440–5.CrossRefGoogle ScholarPubMed
Joutsi-Korhonen, L, Smethurst, PA, Rankin, A, et al. The low frequency allele of the platelet collagen signalling receptor glycoprotein VI is associated with reduced functional responses and expression. Blood 2003;101:4372–9.CrossRefGoogle Scholar
Dumont, B, Lasne, D, Rothschild, C, et al. Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood 2009;114:1900–3.CrossRefGoogle ScholarPubMed
Noris, P, Guidetti, GF, Conti, V, et al. Autosomal dominant thrombocytopenias with reduced expression of glycoprotein Ia. Thromb Haemost 2006;95:483–9.CrossRefGoogle ScholarPubMed
Cattaneo, M, Lecchi, A, Randi, AM, McGregor, JL, Mannucci, PM. Identification of a new congenital defect of platelet function characterized by severe impairment of platelet responses to adenosine diphosphate. Blood 1992;80:2787–96.Google ScholarPubMed
Cattaneo, M, Lecchi, A, Lombardi, R, Gachet, C, Zighetti, ML. Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet ‘primary secretion defect’ are heterozygous for a defect of P2CYC receptors. Arterioscler Thromb Vasc Biol 2000;20:E101–6.CrossRefGoogle ScholarPubMed
Cattaneo, M, Zighetti, ML, Lombardi, R, et al. Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a patient with congenital bleeding. Proc Natl Acad Sci USA 2003;100:1978–83.CrossRefGoogle ScholarPubMed
Cattaneo, M. The P2 receptors and congenital platelet function defects. Semin Thromb Hemost 2005;31:168–173.CrossRefGoogle ScholarPubMed
Nurden, P, Savi, P, Heilmann, E, et al. An inherited bleeding disorder linked to a defective interaction between ADP and its receptor on platelets. Its influence on glycoprotein IIb-IIIa complex function. J Clin Invest 1995;95:1612–22.CrossRefGoogle ScholarPubMed
Fontana, G, Ware, J, Cattaneo, M. Haploinsufficiency of the platelet P2Y12 gene in a family with congenital bleeding diathesis. Haematologica 2009;94:581–4.CrossRefGoogle Scholar
Lages, B, Malmsten, C, Weiss, HJ, Samuelsson, B.Impaired platelet response to thromboxane-A2 and defective calcium mobilization in a patient with a bleeding disorder. Blood 1981;57:545–52.Google Scholar
Weiss, HJ, Lages, B. The response of platelets to epinephrine in storage pool deficiency – evidence pertaining to the role of adenosine diphosphate in mediating primary and secondary aggregation. Blood 1988;72:1717–25.Google Scholar
Tamponi, G, Pannocchia, A, Arduino, C, et al. Congenital deficiency of alpha-2-adrenoceptors on human platelets: description of two cases. Thromb Haemost 1987;58:1012–16.Google ScholarPubMed
Weiss, HJ, Vicic, WJ, Lages, BA, Rogers, J. Isolated deficiency of platelet procoagulant activity. Am J Med 1979;67:206–13.CrossRefGoogle ScholarPubMed
Weiss, HJ. Impaired platelet procoagulant mechanisms in patients with bleeding disorders. Semin Thromb Hemost 2009;35:233–41.CrossRefGoogle ScholarPubMed
Albrecht, C, McVey, JH, Elliott, JI, et al. A novel missense mutation in ABCA1 results in altered protein trafficking and reduced phosphatidylserine translocation in a patient with Scott syndrome. Blood 2005;106:542–9.CrossRefGoogle Scholar
Weiss, HJ, Lages, B. Family studies in Scott syndrome. Blood 1997;90:475–6.Google ScholarPubMed
Stormorken, H, Sjaastad, O, Langslet, A, Sulg, I, Egge, K, Diderichsen, J. A new syndrome: thrombocytopathia, muscle fatigue, asplenia, miosis, migraine, dyslexia and ichthyosis. Clin Genet 1985;28:367–74.CrossRefGoogle ScholarPubMed
Stormorken, H, Holmsen, H, Sund, R, et al. Studies on the haemostatic defect in a complicated syndrome. An inverse Scott syndrome platelet membrane abnormality?Thromb Haemost 1995;74:1244–51.Google Scholar
Rao, AK. Inherited defects in platelet signaling mechanisms. J Thromb Haemost 2003;1:671–81.CrossRefGoogle ScholarPubMed
Horellou, MH, Lecompte, T, Lecrubier, C, et al. Familial and constitutional bleeding disorder due to platelet cyclo-oxygenase deficiency. Am J Hematol 1983;14:1–9.CrossRefGoogle ScholarPubMed
Lagarde, M, Byron, PA, Vargaftig, BB, Dechavanne, M. Impairment of platelet thromboxane A2 generation and of the platelet release reaction in two patients with congenital deficiency of platelet cyclo-oxygenase. Br J Haematol 1978;38:251–66.CrossRefGoogle ScholarPubMed
Malmsten, C, Hamberg, M, Svensson, J, Samuelsson, B. Physiological role of an endoperoxide in human platelets: hemostatic defect due to platelet cyclo-oxygenase deficiency. Proc Natl Acad Sci USA 1975;72:1446–50.CrossRefGoogle ScholarPubMed
Mestel, F, Oetliker, O, Beck, E, Felix, R, Imbach, P, Wagner, HP. Severe bleeding associated with defective thromboxane synthetase. Lancet 1980;1:157.CrossRefGoogle ScholarPubMed
Nurden, AT, Nurden, P. Inherited disorders of platelet function. In: Michelson, AD, ed. Platelets. 1st edn. Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Academic Press, 2002:681–700.
Nurden, AT, Nurden, P. The gray platelet syndrome: clinical spectrum of the disease. Blood Rev 2007;21:21–36.CrossRefGoogle ScholarPubMed
Hermos, CR, Huizing, M, Kaiser-Kupfer, MI, Gahl, WA. Hermansky–Pudlak syndrome type 1: gene organization, novel mutations, and clinical-molecular review of non-Puerto Rican cases. Hum Mutat 2002;20:482.CrossRefGoogle ScholarPubMed
Siegel, DH, Howard, R. Molecular advances in genetic skin diseases. Curr Opin Pediatr 2002;14:419–25.CrossRefGoogle ScholarPubMed
Anikster, Y, Huizing, M, White, J, et al. Mutation of a new gene causes a unique form of Hermansky-Pudlak syndrome in a genetic isolate of central Puerto Rico. Nat Genet 2001;28:376–80.CrossRefGoogle Scholar
Suzuki, T, Li, W, Zhang, Q, et al. Hermansky-Pudlak syndrome is caused by mutations in HPS4, the human homolog of the mouse light-ear gene. Nat Genet 2002;30:321–4.CrossRefGoogle ScholarPubMed
Barrat, FJ, Auloge, L, Pastural, E, et al. Genetic and physical mapping of the Chediak-Higashi syndrome on chromosome 1q42–43. Am J Hum Genet 1996;59:625–32.Google ScholarPubMed
Barbosa, MD, Barrat, FJ, Tchernev, VT, et al. Identification of mutations in two major mRNA isoforms of the Chediak–Higashi syndrome gene in human and mouse. Hum Mol Genet 1997;6:1091–8.CrossRefGoogle Scholar
Zahavi, J, Gale, R, Kakkar, VV. Storage pool disease of platelets in an infant with thrombocytopenic absent radii (TAR) syndrome simulating Fanconi’s anaemia. Haemostasis 1981;10:121–33.Google Scholar
Stormorken, H, Hellum, B, Egeland, T, Abrahamsen, TG, Hovig, T. X-linked thrombocytopenia and thrombocytopathia: attenuated Wiskott-Aldrich syndrome. Functional and morphological studies of platelets and lymphocytes. Thromb Haemost 1991;65:300–5.Google ScholarPubMed
Mattina, T, Perrotta, CS, Grossfeld, P. Jacobsen syndrome. Orphanet J Rare Dis 2009;4:9.CrossRefGoogle ScholarPubMed
Van Zutven, LJ, van BY, Van Nieuwland, CC, et al. Interstitial 11q deletion derived from a maternal ins(4;11)(p14;q24.2q25): a patient report and review. Am J Med Genet A 2009;149A:1468–75.CrossRefGoogle ScholarPubMed
Grossfeld, PD, Mattina, T, Lai, Z, et al. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A 2004;129A:51–61.CrossRefGoogle ScholarPubMed
Hayward, CP, Rivard, GE, Kane, WH, et al. An autosomal dominant, qualitative platelet disorder associated with multimerin deficiency, abnormalities in platelet factor V, thrombospondin, von Willebrand factor, and fibrinogen and an epinephrine aggregation defect. Blood 1996;87:4967–78.Google ScholarPubMed
Hayward, CP, Cramer, EM, Kane, WH, et al. Studies of a second family with the Quebec platelet disorder: evidence that the degradation of the alpha-granule membrane and its soluble contents are not secondary to a defect in targeting proteins to alpha-granules. Blood 1997;89:1243–53.Google Scholar
Paterson, AD, Rommens, JM, Bharaj, B, et al. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene. Blood 2010;115:1264–6.CrossRefGoogle ScholarPubMed
Diamandis, M, Veljkovic, DK, Maurer-Spurej, E, Rivard, GE, Hayward, CP. Quebec platelet disorder: features, pathogenesis and treatment. Blood Coagul Fibrinolysis 2008;19:109–19.CrossRefGoogle ScholarPubMed
Benigni, A, Gregorini, G, Frusca, T, et al. Effect of low-dose aspirin on fetal and maternal generation of thromboxane by platelets in women at risk for pregnancy-induced hypertension. N Engl J Med 1989;321:357–62.CrossRefGoogle ScholarPubMed
Dasari, R, Narang, A, Vasishta, K, Garewal, G.Effect of maternal low dose aspirin on neonatal platelet function. Indian Pediatr 1998;35:507–11.Google ScholarPubMed
Finkelstein, Y, Nurmohamed, L, Avner, M, Benson, LN, Koren, G. Clopidogrel use in children. J Pediatr 2005;147:657–61.CrossRefGoogle ScholarPubMed
Li, JS, Yow, E, Berezny, KY, et al. Dosing of clopidogrel for platelet inhibition in infants and young children: primary results of the Platelet Inhibition in Children On cLOpidogrel (PICOLO) trial. Circulation 2008;117:553–9.CrossRefGoogle ScholarPubMed
Michelson, AD, Benoit, SE, Furman, MI, et al. Effects of nitric oxide/EDRF on platelet surface glycoproteins. Am J Physiol 1996;270:H1640–8.Google ScholarPubMed
Cheung, PY, Salas, E, Schulz, R, Radomski, MW. Nitric oxide and platelet function: implications for neonatology. Semin Perinatol 1997;21:409–17.CrossRefGoogle ScholarPubMed
Keh, D, Kurer, I, Dudenhausen, JW, Woltmann, W, Falke, KJ, Gerlach, H. Response of neonatal platelets to nitric oxide in vitro. Intens Care Med 2001;27:283–6.CrossRefGoogle ScholarPubMed
George, TN, Johnson, KJ, Bates, JN, Segar, JL. The effect of inhaled nitric oxide therapy on bleeding time and platelet aggregation in neonates. J Pediatr 1998;132:731–4.CrossRefGoogle ScholarPubMed
Suvansri, U, Cheung, WH, Sawitsky, A. The effect of bilirubin on the human platelet. J Pediatr 1969;74:240–6.CrossRefGoogle ScholarPubMed
Tozzi-Ciancarelli, MG, Amicosante, G, Menichelli, A, Di, G, Del, P. Photodynamic damage induced by bilirubin on human platelets: possible relevance to newborn pathology. Biol Neonate 1985;48:336–40.CrossRefGoogle ScholarPubMed
Goodman, DM. Platelet dysfunction during extracorporeal membrane oxygenation: a new mechanism by which to control bleeding? [editorial;comment]. Crit Care Med 2000;28:2667–8.CrossRefGoogle Scholar
Cheung, PY, Sawicki, G, Salas, E, Etches, PC, Schulz, R, Radomski, MW. The mechanisms of platelet dysfunction during extracorporeal membrane oxygenation in critically ill neonates [see comments]. Crit Care Med 2000;28:2584–90.CrossRefGoogle Scholar
Smith, TJ, Gill, JC, Ambruso, DR, Hathaway, WE. Hyponatremia and seizures in young children given DDAVP. Am J Hematol 1989;31:199–202.CrossRefGoogle ScholarPubMed
Levi, M, Levy, JH, Andersen, HF, Truloff, D. Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med 2010;363:1791–800.CrossRefGoogle ScholarPubMed
Fanconi, G.Familiare infantile perniziosaartige Anamie (pernizioses Blutbilt und Kostitution). Jahrbuch Kinder 1927;117:257.Google Scholar
Butturini, A, Gale, RP, Verlander, PC, Adler-Brecher, B, Gillio, AP, Auerbach, AD. Hematologic abnormalities in Fanconi anemia: and international Fanconi Anemia Registry study. Blood 1994;84:1650–55.Google ScholarPubMed
Sasaki, MS, Tonomura, A. A high susceptibility of Fanconi’s anemia to chromosome breakage by DNA cross-linking agents. Cancer Res 1973;33:1829–36.Google ScholarPubMed
Auerbach, AD. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp Hematol 1993;21:731–3.Google ScholarPubMed
Auerbach, AD, Warburton, D, Bloom, AD, Chaganti, RS. Preliminary communication: prenatal detection of the Fanconi anemia gene by cytogenetic methods. Am J Hum Genet 1979;31:77–81.Google ScholarPubMed
Dokal, I, Vulliamy, T. Inherited aplastic anaemias/ bone marrow failure syndromes. Blood Rev 2008;22:141–53.CrossRefGoogle ScholarPubMed
Gregory, RC, Taniguchi, T, D’Andrea, AD. Regulation of the Fanconi anemia pathway by monoubiquitination. Semin Cancer Biol 2003;13:77–82.CrossRefGoogle ScholarPubMed
Ahmad, SI, Hanaoka, F, Kirk, SH. Molecular biology of Fanconi anaemia – an old problem, a new insight. Bioessays 2002;24:439–48.CrossRefGoogle ScholarPubMed
Joenje, H, Patel, KJ. The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2001;2:446–57.CrossRefGoogle ScholarPubMed
Kupfer, GM, Naf, D, D’Andrea, AD. Molecular biology of Fanconi anemia. Hematol Oncol Clin North Am 1997;11:1045–60.CrossRefGoogle ScholarPubMed
Dokal, I. Fanconi’s anaemia and related bone marrow failure syndromes. Br Med Bull 2006;77–78:37–53.Google ScholarPubMed
Alter, BP. Cancer in Fanconi anemia, 1927–2001. Cancer 2003;97:425–40.CrossRefGoogle ScholarPubMed
Alter, BP, Greene, MH, Velazquez, I, Rosenberg, PS. Cancer in Fanconi anemia. Blood 2003;101:2072.CrossRefGoogle ScholarPubMed
Rao, VB, Kerketta, L, Korgaonkar, S, Ghosh, K. Differentiation of Nijmegen breakage syndrome from Fanconi anemia. Genet Mol Res 2007;6:622–6.Google ScholarPubMed
Topaloglu, R, Lebre, AS, Demirkaya, E, et al. Two new cases with Pearson syndrome and review of Hacettepe experience. Turk J Pediatr 2008;50:572–6.Google ScholarPubMed
Dokal, I.Dyskeratosis congenita in all its forms. Br J Haematol 2000;110:768–79.CrossRefGoogle ScholarPubMed
Nishio, N, Kojima, S. Recent progress in dyskeratosis congenita. Int J Hematol 2010;92:419–24.CrossRefGoogle ScholarPubMed
De Boeck, K, Degreef, H, Verwilghen, R, Corbeel, L, Casteels-Van Daele, M. Thrombocytopenia: first symptom in a patient with dyskeratosis congenita. Pediatrics 1981;67:898–903.Google Scholar
Shaw, S, Oliver, RAM. Congenital hypoplastic thrombocytopenia with skeletal deformities in siblings. Blood 1959;14:374–7.Google ScholarPubMed
Hall, JG. Thrombocytopenia and absent radius (TAR) syndrome. J Med Genet 1987;24:79–83.CrossRefGoogle ScholarPubMed
Fayen, WT, Harris, JW. Thrombocytopenia with absent radii (the TAR syndrome). Am J Med Sci 1980;280:95–9.CrossRefGoogle Scholar
Hedberg, VA, Lipton, JM. Thrombocytopenia with absent radii. A review of 100 cases. Am J Pediatr Hematol Oncol 1988;10:51–64.CrossRefGoogle ScholarPubMed
Sultan, Y, Scrobohaci, ML, Rendu, F, Caen, JP. Abnormal platelet function, population, and survival-time in a boy with congenital absent radii and thrombocytopenia. Lancet 1972;2:653.CrossRefGoogle Scholar
Day, HJ, Holmsen, H. Platelet adenine nucleotide “storage pool deficiency” in thrombocytopenic absent radii syndrome. JAMA 1972;221:1053–4.CrossRefGoogle Scholar
Hall, JG, Levin, J, Kuhn, JP, Ottenheimer, EJ, van Berkum, KAP, McKusick, VA. Thrombocytopenia with absent radius (TAR). Medicine 1969;48:411–39.CrossRefGoogle Scholar
Digilio, MC, Giannotti, A, Marino, B, Guadagni, AM, Orzalesi, M, Dallapiccola, B. Radial aplasia and chromosome 22q11 deletion. J Med Genet 1997;34:942–4.CrossRefGoogle ScholarPubMed
Ryan, AK, Goodship, JA, Wilson, DI, et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 1997;34:798–804.CrossRefGoogle ScholarPubMed
Whitfield, MF, Barr, DG. Cows’ milk allergy in the syndrome of thrombocytopenia with absent radius. Arch Dis Child 1976;51:337–43.CrossRefGoogle ScholarPubMed
Greenhalgh, KL, Howell, RT, Bottani, A, et al. Thrombocytopenia-absent radius syndrome: a clinical genetic study. J Med Genet 2002;39:876–81.CrossRefGoogle ScholarPubMed
Freedman, MH. Congenital failure of hematopoiesis in the newborn infant. Clin Perinatol 1984;11:417–31.CrossRefGoogle ScholarPubMed
Homans, AC, Cohen, JL, Mazur, EM. Defective megakaryocytopoiesis in the syndrome of thrombocytopenia with absent radii. Br J Haematol 1988;70:205–10.CrossRefGoogle ScholarPubMed
de AlarcÓn, PA, Graeve, JA, Levine, RF, McDonald, TP, Beal, DW. Thrombocytopenia and absent radii syndrome: defective megakaryocytopoiesis-thrombocytopoiesis. Am J Pediatr Hematol Oncol 1991;13:77–83.CrossRefGoogle ScholarPubMed
Sekine, I, Hagiwara, T, Miyazaki, H, et al. Thrombocytopenia with absent radii syndrome: studies on serum thrombopoietin levels and megakaryopoiesis in vitro. J Pediatr Hematol Oncol 1998;20:74–8.Google ScholarPubMed
Ballmaier, M, Schulze, H, Strauss, G, et al. Thrombopoietin in patients with congenital thrombocytopenia and absent radii: elevated serum levels, normal receptor expression, but defective reactivity to thrombopoietin. Blood 1997;90:612–19.Google ScholarPubMed
Letestu, R, Vitrat, N, Masse, A, et al. Existence of a differentiation blockage at the stage of a megakaryocyte precursor in the thrombocytopenia and absent radii (TAR) syndrome. Blood 2000;95:1633–41.Google ScholarPubMed
Ballmaier, M, Schulze, H, Cremer, M, Folman, CC, Strauss, G, Weite, K. Defective c-Mpl signaling in the syndrome of thrombocytopenia with absent radii. Stem Cells 1998;16:S177–84.CrossRefGoogle ScholarPubMed
Kmita, M, Fraudeau, N, Herault, Y, Duboule, D. Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature 2002;420:145–50.CrossRefGoogle ScholarPubMed
Goodman, FR. Limb malformations and the human HOX genes. Am J Med Genet 2002;112:256–65.CrossRefGoogle ScholarPubMed
Taghon, T, Stolz, F, De Smedt, M, et al. HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. Blood 2002;99:1197–204.CrossRefGoogle ScholarPubMed
Pineault, N, Helgason, CD, Lawrence, HJ, Humphries, RK. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 2002;30:49–57.CrossRefGoogle ScholarPubMed
Bjornsson, JM, Andersson, E, Lundstrom, P, et al. Proliferation of primitive myeloid progenitors can be reversibly induced by HOXA10. Blood 2001;98:3301–8.CrossRefGoogle ScholarPubMed
Fleischman, RA, Letestu, R, Mi, X, et al. Absence of mutations in the HoxA10, HoxA11 and HoxD11 nucleotide coding sequences in thrombocytopenia with absent radius syndrome. Br J Haematol 2002;116:367–75.CrossRefGoogle ScholarPubMed
Dokal, I, Ganly, P, Riebero, I, et al. Late onset bone marrow failure associated with proximal fusion of radius and ulna: a new syndrome. Br J Haematol 1989;71:277–80.CrossRefGoogle ScholarPubMed
Solorzano, E, Lisker, R, Hernandez, J. [Hereditary radioulnar sinostosis (author’s transl)]. Rev Invest Clin 1978;30:307–10.Google Scholar
Thompson, AA, Woodruff, K, Feig, SA, Nguyen, LT, Schanen, NC. Congenital thrombocytopenia and radio-ulnar synostosis: a new familial syndrome. Br J Haematol 2001;113:866–70.CrossRefGoogle ScholarPubMed
Thompson, AA, Nguyen, LT. Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet 2000;26:397–8.CrossRefGoogle ScholarPubMed
Klopocki, E, Schulze, H, Strauss, G, et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am J Hum Genet 2007;80:232–40.CrossRefGoogle ScholarPubMed
Bonsi, L, Marchionni, C, Alviano, F, et al. Thrombocytopenia with absent radii (TAR) syndrome: from hemopoietic progenitor to mesenchymal stromal cell disease?Exp Hematol 2009;37:1–7.CrossRefGoogle ScholarPubMed
Aquino, VM, Mustafa, MM, Vaickus, L, Wooley, R, Buchanan, GR. Recombinant interleukin-6 in the treatment of congenital thrombocytopenia associated with absent radii. J Pediatr Hematol Oncol 1998;20:474–6.CrossRefGoogle ScholarPubMed
Dempfle, CE, Burck, C, Grutzmacher, T, Wizenmann, J, Heene, DL. Increase in platelet count in response to rHuEpo in a patient with thrombocytopenia and absent radii syndrome. Blood 2001;97:2189–90.CrossRefGoogle Scholar
Weinblatt, M, Petrikovsky, B, Bialer, M, Kochen, J, Harper, R. Prenatal evaluation and in utero platelet transfusion for thrombocytopenia absent radii syndrome. Prenatal Diagnosis 1994;14:892–6.CrossRefGoogle ScholarPubMed
Labrune, P, Pons, JC, Khalil, M, et al. Antenatal thrombocytopenia in three patients with TAR (thrombocytopenia with absent radii) syndrome. Prenat Diagn 1993;13:463–6.CrossRefGoogle ScholarPubMed
Ergur, AR, Yergok, YZ, Ertekin, A, Tayyar, M, Yilmazturk, A. Prenatal diagnosis of an uncommon syndrome: thrombocytopenia absent radius (TAR). Zentralbl fur Gynakol 1998;120:75–8.Google Scholar
Luthy, DA, Hall, JG, Graham, CB. Prenatal diagnosis of thrombocytopenia with absent radii. Clin Genet 1979;15:495–9.CrossRefGoogle ScholarPubMed
Donnenfeld, AE. Prenatal diagnosis of thrombocytopenia in TAR syndrome. Prenat Diagn 1994;14:73–4.CrossRefGoogle ScholarPubMed
Luthy, DA, Mack, L, Hirsch, J, Cheng, E.Prenatal ultrasound diagnosis of thrombocytopenia with absent radii. Am J Obstet Gynecol 1981;141:350–1.CrossRefGoogle ScholarPubMed
Donnenfeld, AE, Wiseman, B, Lavi, E, Weiner, S. Prenatal diagnosis of thrombocytopenia absent radius syndrome by ultrasound and cordocentesis. Prenatal Diagnosis 1990;10:29–35.CrossRefGoogle ScholarPubMed
Fadoo, Z, Naqvi, SM. Acute myeloid leukemia in a patient with thrombocytopenia with absent radii syndrome. J Pediatr Hematol Oncol 2002;24:134–5.CrossRefGoogle Scholar
Camitta, BM, Rock, A. Acute lymphoidic leukemia in a patient with thrombocytopenia/absent radii (Tar) syndrome. Am J Pediatr Hematol Oncol 1993;15:335–7.Google Scholar
Rao, VS, Shenoi, UD, Krishnamurthy, PN. Acute myeloid leukemia in TAR syndrome. Indian J Pediatr 1997;64:563–5.CrossRefGoogle ScholarPubMed
Alter, BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematol Am Soc Hematol Educ Prog 2007;29–39.Google ScholarPubMed
Rivers, A, Slayton, WB. Congenital cytopenias and bone marrow failure syndromes. Semin Perinatol 2009;33:20–8.CrossRefGoogle ScholarPubMed
Rose, MJ, Nicol, KK, Skeens, MA, Gross, TG, Kerlin, BA. Congenital amegakaryocytic thrombocytopenia: the diagnostic importance of combining pathology with molecular genetics. Pediatr Blood Cancer 2008;50:1263–5.CrossRefGoogle ScholarPubMed
Ihara, K, Ishii, E, Eguchi, M, et al. Identification of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia. Proc Nat Acad Sci USA 1999;96:3132–6.CrossRefGoogle ScholarPubMed
Ballmaier, M, Germeshausen, M,, Schulze, H, et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 2001;97:139–46.CrossRefGoogle ScholarPubMed
Alter, BP, Young, NS. The Bone Marrow Failure Syndromes. In Nathan and Oski’s Hematology of Infancy and Childhood. 5th edn. Philadelphia: W.B.Saunders Co., 1998:237–335.Google Scholar
King, S, Germeshausen, M, Strauss, G, Welte, K, Ballmaier, M. Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Br J Haematol 2005;131:636–44.CrossRefGoogle ScholarPubMed
Tonelli, R, Scardovi, AL, Pession, A, et al. Compound heterozygosity for two different amino-acid substitution mutations in the thrombopoietin receptor (c-mpl gene) in congenital amegakaryocytic thrombocytopenia (CAMT). Hum Genet 2000;107:225–33.CrossRefGoogle Scholar
van den Oudenrijn, S, Bruin, M, Folman, CC, et al. Mutations in the thrombopoietin receptor, Mpl, in children with congenital amegakaryocytic thrombocytopenia. Br J Haematol 2000;110:441–8.CrossRefGoogle ScholarPubMed
Steinberg, O, Gilad, G, Dgany, O, et al. Congenital amegakaryocytic thrombocytopenia-3 novel c-MPL mutations and their phenotypic correlations. J Pediatr Hematol Oncol 2007;29:822–5.CrossRefGoogle ScholarPubMed
Desai, SR, Ranade, SR. Congenital amegakaryocytic thrombocytopenia (CAMT): a case report with review of literature. Indian J Pathol Microbiol 2007;50:659–60.Google ScholarPubMed
Passos-Coelho, JL, Sebastiao, M, Gameiro, P, et al. Congenital amegakaryocytic thrombocytopenia – report of a new c-mpl gene missense mutation. Am J Hematol 2007;82:240–1.CrossRefGoogle ScholarPubMed
Miyazaki, H, Kato, T.Thrombopoietin: biology and clinical potentials [Review]. Int J Hematol 1999;70:216–25.Google Scholar
Kanaji, S, Kanaji, T, Migita, M, et al. Characterization of a patient with atypical amegakaryocytic thrombocytopenia. Eur J Haematol 2008;80:361–4.CrossRefGoogle ScholarPubMed
Hallett, JM, Martell, RW, Sher, C, Jacobs, P. Amegakaryocytic thrombocytopenia with duplication of part of the long arm of chromosome 3. Br J Haematol 1989;71:291–2.CrossRefGoogle Scholar
Germeshausen, M, Ballmaier, M, Welte, K. MPL mutations in 23 patients suffering from congenital amegakaryocytic thrombocytopenia: the type of mutation predicts the course of the disease. Hum Mutat 2006;27:296.CrossRefGoogle ScholarPubMed
Geddis, AE. Congenital amegakaryocytic thrombocytopenia and thrombocytopenia with absent radii. Hematol Oncol Clin North Am 2009;23:321–31.CrossRefGoogle ScholarPubMed
Al-Ahmari, A, Ayas, M, Al-Jefri, A, Al-Mahr, M, Rifai, S, El-Solh, H. Allogeneic stem cell transplantation for patients with congenital amegakaryocytic thrombocytopenia (CAT). Bone Marrow Transpl 2004;33:829–31.CrossRefGoogle Scholar
Alter, BP. Bone marrow failure syndromes in children. Pediatr Clin North Am 2002;49:973–88.CrossRefGoogle ScholarPubMed
Wicke, DC, Meyer, J, Buesche, G, et al. Gene therapy of MPL deficiency: challenging balance between leukemia and pancytopenia. Mol Ther 2010; 18:343–52.CrossRefGoogle ScholarPubMed
Cramer, E. Gray platelet syndrome: immunoelectron microscopic localization of fibrinogen and von Willebrand. Blood 1985;66:1309.Google ScholarPubMed
Rosa, J-P, George, JN, Bainton, DF, Nurden, AT, Caen, JP, McEver, RP. Gray platelet syndrome. Demonstration of alpha granule membranes that can fuse with the cell surface. JCI 1987;80:1138–46.CrossRefGoogle ScholarPubMed
Jantunen, E. Inherited giant platelet disorders. Eur J Haematol 1994;53:191–6.CrossRefGoogle ScholarPubMed
Krishnamurti, L, Neglia, JP, Nagarajan, R, et al. Paris-Trousseau syndrome platelets in a child with Jacobsen’s syndrome. Am J Hematol 2001;66:295–9.CrossRefGoogle Scholar
von Behrens, WE. Mediterranean macrothrombocytopenia. Blood 1975;46:199–208.Google Scholar
Kunishima, S, Kojima, T, Tanaka, T, et al. Mapping of a gene for May-Hegglin anomaly to chromosome 22q. Hum Genet 1999;105:379–83.CrossRefGoogle ScholarPubMed
Toren, A, Rozenfeld-Granot, G, Rocca, B, et al. Autosomal-dominant giant platelet syndromes: a hint of the same genetic defect as in Fechtner syndrome owing to a similar genetic linkage to chromosome 22q11–13. Blood 2000;96:3447–51.Google ScholarPubMed
Hu, A, Wang, F, Sellers, JR. Mutations in human nonmuscle myosin IIA found in patients with May–Hegglin anomaly and Fechtner syndrome result in impaired enzymatic function. J Biol Chem 2002;277:46512–17.CrossRefGoogle ScholarPubMed
Althaus, K, Greinacher, A. MYH9-related platelet disorders. Semin Thromb Hemost 2009;35:189–203.CrossRefGoogle ScholarPubMed
Noris, P, Spedini, P, Belletti, S, Magrini, U, Balduini, CL. Thrombocytopenia, giant platelets, and leukocyte inclusion bodies (May–Hegglin anomaly): clinical and laboratory findings. American Journal of Medicine 1998;104:355–60.CrossRefGoogle ScholarPubMed
Epstein, CJ, Sahud, MA, Piel, CF, Goodman, JR. Hereditary macrothrombocytopathia, nephritis and deafness. Am J Med 1972;52:299–310.CrossRefGoogle ScholarPubMed
Peterson, LC, Rao, KV, Crosson, JT, White, JG. Fechtner syndrome – a variant of Alport’s syndrome with leukocyte inclusions and macrothrombocytopenia. Blood 1985;65:397–406.Google ScholarPubMed
Greinacher, A, Nieuwenhuis, HK, White, JG. Sebastian platelet syndrome: a new variant of hereditary macrothrombocytopenia with leukocyte inclusions. Blut 1990;61:282–8.CrossRefGoogle ScholarPubMed
Gangarossa, S, Seri, M, Pecci, A, et al. Dissecting clinical findings: platelet defects segregate independently of deafness and cataract in a family affected by an apparent syndromic form of macrothrombocytopenia. Int J Mol Med 2005;16:437–41.Google Scholar
Mhatre, AN, Janssens, S, Nardi, MA, Li, Y, Lalwani, AK. Clinical and molecular genetic analysis of a family with macrothrombocytopenia and early onset sensorineural hearing loss. Eur J Med Genet 2009;52:185–90.CrossRefGoogle ScholarPubMed
Nurden, P, Chretien, F, Poujol, C, Winckler, J, Borel-Derlon, A, Nurden, A. Platelet ultrastructural abnormalities in three patients with type 2B von Willebrand disease. Br J Haematol 2000;110:704–14.CrossRefGoogle ScholarPubMed
Okita, JR, Frojmovic, MM, Kristopeit, S, Wong, T, Kunicki, TJ. Montreal platelet syndrome: a defect in calcium-activated neutral proteinase (calpain). Blood 1989;74:715–21.Google Scholar
Jackson, SC, Sinclair, GD, Cloutier, S, Duan, Z, Rand, ML, Poon, MC. The Montreal platelet syndrome kindred has type 2B von Willebrand disease with the VWF V1316M mutation. Blood 2009;113:3348–51.CrossRefGoogle ScholarPubMed
Derry, JM, Ochs, HD, Francke, U. Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell 1994;78:635–44.CrossRefGoogle ScholarPubMed
Derry, JM, Kerns, JA, Weinberg, KI, et al. WASP gene mutations in Wiskott–Aldrich syndrome and X-linked thrombocytopenia. Human Molecular Genetics 1995;4:1127–35.CrossRefGoogle ScholarPubMed
Abo, A. Understanding the molecular basis of Wiskott–Aldrich-syndrome [Review]. Cell Molec Life Sci 1998;54:1145–53.CrossRefGoogle Scholar
Haddad, E, Cramer, E, Riviere, C, et al. The thrombocytopenia of Wiskott–Aldrich syndrome is not related to a defect in proplatelet formation. Blood 1999;94:509–18.Google Scholar
Lawson, SE, Thompson, L, Williams, MD. Wiskott–Aldrich syndrome presenting as congenital thrombocytopenia. Clin Laborat Haematol 1999;21:397–9.CrossRefGoogle ScholarPubMed
Sullivan, KE, Mullen, CA, Blaese, RM, Winkelstein, JA. A multiinstitutional survey of the Wiskott–Aldrich syndrome. J Pediatr 1994;125:876–85.CrossRefGoogle ScholarPubMed
Filipovich, AH, Stone, JV, Tomany, SC, et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott–Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood 2001;97:1598–603.CrossRefGoogle ScholarPubMed
Notarangelo, LD, Parolini, O, Faustini, R, Porteri, V, Albertini, A, Ugazio, AG. Presentation of Wiskott–Aldrich syndrome as isolated thrombocytopenia. Blood 1991;77:1125–26.Google ScholarPubMed
Thompson, AR, Wood, WG, Stamatoyannopoulos, G.X-linked syndrome of platelet dysfunction, thrombocytopenia, and imbalanced globin chain synthesis with hemolysis. Blood 1977;50:303–16.Google ScholarPubMed
Raskind, WH, Niakan, KK, Wolff, J, et al. Mapping of a syndrome of X-linked thrombocytopenia with thalassemia to band Xp11–12: further evidence of genetic heterogeneity of X-linked thrombocytopenia. Blood 2000;95:2262–8.Google ScholarPubMed
Yu, C, Niakan, KK, Matsushita, M, Stamatoyannopoulos, G, Orkin, SH, Raskind, WH. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 2002;100:2040–5.CrossRefGoogle ScholarPubMed
Nichols, KE, Crispino, JD, Poncz, M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet 2000;24:266–70.CrossRefGoogle Scholar
Freson, K, Devriendt, K, Matthijs, G, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 2001;98:85–92.CrossRefGoogle ScholarPubMed
Mehaffey, MG, Newton, AL, Gandhi, MJ, Crossley, M, Drachman, JG. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood 2001;98:2681–8.CrossRefGoogle ScholarPubMed
Freson, K, Matthijs, G, Thys, C, et al. Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum Mol Genet 2002;11:147–52.CrossRefGoogle Scholar
Dowton, SB, Beardsley, D, Jamison, D, Blattner, S, Li, FP. Studies of a familial platelet disorder. Blood 1985;65:557–63.Google ScholarPubMed
Ho, CY, Otterud, B, Legare, RD, et al. Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1–22.2. Blood 1996;87:5218–24.Google ScholarPubMed
Walker, LC, Stevens, J, Campbell, H, et al. A novel inherited mutation of the transcription factor RUNX1 causes thrombocytopenia and may predispose to acute myeloid leukaemia. Br J Haematol 2002;117:878–81.CrossRefGoogle ScholarPubMed
Heller, PG, Glembotsky, AC, Gandhi, MJ, et al. Low Mpl receptor expression in a pedigree with familial platelet disorder with predisposition to acute myelogenous leukemia and a novel AML1 mutation. Blood 2005;105:4664–70.CrossRefGoogle Scholar
Barton, K, Nucifora, G. AML1 haploinsufficiency, gene dosage, and the predisposition to acute leukemia. Bioessays 2000;22:214–18.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Escher, R, Wilson, P, Carmichael, C, et al. A pedigree with autosomal dominant thrombocytopenia, red cell macrocytosis, and an occurrence of t(12:21) positive pre-B acute lymphoblastic leukemia. Blood Cells Mol Dis 2007;39:107–14.CrossRefGoogle Scholar
Shinawi, M, Erez, A, Shardy, DL, et al. Syndromic thrombocytopenia and predisposition to acute myelogenous leukemia caused by constitutional microdeletions on chromosome 21q. Blood 2008;112:1042–7.CrossRefGoogle ScholarPubMed
Beri-Dexheimer, M, Latger-Cannard, V, Philippe, C, et al. Clinical phenotype of germline RUNX1 haploinsufficiency: from point mutations to large genomic deletions. Eur J Hum Genet 2008;16:1014–18.CrossRefGoogle ScholarPubMed
Hoyeraal, HM, Lamvik, J, Moe, PJ. Congenital hypoplastic thrombocytopenia and cerebral malformations in two brothers. Acta Paediatr Scand 1970;59:185–91.CrossRefGoogle ScholarPubMed
Khabbaze, Y, Karayalcin, G, Paley, C, Shende, A, Valderrama, E, Lipton, JM. Thrombocytopenia absent corpus callosum syndrome: third case of a distinct clinical entity. J Pediatr Hematol Oncol 2001;23:469–71.CrossRefGoogle ScholarPubMed
Gardner, RJM, Morrison, PS, Abbott, GD. A syndrome of congenital thrombocytopenia with multiple malformations and neurologic dysfunction. J Pediatr 1983;102:600–2.CrossRefGoogle ScholarPubMed
Wiedmeier, SE, Henry, E, Christensen, RD. Hematological abnormalities during the first week of life among neonates with trisomy 18 and trisomy 13: data from a multi-hospital healthcare system. Am J Med Genet A 2008;146:312–20.CrossRefGoogle Scholar
Hohlfeld, P, Forestier, F, Kaplan, C, Tissot, JD, Daffos, F.Fetal thrombocytopenia: a retrospective survey of 5,194 fetal blood samplings. Blood 1994;84:1851–6.Google ScholarPubMed
Ng, YY, Hu, JM, Su, PH, Chen, JY, Yang, MS, Chen, SJ. Goldenhar syndrome (oculoauriculovertebral dysplasia): report of one case. Acta Paediatr Taiwan 2006;47:142–5.Google ScholarPubMed
Ko, JM, Kim, JM, Kim, GH, Yoo, HW. PTPN11, SOS1, KRAS, and RAF1 gene analysis, and genotype-phenotype correlation in Korean patients with Noonan syndrome. J Hum Genet 2008;53:999–1006.CrossRefGoogle ScholarPubMed
Roth, P, Sklower, BS, Potaznik, D, Cooma, R, Sahdev, S.Neonatal Gaucher disease presenting as persistent thrombocytopenia. J Perinatol 2005;25:356–8.CrossRefGoogle ScholarPubMed
Andersson, H, Kaplan, P, Kacena, K, Yee, J. Eight-year clinical outcomes of long-term enzyme replacement therapy for 884 children with Gaucher disease type 1. Pediatrics 2008;122:1182–90.CrossRefGoogle ScholarPubMed
Fairley, C, Zimran, A, Phillips, M, et al. Phenotypic heterogeneity of N370S homozygotes with type I Gaucher disease: an analysis of 798 patients from the ICGG Gaucher Registry. J Inherit Metab Dis 2008;31:738–44.CrossRefGoogle ScholarPubMed
Brosh, RM, Jr. Molecular biology: the Bloom’s complex mousetrap. Nature 2008;456:453–4.CrossRefGoogle ScholarPubMed
Ahmed, AM, Barahmani, N, Duvic, M. Familial alopecia areata and chronic thrombocytopenia. J Am Acad Dermatol 2008;58:S75–7.CrossRefGoogle ScholarPubMed
Ahmed, FE, Albakrah, MS. Neonatal familial Evans syndrome associated with joint hypermobility and mitral valve regurgitation in three siblings in a Saudi Arab family. Ann Saudi Med 2009;29:227–30.CrossRefGoogle Scholar
Hospach, T, von den Driesch, P, Dannecker, GE. Acute febrile neutrophilic dermatosis (Sweet’s syndrome) in childhood and adolescence: two new patients and review of the literature on associated diseases. Eur J Pediatr 2009;168:1–9.CrossRefGoogle ScholarPubMed
Kahwash, SB, Fung, B, Savelli, S, Bleesing, JJ, Qualman, SJ. Autoimmune lymphoproliferative syndrome (ALPS): a case with congenital onset. Pediatr Dev Pathol 2007;10:315–19.CrossRefGoogle ScholarPubMed
Aballi, AJ, Puapondh, Y, Desposito, F.Platelet counts in thriving premature infants. Pediatrics 1968;42:685–9.Google ScholarPubMed
Appleyard, WJ, Brinton, A.Venous platelet counts in low birth weight infants. Biol Neonate 1971;17:30–4.CrossRefGoogle ScholarPubMed
Effiong, CE, Usanga, EA, Mellits, ED. Platelet count in healthy full-term Nigerian neonates. Trop Geogr Med 1976;28:329–32.Google ScholarPubMed
Lundstrom, U.Thrombocytosis in low birthweight infants: a physiological phenomenon in infancy. Arch Dis Child 1979;54:715–17.CrossRefGoogle ScholarPubMed
Matsubara, K, Baba, K, Nigami, H, et al. Early elevation of serum thrombopoietin levels and subsequent thrombocytosis in healthy preterm infants. Br J Haematol 2001;115:963–8.CrossRefGoogle ScholarPubMed
Addiego, JE, Jr., Mentzer, WC, Jr., Dallman, PR. Thrombocytosis in infants and children. J Pediatr 1974;85:805–7.CrossRefGoogle ScholarPubMed
Vora, AJ, Lilleyman, JS. Secondary thrombocytosis [see comments]. Arch Dis Childh 1993;68:88–90.CrossRefGoogle Scholar
Chan, KW, Kaikov, Y, Wadsworth, LD. Thrombocytosis in childhood: a survey of 94 patients. Pediatrics 1989;84:1064–7.Google ScholarPubMed
Heng, JT, Tan, AM. Thrombocytosis in childhood. Singapore Med J 1998;39:485–7.Google ScholarPubMed
Sutor, AH. Thrombocytosis in childhood. Semin Thromb Hemost 1995;21:330–9.CrossRefGoogle ScholarPubMed
Wiedmeier, SE, Henry, E, Burnett, J, Anderson, T, Christensen, RD. Thrombocytosis in neonates and young infants: a report of 25 patients with platelet counts of > or = 1 000 000 microl(-1). J Perinatol 2010;30:222–6.CrossRefGoogle Scholar
Till, JE, McCulloch, EA, Siminovitch, L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 1964;51:29–36.CrossRefGoogle ScholarPubMed
Chan, KW, Kaikov, Y, Wadsworth, LD. Thrombocytosis in childhood: a survey of 94 patients. Pediatrics 1989;84:1064–7.Google ScholarPubMed
Matsubara, K, Fukaya, T, Nigami, H, et al. Age-dependent changes in the incidence and etiology of childhood thrombocytosis. Acta Haematol 2004;111:132–7.CrossRefGoogle ScholarPubMed
Wolber, EM, Dame, C, Fahnenstich, H, et al. Expression of the thrombopoietin gene in human fetal and neonatal tissues. Blood 1999;94:97–105.Google ScholarPubMed
Dame, C.Developmental biology of thrombopoietin in the human fetus and neonate. Acta Paediatr Suppl 2002;91:54–65.CrossRefGoogle ScholarPubMed
Cremer, M, Dame, C, Schaeffer, HJ, Giers, G, Bartmann, P, Bald, R. Longitudinal thrombopoietin plasma concentrations in fetuses with alloimmune thrombocytopenia treated with intrauterine PLT transfusions. Transfusion 2003;43:1216–22.CrossRefGoogle ScholarPubMed
Murray, NA, Watts, TL, Roberts, IA. Endogenous thrombopoietin levels and effect of recombinant human thrombopoietin on megakaryocyte precursors in term and preterm babies. Pediatr Res 1998;43:148–51.CrossRefGoogle ScholarPubMed
Sola, MC, Du, Y, Hutson, AD, Christensen, RD. Dose-response relationship of megakaryocyte progenitors from the bone marrow of thrombocytopenic and non-thrombocytopenic neonates to recombinant thrombopoietin. Br J Haematol 2000;110:449–53.CrossRefGoogle ScholarPubMed
Dame, C, Sutor, AH. Primary and secondary thrombocytosis in childhood. Br J Haematol 2005;129:165–77.CrossRefGoogle ScholarPubMed
Randi, ML, Rossi, C, Fabris, F, Girolami, A. Essential thrombocythemia in young adults: major thrombotic complications and complications during pregnancy – a follow-up study in 68 patients. Clin Appl Thromb Hemost 2000;6:31–5.CrossRefGoogle ScholarPubMed
Dror, Y, Zipursky, A, Blanchette, VS. Essential thrombocythemia in children. J Pediatr Hematol Oncol 1999;21:356–63.CrossRefGoogle ScholarPubMed
Randi, ML, Putti, MC, Fabris, F, Sainati, L, Zanesco, L, Girolami, A. Features of essential thrombocythaemia in childhood: a study of five children. Br J Haematol 2000;108:86–9.CrossRefGoogle ScholarPubMed
Dror, Y, Blanchette, VS. Essential thrombocythaemia in children. Br J Haematol 1999;107:691–8.CrossRefGoogle ScholarPubMed
Stuhrmann, M, Bashawri, L, Ahmed, MA, et al. Familial thrombocytosis as a recessive, possibly X-linked trait in an Arab family. Br J Haematol 2001;112:616–20.CrossRefGoogle Scholar
Halperin, DS, Wacker, P, Lacourt, G, et al. Effects of recombinant human erythropoietin in infants with the anemia of prematurity: a pilot study. J Pediatr 1990;116:779–86.CrossRefGoogle ScholarPubMed
Gunn, T, Reaman, G, Outerbridge, EW, Colle, E. Peripheral total parenteral nutrition for premature infants with the respiratory distress syndrome: a controlled study. J Pediatr 1978;92:608–13.CrossRefGoogle ScholarPubMed
Burstein, Y, Rausen, AR, Peterson, CM. Duration of thrombocytosis in infants of polydrug (including methadone) users. J Pediatr 1982;100:506.CrossRefGoogle ScholarPubMed
Chambers, HM, Haslam, RR. Maternal narcotic abuse and neonatal thrombocytosis. Arch Dis Child 1989;64:426.CrossRefGoogle ScholarPubMed
Garcia-Algar, O, Brichs, LF, Garcia, ES, Fabrega, DM, Torne, EE, Sierra, AM. Methadone and neonatal thrombocytosis. Pediatr Hematol Oncol 2002;19:193–5.CrossRefGoogle ScholarPubMed
Nako, Y, Tachibana, A, Fujiu, T, Tomomasa, T, Morikawa, A. Neonatal thrombocytosis resulting from the maternal use of non-narcotic antischizophrenic drugs during pregnancy. Arch Dis Child Fetal Neonatal Ed 2001;84:F198–200.CrossRefGoogle ScholarPubMed
Lorber, J, Lilleyman, JS, Peile, EB. Acute infantile thrombocytosis and vitamin K deficiency associated with intracranial haemorrhage. Arch Dis Child 1979;54:471–2.CrossRefGoogle ScholarPubMed
Ozsoylu, S.Acute infantile thrombocytosis and vitamin K deficiency associated with intracranial haemorrhage. Arch Dis Child 1980;55:84–5.CrossRefGoogle ScholarPubMed
Miller, JM, Sherrill, JG, Hathaway, WE. Thrombocythemia in the myeloproliferative disorder of Down’s syndrome. Pediatrics 1967;40:847–50.Google ScholarPubMed
Cairney, AE, McKenna, R, Arthur, DC, Nesbit, ME, Jr., Woods, WG. Acute megakaryoblastic leukaemia in children. Br J Haematol 1986;63:541–54.Google ScholarPubMed
Lewis, DS. Acute megakaryoblastic leukemia in childhood. Blood 1984;63:725.Google ScholarPubMed
Sandstedt, B, Nilsson, H. Granulomatous giant cell arteritis in an infant. Acta Paediatr Scand 1982;71:863–8.CrossRefGoogle ScholarPubMed
Gasparini, N, Franzese, A, Argenziano, A, Di Maio, S, Tenore, A. Thrombocytosis in congenital adrenal hyperplasia at diagnosis. Clin Pediatr (Philadelphia) 1996;35:267–9.CrossRefGoogle ScholarPubMed
Yohannan, MD, Santhosh-Kumar, CR. Thrombocytosis in congenital adrenal hyperplasia at diagnosis. Clin Pediatr (Philadelphia) 1997;36:186.CrossRefGoogle ScholarPubMed
Yohannan, MD, Santhosh-Kumar, CR. Thrombocytosis in congenital adrenal hyperplasia at diagnosis [letter;comment]. Clinical Pediatr 1997;36:186.CrossRefGoogle Scholar
Alvarez, O, Miller, JH, Coates, TD. Thrombocytosis and hyposplenism in an infant with fetal hydantoin syndrome. Am J Pediatr Hematol Oncol 1992;14:62–5.CrossRefGoogle Scholar
Mino, M. Use and safety of elevated dosages of vitamin E in infants and children. Int J Vitam Nutr Res Suppl 1989;30:69–80.Google ScholarPubMed
Keeton, BR. Vitamin E deficiency and thrombocytosis in Caffey’s disease. Arch Dis Child 1976;51:393–5.CrossRefGoogle ScholarPubMed
Willig, TN, Gazda, H, Sieff, CA. Diamond-Blackfan anemia. Curr Opin Hematol 2000;7:85–94.CrossRefGoogle ScholarPubMed
Turba, F, Bianchi, C, Cella, D, Rondanini, GF. [Thrombocytosis and neonatal subcutaneous adiponecrosis]. Minerva Pediatr 1994;46:343–6.Google ScholarPubMed
Nielsen, IM, Ornvold, K, Jacobsen, BB, Ranek, L. Fatal familial cholestatic syndrome in Greenland Eskimo children. Acta Paediatr Scand 1986;75:1010–16.CrossRefGoogle ScholarPubMed
Yogev, R, Schreiber, M, Gardner, S, Shulman, ST. Moxalactam in the treatment of pediatric infections. Am J Dis Child 1982;136:836–9.Google ScholarPubMed
Van Reempts, PJ, Van Overmeire, B, Mahieu, LM, Vanacker, KJ. Clinical experience with ceftriaxone treatment in the neonate. Chemotherapy 1995;41:316–22.CrossRefGoogle ScholarPubMed
Yogev, R, Shulman, ST, Chadwick, EG, Davis, AT, Glogowski, W. Once daily ceftriaxone for central nervous system infections and other serious pediatric infections. Pediatr Infect Dis 1986;5:298–303.CrossRefGoogle ScholarPubMed
Bruel, H, Chabrolle, JP, el Khoury, E, et al. [Thrombocytosis and cholestasis in a newborn treated with zidovudine]. Arch Pediatr 2001;8:893–4.CrossRefGoogle Scholar
Hsu, HL, Lu, CY, Tseng, HY, et al. Empirical monotherapy with meropenem in serious bacterial infections in children. J Microbiol Immunol Infect 2001;34:275–80.Google ScholarPubMed
Koksal, N, Hacimustafaoglu, M, Bagci, S, Celebi, S. Meropenem in neonatal severe infections due to multiresistant gram-negative bacteria. Indian J Pediatr 2001;68:15–19.CrossRefGoogle ScholarPubMed
Oral, R, Akisu, M, Kultursay, N, Vardar, F, Tansug, N. Neonatal Klebsiella pneumonia sepsis and imipenem/cilastatin. Indian J Pediatr 1998;65:121–9.CrossRefGoogle ScholarPubMed
Meissner, HC, Groothuis, JR, Rodriguez, WJ, et al. Safety and pharmacokinetics of an intramuscular monoclonal antibody (SB 209763) against respiratory syncytial virus (RSV) in infants and young children at risk for severe RSV disease. Antimicrob Agents Chemother 1999;43:1183–8.Google ScholarPubMed
Edstrom, CS, Christensen, RD. Evaluation and treatment of thrombosis in the neonatal intensive care unit. Clin Perinatol 2000;27:623–41.CrossRefGoogle ScholarPubMed
Uchida, T, Aoyama, K, Mori, K, et al. Pharmacokinetics of [I-125]-recombinant human interleukin-11–1 – absorption, distribution and excretion after subcutaneous administration to male rats. Europ J Drug Metab Pharmacokinet 1998;23:403–10.CrossRefGoogle Scholar
Jensen, MK, de Nully, BP, Nielsen, OJ, Hasselbalch, HC. Incidence, clinical features and outcome of essential thrombocythaemia in a well defined geographical area. Eur J Haematol 2000;65:132–9.CrossRefGoogle Scholar
Kudo, K, Horibe, K, Iwase, K, Kondo, M, Kojima, S. [Clinical features of essential thrombocythemia in three children]. Rinsho Ketsueki 2000;41:1164–70.Google ScholarPubMed
Yang, RC, Qian, LS. Essential thrombocythaemia in children: a report of nine cases. Br J Haematol 2000;110:1009–10.CrossRefGoogle ScholarPubMed
Hasle, H. Incidence of essential thrombocythaemia in children. Br J Haematol 2000;110:751.CrossRefGoogle ScholarPubMed
Kapoor, G, Correa, H, Yu, LC. Essential thrombocythemia in an infant. J Pediatr Hematol Oncol 1996;18:381–3.CrossRefGoogle ScholarPubMed
Hankins, J, Naidu, P, Rieman, M, Wang, W, Kaushansky, K, Rodriguez-Galindo, C.Thrombocytosis in an infant with high thrombopoietin concentrations. J Pediatr Hematol Oncol 2004;26:142–5.CrossRefGoogle Scholar
Taksin, AL, Le, C, Dusanter-Fourt, I, et al. Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis is not related to a c-mpl mutation or to an autocrine stimulation by Mpl-L. Blood 1999;93:125–39.Google Scholar
El-Harith, H, Roesl, C, Ballmaier, M, et al. Familial thrombocytosis caused by the novel germ-line mutation p.Pro106Leu in the MPL gene. Br J Haematol 2009;144:185–94.CrossRefGoogle Scholar
Graziano, C, Carone, S, Panza, E, et al. Association of hereditary thrombocythemia and distal limb defects with a thrombopoietin gene mutation. Blood 2009;114:1655–7.CrossRefGoogle ScholarPubMed
Robins, EB, Niazi, M. Essential thrombocythemia in a child with elevated thrombopoietin concentrations and skeletal anomalies. Pediatr Blood Cancer 2008;50:859–61.CrossRefGoogle Scholar
Kikuchi, M, Tayama, T, Hayakawa, H, Takahashi, I, Hoshino, H, Ohsaka, A. Familial thrombocytosis. Br J Haematol 1995;89:900–2.CrossRefGoogle ScholarPubMed
Tecuceanu, N, Dardik, R, Rabizadeh, E, Raanani, P, Inbal, A. A family with hereditary thrombocythaemia and normal genes for thrombopoietin and c-Mpl. Br J Haematol 2006;135:348–51.CrossRefGoogle ScholarPubMed
Wiestner, A, Padosch, SA, Ghilardi, N, et al. Hereditary thrombocythaemia is a genetically heterogeneous disorder: exclusion of TPO and MPL in two families with hereditary thrombocythaemia. Br J Haematol 2000;110:104–9.CrossRefGoogle ScholarPubMed
Michiels, JJ, van Genderen, PJ. Essential thrombocythemia in childhood. Semin Thromb Hemost 1997;23:295–301.CrossRefGoogle ScholarPubMed
Ruggeri, M, Finazzi, G, Tosetto, A, Riva, S, Rodeghiero, F, Barbui, T. No treatment for low-risk thrombocythaemia: results from a prospective study. BJH 1998;103:772–7.CrossRefGoogle ScholarPubMed
Hays, RM, Bartoshesky, LE, Feingold, M.New features of thrombocytopenia and absent radius syndrome. Birth Defects Orig Artic Ser 1982;18:115–21.Google ScholarPubMed
van Haeringen, A, Veenstra, F, Maaswinkel-Mooij, PD, van de Kamp, JJ. Intermittent thrombocytopenia and absent radii: report of a patient with additional unusual manifestations. Am J Med Genet 1989;34:202–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×