Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-29T04:57:41.250Z Has data issue: false hasContentIssue false

5 - Biology and Context: Symphonic Causation and the Distribution of Childhood Morbidities

Published online by Cambridge University Press:  03 May 2011

W. Thomas Boyce
Affiliation:
University of British Columbia
Daniel P. Keating
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

INTRODUCTION

The Nature-Nurture Culture Wars

By and large, investigators and scholars contributing to the Millennium Dialogue on Early Child Development (described in more detail in the Acknowledgments at the beginning of this volume), including the author of this chapter, were academically reared within a scientific generation marked by a confluence of two irreconcilable views on the origins of human disorders. Within a single generation, physicians, clinical and developmental psychologists, social workers, and laboratory investigators were steeped in the twin, sequential agendas of environmental and biological determinism. In the former of these views, prominent in the scientific world of the 1960s and 1970s, disease and disorder were held to be products of contextual exposures and adversities. Human afflictions, it was believed, were due almost exclusively to the acute and chronic, cumulative influences of environmental agents of disease. Such agents included psychological stressors, impoverished living conditions, physical toxins, infectious pathogens, and insufficient or malevolent parenting. Prevention and treatment were taken to mandate alterations in these causative environmental exposures. Thus, schizophrenia was viewed as the product of psychological “double-binds” within dysfunctional family units, autism was regarded as the legacy of cold, distant mothers, and maternal overprotectiveness figured prominently in the presumed etiology of childhood anxiety disorders.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, J. W. (1997). Understanding gene-environment interactions [news]. Environ Health Perspect, 105(6), 578–80.CrossRefGoogle Scholar
Alkon, A., Goldstein, L. H., Smider, N., Essex, M., Kupfer, D., & Boyce, W. T. (2003). Developmental and contextual influences on autonomic reactivity in young children. Dev Psychobiol, 42(1), 64–78.CrossRefGoogle ScholarPubMed
Andrieu, N., & Goldstein, A. M. (1998). Epidemiologic and genetic approaches in the study of gene-environment interaction: an overview of available methods. Epidemiol Rev, 20(2), 137–47.CrossRefGoogle Scholar
Baron, R., & Kenny, D. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J Person Soc Psych, 51(6), 1173–82.CrossRefGoogle ScholarPubMed
Belsky, J. (2005). Differential susceptibility to rearing influence: An evolutionary hypothesis and some evidence. In Ellis, B. J. & Bjorklund, D. F. (Eds.), Origins of the Social Mind: Evolutionary Psychology and Child Development (pp. 139–63). New York: Guilford.Google Scholar
Bergeman, C. S., Plomin, R., Pederson, N. L., McClearn, G. E., & Nesselroade, J. R. (1990). Genetic and environmental influences on social support: The Swedish Adoption/Twin Study of Aging (SATSA). J Gerontol, 45, 101–106.CrossRefGoogle Scholar
Berman, S. M., & Noble, E. P. (1997). The D2 dopamine receptor (DRD2) gene and family stress: Interactive effects on cognitive functions in children. Behav Genet, 27, 33–43.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., Quigley, K. S., & Fabro, V. T. (1994). Autonomic space and psychophysiological response. Psychophysiology, 31(1), 44–61.CrossRefGoogle ScholarPubMed
Boekaerts, M., & Röder, I. (1999). Stress, coping, and adjustment in children with a chronic disease: A review of the literature. Disabil Rehabil, 21(7), 311–37.Google ScholarPubMed
Boyce, W. T. (1992). The vulnerable child: New evidence, new approaches. Adv Pediatrics, 39, 1–33.Google ScholarPubMed
Boyce, W. T. (1996). Biobehavioral reactivity and injuries in children and adolescents. In Bornstein, M. H. & Genevro, J. (Eds.), Child Development and Behavioral Pediatrics: Toward Understanding Children and Health (pp. 35–58). Mahwah, NJ: Erlbaum Associates.Google Scholar
Boyce, W. T. (2007). A biology of misfortune: Stress reactivity, social context, and the ontogeny of psychopathology in early life. In Masten, A. (Ed.), Multilevel Dynamics in Developmental Psychopathology: Pathways to the Future (34th ed., pp. 45–82). Minneapolis, MN: University of Minnesota.Google Scholar
Boyce, W. T., Barr, R. G., & Zeltzer, L. K. (1992). Temperament and the psychobiology of childhood stress. Pediatrics, 90(3), 483–90.Google ScholarPubMed
Boyce, W. T., Chesney, M., Alkon-Leonard, A., Tschann, J., Adams, S., Chesterman, B., Cohen, F., Kaiser, P., Folkman, S., & Wara, D. (1995). Psychobiologic reactivity to stress and childhood respiratory illnesses: Results of two prospective studies. Psychosom Med, 57, 411–22.CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stressreactivity. Dev Psychopathol, 17(2), 271–301.CrossRefGoogle Scholar
Boyce, W. T., O'Neill-Wagner, P., Price, C. S., Haines, M., & Suomi, S. J. (1998). Crowding stress and violent injuries among behaviorally inhibited rhesus macaques. Health Psychol, 17(3), 285–9.CrossRefGoogle ScholarPubMed
Boyce, W. T., Quas, J., Alkon, A., Smider, N., Essex, M., & Kupfer, D. J. (2001). Autonomic reactivity and psychopathology in middle childhood. Br J Psychiatry, 179, 144–50.CrossRefGoogle ScholarPubMed
Braungart, J. M., Fulker, D. W., & Plomin, R. (1992). Genetic mediation of the home environment during infancy: A sibling adoption study of the HOME. Dev Psychol, 28, 1048–55.CrossRefGoogle Scholar
Bronfenbrenner, U., & Ceci, S. J. (1994). Nature-nurture reconceptualization in developmental perspective: A bioecological model. Psychol Rev, 101, 568–86.CrossRefGoogle Scholar
Butzlaff, R. L., & Hooley, J. M. (1998). Expressed emotion and psychiatric relapse: A meta-analysis. Arch Gen Psychiatry, 55, 547–52.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Berntson, G. G., Malarkey, W. B., Kiecolt-Glaser, J. K., Sheridan, J. F., Poehlmann, K. M., Burleson, M. H., Ernst, J. M., Hawkley, L. C., & Glaser, R. (1998). Autonomic, neuroendocrine, and immune responses to psychological stress: The reactivity hypothesis. Ann NY Acad Sci, 840, 664–73.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Berntson, G. G., Sheridan, J. F., & McClintock, M. K. (2000). Multilevel integrative analyses of human behavior: Social neuroscience and the complementing nature of social and biological approaches. Psychol Bull, 126(6), 829–43.CrossRefGoogle ScholarPubMed
Cadoret, R. J., Winokur, G., Langbehn, D., Troughton, E., Yates, W. R., & Stewart, M. A. (1996). Depression spectrum disease, I: The role of gene-environment interaction. Am J Psychiatry, 153(7), 892–9.Google ScholarPubMed
Cadoret, R. J., Yates, W. R., Troughton, E., Woodworth, G., & Stewart, M. A. (1995). Adoption study demonstrating two genetic pathways to drug abuse. Arch Gen Psychiatry, 52(1), 42–52.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., McClay, J., Mill, J., Martin, J., Braithwaite, A., & Poulton, R. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301(5631), 386–9.CrossRefGoogle ScholarPubMed
Champoux, M., Higley, J. D., & Suomi, S. J. (1997). Behavioral and physiological characteristics of Indian and Chinese-Indian hybrid rhesus macaque infants. Dev Psychobiol, 31(1), 49–63.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Cloninger, C. R., Bohman, M., & Sigvardsson, S. (1981). Inheritance of alcohol abuse. Cross-fostering analysis of adopted men. Arch Gen Psychiatry, 38(8), 861–8.CrossRefGoogle ScholarPubMed
Cogswell, M. E., McDonnell, S. M., Khoury, M. J., Franks, A. L., Burke, W., & Brittenham, G. (1998). Iron overload, public health, and genetics: evaluating the evidence for hemochromatosis screening. Ann Intern Med, 129(11), 971–9.CrossRefGoogle ScholarPubMed
Cohen, S. (1999). Social status and susceptibility to respiratory infections. Ann NY Acad Sci, 896, 246–53.CrossRefGoogle ScholarPubMed
Cohen, S., Hamrick, N., Rodriguez, M. S., Feldman, P. J., Rabin, B. S., & Manuck, S. B. (2002). Reactivity and vulnerability to stress-associated risk for upper respiratory illness. Psychosom Med, 64(2), 302–10.CrossRefGoogle ScholarPubMed
Cohen, S., Miller, G. E., & Rabin, B. S. (2001). Psychological stress and antibody response to immunization: a critical review of the human literature. Psychosom Med, 63(1), 7–18.CrossRefGoogle ScholarPubMed
Corbex, M., Poirier, O., Fumeron, F., Betoulle, D., Evans, A., Ruidavets, J. B., Arveiler, D., Luc, G., Tiret, L., & Cambien, F. (2000). Extensive association analysis between the CETP gene and coronary heart disease phenotypes reveals several putative functional polymorphisms and gene-environment interaction. Genet Epidemiol, 19(1), 64–80.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Crabbe, J. C., Wahlsten, D., & Dudek, B. C. (1999). Genetics of mouse behavior: interactions with laboratory environment. Science, 284(5420), 1670–2.CrossRefGoogle ScholarPubMed
Dishion, T., Patterson, G., Stoolmiller, M., & Skinner, M. (1991). Family, school, and behavioral antecedents to early adolescent involvement with antisocial peers. Dev Psychol, 27, 172–80.CrossRefGoogle Scholar
Dubos, R. J. (1965). Man Adapting. New Haven: Yale University Press.Google Scholar
Ellis, B. J., Essex, M. J., & Boyce, W. T. (2005). Biological sensitivity to context: II. Empirical explorations of an evolutionary-developmental hypothesis. Dev Psychopathol, 17(2), 303–28.CrossRefGoogle Scholar
Evans, K. L., Muir, W. J., Blackwood, D. H., & Porteous, D. J. (2001). Nuts and bolts of psychiatric genetics: Building on the Human Genome Project. Trends Genet, 17(1), 35–40.CrossRefGoogle ScholarPubMed
Glynn, L. M., Christenfeld, N., & Gerin, W. (1999). Gender, social support, and cardiovascular responses to stress. Psychosom Med, 61(2), 234–42.CrossRefGoogle ScholarPubMed
Goldsmith, H. H., Gottesman, I. I., & Lemery, K. S. (1997). Epigenetic approaches to developmental psychopathology. Dev Psychopathol, 9(2), 365–87.CrossRefGoogle ScholarPubMed
Goldstein, L. H., Trancik, A., Bensadoun, J., Boyce, W. T., & Adler, N. E. (1999). Social dominance and cardiovascular reactivity in preschoolers: Associations with SES and Health. Ann NY Acad Sci, 896, 363–6.CrossRefGoogle ScholarPubMed
Gunnar, M. R. (1987). Psychobiological studies of stress and coping: An introduction. Child Dev, 58, 1403–7.CrossRefGoogle ScholarPubMed
Haber, S. N., & Barchas, P. R. (1983). The regulatory effect of social rank on behavior after amphetamine administration. In Barchas, P. R. (Ed.), Social Hierarchies: Essays toward a Sociophysiological Perspective (pp. 119–32). Westport, CT: Greenwood Press.Google Scholar
Heinz, A., Higley, J. D., Gorey, J. G., Saunders, R. C., Jones, D. W., Hommer, D., Zajicek, K., Suomi, S. J., Lesch, K.-P., Weinberger, D. R., & Linnoila, M. (1998). In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates. Am J Psychiatry, 155(8), 1023–8.CrossRefGoogle ScholarPubMed
Hinde, R. A. (1998). Integrating across levels of complexity. In Hann, D. M., Huffman, L. C., Lederhendler, I. I., & Meinecke, D. (Eds.), Advancing Research on Developmental Plasticity: Integrating the Behavioral Science and Neuroscience of Mental Health (pp. 165–73). Washington, DC: National Institute of Mental Health.Google Scholar
Hogue, A., & Steinberg, L. (1995). Homophily of internalized distress in adolescent peer groups. Dev Psychol, 31, 897–906.CrossRefGoogle Scholar
House, J. S., Landis, K. R., & Umberson, D. (1988). Social relationships and health. Science, 241, 540–5.CrossRefGoogle ScholarPubMed
Jensen, P. S., Richters, J., Ussery, T., Bloedau, L., & Davis, H. (1991). Child psychopathology and environmental influences: discrete life events versus ongoing adversity. J Am Acad Child Adolesc Psychiatry, 30, 303–9.CrossRefGoogle ScholarPubMed
Kagan, J. (1994). Galen's Prophecy. New York: Basic Books.Google Scholar
Kelly, J. B. (2000). Children's adjustment in conflicted marriage and divorce: a decade review of research. J Am Acad Child Adolesc Psychiatry, 39(8), 963–73.CrossRefGoogle ScholarPubMed
Kendler, K. S., & Eaves, L. J. (1986). Models for the joint effect of genotype and environment on liability to psychiatric illness. Am J Psychiatry, 143(3), 279–89.Google ScholarPubMed
Kendler, K. S., Neale, M., Kessler, R., Heath, A., & Eaves, L. (1993). A twin study of recent life events and difficulties. Arch Gen Psychiatry, 50, 789–96.CrossRefGoogle ScholarPubMed
Khoury, M. J., Burke, W., & Thomson, E. J. (2000a). Genetics and public health: A framework for the integration of human genetics into public health practice. In Khoury, M. J., Burke, W., & Thomson, E. J. (Eds.), Genetics and Public Health in the 21st Century: Using Genetic Information to Improve Health and Prevent Disease (Vol. 40, pp. 3–23). Oxford: Oxford University Press.CrossRefGoogle Scholar
Khoury, M. J., Burke, W., & Thomson, E. J. (Eds.). (2000b). Genetics and Public Health in the 21st Century: Using Genetic Information to Improve Health and Prevent Disease (Vol. 40). Oxford: Oxford University Press.CrossRefGoogle Scholar
Kierkegaard, S. ([1843] 1986). Either/Or (S. L. Ross & G. L. Stengren, Trans.). New York: Harper & Row.Google Scholar
Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., & Moffitt, T. E. (2006). MAOA, maltreatment, and gene-environment interaction predicting children's mental health: New evidence and a meta-analysis. Mol Psychiatry, 11(10), 903–13.CrossRefGoogle ScholarPubMed
Kraemer, H. C., Stice, E., Kazdin, A., Offord, D., & Kupfer, D. (2001). How do risk factors work together? Mediators, moderators, independent, overlapping, and proxy-risk factors. Am J Psychiatry, 158, 848–56.CrossRefGoogle ScholarPubMed
Lee, C.-K., Klopp, R. G., Weindruch, R., & Prolla, T. A. (1999). Gene expression profile of aging and its retardation by caloric restriction. Science, 285, 1390–3.CrossRefGoogle ScholarPubMed
Lee, P. S., & Lee, K. H. (2000). Genomic analysis. Curr Opin Biotechnol, 11(2), 171–5.CrossRefGoogle ScholarPubMed
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., Benjamin, J., Muller, C. R., Hamer, D. H., & Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274(5292), 1527–31.CrossRefGoogle ScholarPubMed
Lewontin, R. C. (1974). The analysis of variance and the analysis of causes. Am J Hum Genet, 26, 400–11.Google ScholarPubMed
Manuck, S. B., Cohen, S., Rabin, B. S., Muldoon, M. F., & Bachen, E. A. (1991). Individual differences in cellular immune response to stress. Psychol Sci, 2(2), 111–15.CrossRefGoogle Scholar
Matthews, K. A., Weiss, S. M., Detre, T., Dembroski, T. M., Falkner, B., Manuck, S. B., & Williams, R. B. (1986). Handbook of Stress, Reactivity, and Cardiovascular Disease. New York: John Wiley & Sons.Google Scholar
Matthews, K. A., Woodall, K. L., & Allen, M. T. (1993). Cardiovascular reactivity to stress predicts future blood pressure status. Hypertension, 22, 479–85.CrossRefGoogle ScholarPubMed
Matthews, K. A., Woodall, K. L., & Stoney, C. M. (1990). Changes in and stability of cardiovascular responses to behavioral stress: Results from a four-year longitudinal study of children. Child Dev, 61, 1134–44.CrossRefGoogle ScholarPubMed
McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties in detecting interactions and moderator effects. Psychol Bull, 114(2), 376–90.CrossRefGoogle ScholarPubMed
McGue, M., & Bouchard, T. J., Jr. (1998). Genetic and environmental influences on human behavioral differences. Ann Rev Neurosci, 21(5), 1–24.CrossRefGoogle ScholarPubMed
Meaney, M. J., Szyf, M., & Seckl, J. R. (2007). Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med, 13(7), 269–77.CrossRefGoogle ScholarPubMed
Mednick, S. A., Gabrielli, W. F., & Hutchings, B. (1987). Genetic factors in the etiology of criminal behavior. In Mednick, S. A., Gabrielli, W. F., & Hutchings, B. (Eds.), The Causes of Crime: New Biological Approaches (pp. 74–91). Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
Meehl, P. E. (1977). Specific etiology and other forms of strong influence: Some quantitative meanings. J Med Philosophy, 2(1), 33–53.CrossRefGoogle Scholar
Miller, G. (1962). Airs, waters, and places. J Hist Med, 17, 129–40.Google ScholarPubMed
Miller, T. W. (Ed.). (1998). Children of Trauma: Stressful Life Events and Their Effects on Children and Adolescents. Madison, CT: International Universities Press, Inc.Google Scholar
,National Human Genome Research Institute. (2005). Ethical, legal, and social implications of human genetics research. Located at: http://www.genome.gov/10001618.
O'Connor, T. G., Hetherington, E. M., Reiss, D., & Plomin, R. (1995). A twin-sibling study of observed parent-adolescent interactions. Child Dev, 66, 812–29.CrossRefGoogle ScholarPubMed
O'Hara, K., & Boyce, W. T. (2001). Behavioral and psychobiological predictors of preschoolers' delayed approach during resistance to temptation. Paper presented at the Biannual Meeting of the Society for Research in Child Development, Minneapolis, MN.Google Scholar
Omenn, G. S. (2000). Genetics and public health: Historical perspectives and current challenges and opportunities. In Khoury, M. J., Burke, W., & Thomson, E. J. (Eds.), Genetics and Public Health in the 21st Century: Using Genetic Information to Improve Health and Prevent Disease (Vol. 40, pp. 25–44). Oxford: Oxford University Press.CrossRefGoogle Scholar
Ottman, R. (1996). Gene-environment interaction: Definitions and study designs. Prev Med, 25, 764–70.CrossRefGoogle ScholarPubMed
Palmer, L. J., & Cookson, W. O. C. M. (2000). Genomic approaches to understanding asthma. Genome Res, 10, 1280–7.CrossRefGoogle ScholarPubMed
Percy, W. (1989, Summer). The divided creature. Wilson Quarterly, 13, 77.Google Scholar
Plomin, R., & Crabbe, J. (2000). DNA. Psychol Bull, 126(6), 806–28.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychol Bull, 84, 309–22.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2001). Behavioral Genetics (Fourth ed.). New York: Worth Publishers.Google Scholar
Pynoos, R. S., Goenjian, A. K., & Steinberg, A. M. (1998). A public mental health approach to the postdisaster treatment of children and adolescents. Child Adolesc Psychiatr Clin N Am, 7(1), 195–210.Google ScholarPubMed
Quas, J. A., Bauer, A., & Boyce, W. T. (2004). Physiological reactivity, social support, and memory in early childhood. Child Dev, 75(3), 797–814.CrossRefGoogle ScholarPubMed
Reiss, D., Plomin, R., & Hetherington, E. M. (1991). Genetics and psychiatry: An unheralded window on the environment. Am J Psychiatry, 148, 283–91.Google ScholarPubMed
Risch, N., Herrell, R., Lehner, T., Liang, K., Eaves, L., Hoh, J., Griem, A., Kovacs, M., Ott, J., Merikangas, K. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. JAMA, 301(23), 2462–71CrossRefGoogle ScholarPubMed
Robinson, G. E., Fernald, R. D., & Clayton, D. F. (2008). Genes and social behavior. Science, 322(5903), 896–900.CrossRefGoogle ScholarPubMed
Rosenthal, D. (1970). Genetic Theory and Abnormal Behavior. New York: McGraw-Hill.Google Scholar
Rutter, M. (2006). Genes and Behaviour: Nature/Nurture Interplay Explained. Oxford, UK: Blackwell Publishing.Google Scholar
Rutter, M. (2007). Gene-environment interdependence. Dev Sci, 10(1), 12–18.CrossRefGoogle ScholarPubMed
Rutter, M., Moffitt, T. E., & Caspi, A. (2006). Gene-environment interplay and psychopathology: Multiple varieties but real effects. J Child Psychol Psychiatry, 47(3–4), 226–61.CrossRefGoogle ScholarPubMed
Scriver, C. R., & Waters, P. J. (1999). Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet, 15(7), 267–72.CrossRefGoogle Scholar
Sheridan, J. F., Stark, J. L., Avitsur, R., & Padgett, D. A. (2000). Social disruption, immunity, and susceptibility to viral infection. Role of glucocorticoid insensitivity and NGF. Ann NY Acad Sci, 917, 894–905.CrossRefGoogle ScholarPubMed
Shonkoff, J. P., & Phillips, D. A. (Eds.). (2000). From Neurons to Neighborhoods: The Science of Early Child Development. Washington, DC: National Academy Press.Google Scholar
Starfield, B., Katz, H., Gabriel, A., Livingston, G., Benson, P., Hankin, J., Horn, S., & Steinwachs, D. (1984). Morbidity in childhood: A longitudinal view. N Engl J Med, 310, 824–9.CrossRefGoogle ScholarPubMed
Stein, N. L., & Boyce, W. T. (1997). The role of individual differences in reactivity and attention in accounting for memory of a fire-alarm experience. Paper presented at the Society for Research in Child Development Biannual Meeting, Washington, DC.Google Scholar
Steinberg, L., & Avenevoli, S. (2000). The role of context in the development of psychopathology: A conceptual framework and some speculative propositions. Child Dev, 71, 66–74.CrossRefGoogle ScholarPubMed
Suomi, S. J. (1987). Genetic and maternal contributions to individual differences in rhesus monkey biobehavioral development. In Krasnagor, N. (Ed.), Psychobiological Aspects of Behavioral Development (pp. 397–419). New York: Academic Press.Google Scholar
Suomi, S. J. (1997). Early determinants of behaviour: Evidence from primate studies. Br Med Bull, 53(1), 170–84.CrossRefGoogle ScholarPubMed
Szyf, M., Weaver, I. C., Champagne, F. A., Diorio, J., & Meaney, M. J. (2005). Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol, 26(3–4), 139–62.CrossRefGoogle ScholarPubMed
Turkheimer, E. (1998). Heritability and biological explanation. Psychol Rev, 105(4), 782–91.CrossRefGoogle ScholarPubMed
Herwerden, L., Harrap, S., Wong, Z., Abramson, M., Kutin, J., Forbes, A., Raven, J., Lanigan, A., & Walters, E. (1995). Linkage of high-affinity IgE receptor gene with bronchial hyperreactivity, even in the absence of atopy. Lancet, 346, 1262–5.CrossRefGoogle ScholarPubMed
Wachs, T. D., & Plomin, R. (Eds.). (1991). Conceptualization and Measurement of Organism-Environment Interaction. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Wahlberg, K. E., Wynne, L. C., Oja, H., Keskitalo, P., Pykäläinen, L., Lahti, I., Moring, J., Naarala, M., Sorri, A., Seitamaa, M., Läksy, K., Kolassa, J., & Tienari, P. (1997). Gene-environment interaction in vulnerability to schizophrenia: Findings from the Finnish Adoptive Family Study of Schizophrenia. Am J Psychiatry, 154(3), 355–62.Google ScholarPubMed
Wahlsten, D. (1990). Insensitivity of the analysis of variance to heredity-environment interaction. Behav Brain Sci, 13(1), 109–61.CrossRefGoogle Scholar
Wallen, K. (1996). Nature needs nurture: The interaction of hormonal and social influences on the development of behavioral sex differences in rhesus monkeys. Horm Behav, 30, 364–78.CrossRefGoogle ScholarPubMed
Wang, X., Zuckerman, B., Pearson, C., Kaufman, G., Chen, C., Wang, G., Wise, P. H., Bauchner, H., & Xu, X. (2001). Maternal stress, CRH genotype, and preterm birth. Paper presented at the Pediatric Academic Societies Annual Meeting, Baltimore, MD.Google Scholar
Ward, A., & Pratt, C. (1996). Psychosocial influences on the use of health care by children. Aust NZ J Pub Health, 20(3), 309–16.CrossRefGoogle ScholarPubMed
Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., & Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nat Neurosci, 7(8), 847–54.CrossRefGoogle ScholarPubMed
Wildner, M. (2000). Gene-environment interaction and human lifespan. Lancet, 356(9247), 2103.CrossRefGoogle ScholarPubMed
Williams, D. R. (1997). Race and health: Basic questions, emerging directions. Ann Epidemiol, 7, 322–33.CrossRefGoogle ScholarPubMed
Williams, R. R., Hopkins, P. N., Wu, L. L., & Hunt, S. C. (2000). Applying genetic strategies to prevent atherosclerosis. In Khoury, M. J., Burke, W., & Thomson, E. J. (Eds.), Genetics and Public Health in the 21st Century: Using Genetic Information to Improve Health and Prevent Disease (pp. 463–85). Oxford: Oxford University Press.CrossRefGoogle Scholar
Wilmoth, J. R., Deegan, L. J., Lundström, H., & Horiuchi, S. (2000). Increase of maximum life span in Sweden, 1861–1999. Science, 289(5488), 2366–8.CrossRefGoogle Scholar
Winokur, G., Cadoret, R., Dorzab, J., & Baker, M. (1971). Depressive disease: A genetic study. Arch Gen Psychiatry, 24(2), 135–44.CrossRefGoogle ScholarPubMed
Yoshiuchi, K., Kumano, H., Nomura, S., Yoshimura, H., Ito, K., Kanaji, Y., Ohashi, Y., Kuboki, T., & Suematsu, H. (1998). Stressful life events and smoking were associated with Graves' disease in women, but not in men. Psychosom Med, 60(2), 182–5.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×