Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T11:59:17.025Z Has data issue: false hasContentIssue false

8 - Myeloma bone disease – pathogenesis of bone destruction and therapeutic strategies

from Section 2 - Biological basis for targeted therapies in myeloma

Published online by Cambridge University Press:  18 December 2013

Stephen A. Schey
Affiliation:
Department of Haematology, King’s College Hospital, London
Kwee L. Yong
Affiliation:
Department of Haematology, University College Hospital, London
Robert Marcus
Affiliation:
Department of Haematology, King’s College Hospital, London
Kenneth C. Anderson
Affiliation:
Dana-Farber Cancer Institute, Boston
Get access

Summary

Introduction

Myeloma bone disease is a major cause of morbidity in patients, the clinical manifestations of which include pain, cord compression, loss of mobility and deformity. The clinical features of myeloma bone disease are due to osteoporosis, or focal lytic lesions leading to pathological fractures, vertebral collapse and hypercalcemia (Figure 8.1). Neurological sequelae secondary to bone disease are commonly caused by compression of nerves by damaged and displaced bone and most dramatically include spinal cord compression, which often presents as a neurosurgical emergency occurring in up to 5% of patients with myeloma (Figure 8.2)[1]. Indeed, consequences of osteolytic bone disease are often the presenting features of myeloma. Approximately 67% of patients with myeloma present with bone pain and up to 90% of patients with myeloma exhibit features of myeloma bone disease at some stage of the disease course[2,3].

The bone marrow micro-environment has long been recognized as a hospitable locale for the growth and rapid expansion of myeloma and other hematological malignancies as well as the metastatic spread of solid tumors including breast and prostate cancers. However, myeloma is uniquely associated with an aggressive and destructive osteolytic bone disease, which not only causes substantial morbidity as a direct result of bone destruction but, owing to the destruction of boney barriers, enables rapid tumor expansion and spread to extra-medullary sites. Once myeloma has escaped from the bone marrow micro-environment, disease enters a leukemic phase and is rapidly fatal.

Type
Chapter
Information
Myeloma
Pathology, Diagnosis, and Treatment
, pp. 96 - 109
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kyle, R. A. et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 2003;78:21–33.CrossRefGoogle ScholarPubMed
Kariyawasan, C. C., Hughes, D. A., Jayatillake, M. M., Mehta, A. B.Multiple myeloma: causes and consequences of delay in diagnosis. Q. J. M. 2007;100:635–40.CrossRefGoogle ScholarPubMed
Coleman, R. E.Skeletal complications of malignancy. Cancer 1997;80:1588–94.3.0.CO;2-G>CrossRefGoogle Scholar
Mundy, G. R., Raisz, L. G., Cooper, R. A., Schecter, G. P., Salmon, S. E.Evidence for the secretion of an osteoclast stimulating factor in myeloma. N. Eng. J. Med. 1974;291:1041–6.CrossRefGoogle Scholar
Roodman, G. D.Interleukin-6: an osteotropic factor?J. Bone Miner. Res. 1992;7:475–8.CrossRefGoogle Scholar
Bataille, R. et al. Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J. Clin. Invest. 1991;88:62–6.CrossRefGoogle ScholarPubMed
Bataille, R., Chappard, D., Basle, M.Excessive bone resorption in human plasmacytomas: direct induction by tumour cells in vivo. Br. J. Haematol. 1995;90:721–4.CrossRefGoogle ScholarPubMed
Bataille, R., Chappard, D., Basle, M. F.Quantifiable excess of bone resorption in monoclonal gammopathy is an early symptom of malignancy: a prospective study of 87 bone biopsies. Blood 1996;87:4762–9.Google ScholarPubMed
Croucher, P. I., Apperley, J. F.Bone disease in multiple myeloma. Br. J. Haematol. 1998;103:902–10.CrossRefGoogle ScholarPubMed
Taube, T. et al. Abnormal bone remodelling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur. J. Haematol. 1992;49:192–8.CrossRefGoogle ScholarPubMed
Cozzolino, F. et al. Production of interleukin-1 by bone marrow myeloma cells. Blood 1989;74:380–7.Google ScholarPubMed
Kawano, M. et al. Interleukin-1 beta rather than lymphotoxin as the major bone resorbing activity in human multiple myeloma. Blood 1989;73:1646–9.Google ScholarPubMed
Yamamoto, I. et al. Production of interleukin 1 beta, a potent bone resorbing cytokine, by cultured human myeloma cells. Cancer Res. 1989;49:4242–6.Google ScholarPubMed
Lowik, C. W. et al. Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogenesis. Biochem. Biophys. Res. Commun. 1989;162:1546–52.CrossRefGoogle ScholarPubMed
Ishimi, Y. et al. IL-6 is produced by osteoblasts and induces bone resorption. J. Immunol. 1990;145:3297–303.Google ScholarPubMed
Paul, S. R., Bennett, F., Calvetti, J. A., et al. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and haematopoietic cytokine. Proc. Natl Acad. Sci. USA 1990;98:581–6.Google Scholar
Lichtenstein, A., Berenson, J., Norman, D., Chang, M. P., Carlile, A.Production of cytokines by bone marrow cells obtained from patients with multiple myeloma. Blood 1989;74:1266–73.Google ScholarPubMed
Garrett, I. R. et al. Production of lymphotoxin, a bone-resorbing cytokine, by cultured human myeloma cells. N. Engl. J. Med. 1987;317:526–32.CrossRefGoogle ScholarPubMed
Bataille, R., Klein, B., Jourdan, M., Rossi, J. F., Durie, B. G.Spontaneous secretion of tumor necrosis factor-beta by human myeloma cell lines. Cancer 1989;63:877–80.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Wolpe, S. D. et al. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J. Exp. Med. 1988;167:570–81.CrossRefGoogle ScholarPubMed
Kukita, T. et al. Macrophage inflammatory protein-1 alpha (LD78) expressed in human bone marrow: its role in regulation of hematopoiesis and osteoclast recruitment. Lab. Invest. 1997;76:399–406.Google ScholarPubMed
Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93:165.CrossRefGoogle ScholarPubMed
Hsu, H. et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl Acad. Sci. USA 1999;96:3540–5.CrossRefGoogle ScholarPubMed
Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309.CrossRefGoogle ScholarPubMed
Choi, S. J. et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 2000;96:671–5.Google ScholarPubMed
Giuliani, N., Bataille, R., Mancini, C., Lazzaretti, M., Barille, S.Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 2001;98:3527–33.CrossRefGoogle ScholarPubMed
Seidel, C. et al. Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood 2001;98:2269–71.CrossRefGoogle ScholarPubMed
Terpos, E. et al. Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 2003;102:1064–9.CrossRefGoogle ScholarPubMed
Heider, U. et al. Expression of receptor activator of nuclear factor kappaB ligand on bone marrow plasma cells correlates with osteolytic bone disease in patients with multiple myeloma. Clin. Cancer Res. 2003;9:1436–40.Google Scholar
Sezer, O., Heider, U., Jakob, C., Eucker, J., Possinger, K.Human bone marrow myeloma cells express RANKL. J. Clin. Oncol. 2002;20:353–4.CrossRefGoogle ScholarPubMed
Shaughnessy, J. D., Barlogie, B.Interpreting the molecular biology and clinical behavior of multiple myeloma in the context of global gene expression profiling. Immunol. Rev. 2003;194:140–63.CrossRefGoogle ScholarPubMed
Giuliani, N. et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood 2002;100:4615–21.CrossRefGoogle Scholar
Choi, S. J. et al. Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J. Clin. Invest. 2001;108:1833–41.CrossRefGoogle Scholar
Abe, M. et al. Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood 2002;100:2195–202.Google ScholarPubMed
Terpos, E. et al. Serum levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in patients with multiple myeloma. Br. J. Haematol. 2003;123:106–9.CrossRefGoogle ScholarPubMed
Oyajobi, B. O. et al. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 2003;102:311–19.CrossRefGoogle ScholarPubMed
Kurihara, N., Bertolini, D., Suda, T., Akiyama, Y., Roodman, G. D.IL-6 stimulates osteoclast-like multinucleated cell formation in long term human marrow cultures by inducing IL-1 release. J. Immunol. 1990;144:4226–30.Google ScholarPubMed
Sati, H. I. et al. Interleukin-6 is expressed by plasma cells from patients with multiple myeloma and monoclonal gammopathy of undetermined significance. Br. J. Haematol. 1998;101:287–95.CrossRefGoogle ScholarPubMed
Roodman, G. D.Treatment strategies for bone disease. Bone Marrow Transplant 2007;40:1139–46.CrossRefGoogle ScholarPubMed
Lee, J. W. et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood, 2004;103:2308–15.CrossRefGoogle ScholarPubMed
Donovan, K. A., Lacy, M. Q., Gertz, M. A., Lust, J. A.IL-1beta expression in IgM monoclonal gammopathy and its relationship to multiple myeloma. Leukemia 2002;16:382–5.CrossRefGoogle ScholarPubMed
Lam, J. et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 2000;106:1481–8.CrossRefGoogle ScholarPubMed
Roberts, M., Rinaudo, P. A., Vilinskas, J., Owens, G.Solitary sclerosing plasma-cell myeloma of the spine. Case report. J. Neurosurg. 1974;40:125–9.CrossRefGoogle ScholarPubMed
Mulleman, D. et al. Multiple myeloma presenting with widespread osteosclerotic lesions. Joint Bone Spine 2004;71:79–83.CrossRefGoogle ScholarPubMed
McCluggage, W. G., Jones, F. G., Hull, D., Bharucha, H.Sclerosing IgA multiple myeloma. Acta Haematol. 1995;94:98–101.CrossRefGoogle ScholarPubMed
Urashima, M. et al. Interleukin-6 promotes multiple myeloma cell growth via phosphorylation of retinoblastoma protein. Blood 1996;88:2219–27.Google ScholarPubMed
Reddy, S. V., Takahashi, S., Dallas, M. et al. Interleukin-6 antisense deoxyoligonucleotides inhibit bone resorption by giant cells from human giant cell tumours of bone. J. Bone Miner. Res. 1994;9:753–7.CrossRefGoogle Scholar
de la Mata, J., Uy, H. L., Guise, T. A. et al. Interleukin-6 enhances hypercalcaemia and bone resorption mediated by parathyroid hormone-related protein in vivo. J. Clin. Invest. 1995;95:2846–52.CrossRefGoogle ScholarPubMed
Karadag, A., Scutt, A. M., Croucher, P. I.Human myeloma cells promote the recruitment of osteoblast precursors: mediation by interleukin-6 and soluble interleukin-6 receptor. J. Bone Miner. Res. 2000;15:1935–43.CrossRefGoogle ScholarPubMed
Abildgaard, N. et al. Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma. Eur. J. Haematol. 2000;64:121–9.CrossRefGoogle ScholarPubMed
Tian, E., Fenghuang, Z., Walker, R. et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. New Engl. J. Med. 2003;349(26): 2483–94.CrossRefGoogle ScholarPubMed
Politou, M. C. et al. Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Int. J. Cancer 2006;119:1728–31.CrossRefGoogle ScholarPubMed
Heath, D. J. et al. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J. Bone Miner. Res. 2009;24:425–36.CrossRefGoogle ScholarPubMed
Yaccoby, S. et al. Antibody-based inhibition of DKK1 suppresses tumor- induced bone resorption and multiple myeloma growth in- vivo. Blood 2006; blood-2006–2009–047712.
Pozzi, S. et al. In vivo and in vitro effects of a novel anti-Dkk1 neutralizing antibody in multiple myeloma. Bone 2013;53:487–96.CrossRefGoogle ScholarPubMed
van Bezooijen, R. L. et al. Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J. Bone Miner. Res. 2007;22:19–28.CrossRefGoogle Scholar
Brunetti, G. et al. Sclerostin is overexpressed by plasma cells from multiple myeloma patients. Ann. N. Y. Acad. Sci. 2011;1237:19–23.CrossRefGoogle ScholarPubMed
Terpos, E. et al. Early effects of IL-6 receptor inhibition on bone homeostasis: a pilot study in women with rheumatoid arthritis. Clin. Exp. Rheumatol. 2011;29:921–5.Google Scholar
Giuliani, N. et al. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 2005;106:2472–83.CrossRefGoogle Scholar
Giuliani, N. et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood 2002;100:4615–21.CrossRefGoogle Scholar
Grano, M. et al. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc. Natl Acad. Sci. USA 1996;93:7644–8.CrossRefGoogle ScholarPubMed
Standal, T. et al. HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood 2007;109:3024–30.Google ScholarPubMed
Ehrlich, L. A. et al. IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood 2005;106:1407–14.CrossRefGoogle ScholarPubMed
Geiser, A. G. et al. Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-beta1 gene. Bone 1998;23:87–93.CrossRefGoogle ScholarPubMed
Guo, X., Wang, X. F.Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009;19:71–88.CrossRefGoogle ScholarPubMed
Yata, K., Abe, M., Matsumoto, T.[Mechanisms for formation of myeloma bone disease]. Clin. Calcium 2008;18:438–46.Google Scholar
Mohammad, K. S. et al. Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS One 2009;4:e5275.CrossRefGoogle ScholarPubMed
Ling, N. et al. Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin. Nature 1986;321:779–82.CrossRefGoogle ScholarPubMed
Vale, W. et al. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 1986;321:776–9.CrossRefGoogle ScholarPubMed
Schwartz, N. B., Channing, C. P.Evidence for ovarian “inhibin”: suppression of the secondary rise in serum follicle stimulating hormone levels in proestrous rats by injection of porcine follicular fluid. Proc. Natl Acad. Sci. USA 1977;74:5721–4.CrossRefGoogle ScholarPubMed
Woodruff, T. K., Mather, J. P.Inhibin, activin and the female reproductive axis. Ann. Rev. Physiol. 1995;57:219–44.CrossRefGoogle ScholarPubMed
Feijen, A., Goumans, M. J., van den Eijnden-van Raaij, A. J.Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins. Development 1994;120:3621–37.Google ScholarPubMed
Tuuri, T., Eramaa, M., Hilden, K., Ritvos, O.The tissue distribution of activin beta A- and beta B-subunit and follistatin messenger ribonucleic acids suggests multiple sites of action for the activin-follistatin system during human development. J. Clin. Endocrinol. Metab. 1994;78:1521–4.Google ScholarPubMed
Zhang, L. et al. MEKK1 transduces activin signals in keratinocytes to induce actin stress fiber formation and migration. Mol. Cell Biol. 2005;25:60–5.CrossRefGoogle ScholarPubMed
Munz, B. et al. Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. EMBO J. 1999;18:5205–15.CrossRefGoogle ScholarPubMed
Chen, Y. G., Lui, H. M., Lin, S. L., Lee, J. M., Ying, S. Y.Regulation of cell proliferation, apoptosis, and carcinogenesis by activin. Exp. Biol. Med. (Maywood) 2002;227:75–87.CrossRefGoogle ScholarPubMed
Eijken, M. et al. The activin A-follistatin system: potent regulator of human extracellular matrix mineralization. Faseb J. 2007;21:2949–60.CrossRefGoogle ScholarPubMed
Ogawa, Y. et al. Bovine bone activin enhances bone morphogenetic protein-induced ectopic bone formation. J. Biol. Chem. 1992;267:14233–7.Google ScholarPubMed
Ikenoue, T., Jingushi, S., Urabe, K., Okazaki, K., Iwamoto, Y.Inhibitory effects of activin-A on osteoblast differentiation during cultures of fetal rat calvarial cells. J. Cell Biochem. 1999;75:206–14.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Gaddy-Kurten, D., Coker, J. K., Abe, E., Jilka, R. L., Manolagas, S. C.Inhibin suppresses and activin stimulates osteoblastogenesis and osteoclastogenesis in murine bone marrow cultures. Endocrinology 2002;143:74–83.CrossRefGoogle ScholarPubMed
Fuller, K., Bayley, K. E., Chambers, T. J.Activin A is an essential cofactor for osteoclast induction. Biochem. Biophys. Res. Commun. 2000;268:2–7.CrossRefGoogle ScholarPubMed
Oue, Y. et al. Effect of local injection of activin A on bone formation in newborn rats. Bone 1994;15:361–6.CrossRefGoogle Scholar
Perrien, D. S. et al. Inhibin A is an endocrine stimulator of bone mass and strength. Endocrinology 2007;148:1654–65.CrossRefGoogle ScholarPubMed
Bonewald, L. F., Mundy, G. R. Role of transforming growth factor-beta in bone remodeling. Clin. Orthop. Relat. Res. 1990; 261–76.
Pearsall, R. S. et al. A soluble activin type IIA receptor induces bone formation and improves skeletal integrity. Proc. Natl Acad. Sci. USA 2008;105:7082–7.CrossRefGoogle ScholarPubMed
Ruckle, J. M., Kramer, W., Kumar, R. et al. A single dose of ACE-011 is associated with increases in bone formation and decreases in bone resorption markers in healthy, postmenopausal women. Abstract ASBMR 2007 (2007).
Lahtinen, R., Laakso, M., Palva, I., Virkkunen, P., Elomaa, I.Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Finnish Leukaemia Group. Lancet 1992;340:1049–52.CrossRefGoogle ScholarPubMed
McCloskey, E. V. et al. A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma. MRC Working Party on Leukaemia in Adults. Br. J. Haematol. 1998;100:317–25.CrossRefGoogle ScholarPubMed
Gimsing, P. et al. Effect of pamidronate 30 mg versus 90 mg on physical function in patients with newly diagnosed multiple myeloma (Nordic Myeloma Study Group): a double-blind, randomised controlled trial. Lancet Oncol. 2010;11:973–82.CrossRefGoogle Scholar
Rosen, L. S. et al. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer 2003;98:1735–44.CrossRefGoogle ScholarPubMed
Morgan, G. J. et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 2010;376:1989–99.CrossRefGoogle ScholarPubMed
Musto, P. et al. A multicenter, randomized clinical trial comparing zoledronic acid versus observation in patients with asymptomatic myeloma. Cancer 2008;113:1588–95.CrossRefGoogle ScholarPubMed
Fleisch, H.Development of Bisphosphonates. Breast Cancer Res. 2001;4(1).CrossRefGoogle ScholarPubMed
Mundy, G. R., Yoneda, T. Facilitation and suppression of bone metastasis. Clin. Orthop. Relat. Res. 1995;34–44.
van der Pluijm, G. et al. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J. Clin. Invest. 1996;98:698–705.CrossRefGoogle ScholarPubMed
Shipman, C. M., Croucher, P. I., Russell, R. G., Helfrich, M. H., Rogers, M. J.The bisphosphonate incadronate (YM175) causes apoptosis of human myeloma cells in vitro by inhibiting the mevalonate pathway. Cancer Res. 1998;58:5294–7.Google ScholarPubMed
Croucher, P. I., DeHendrik, R., Parry, M. J., et al. Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumour burden and angiogenesis, and increased survival. J. Bone Miner. Res. 2003;18:482–92.CrossRefGoogle ScholarPubMed
Kunzmann, V., Bauer, E., Feurle, J., Tony, F. W. H.-P., Wilhelm, M.Stimulation of gamma delta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000;96:384–92.Google ScholarPubMed
Neville-Webbe, H. L., Rostami-Hodjegan, A., Evans, C. A., Coleman, R. E., Holen, I.Sequence- and schedule-dependent enhancement of zoledronic acid induced apoptosis by doxorubicin in breast and prostate cancer cells. Int. J. Cancer 2005;113:364–71.CrossRefGoogle ScholarPubMed
Neville-Webbe, H. L., Evans, C. A., Coleman, R. E., Holen, I.Mechanisms of the synergistic interaction between the bisphosphonate zoledronic acid and the chemotherapy agent paclitaxel in breast cancer cells in vitro. Tumour Biol. 2006;27:92–103.CrossRefGoogle ScholarPubMed
Vogt, U., Bielawski, K. P., Bosse, U., Schlotter, C. M.Breast tumour growth inhibition in vitro through the combination of cyclophosphamide/methotrexate/5-fluorouracil, epirubicin/cyclophosphamide, epirubicin/paclitaxel, and epirubicin/docetaxel with the bisphosphonates ibandronate and zoledronic acid. Oncol. Rep. 2004;12:1109–14.Google Scholar
Ottewell, P. D. et al. Anticancer mechanisms of doxorubicin and zoledronic acid in breast cancer tumor growth in bone. Mol. Cancer Ther. 2009;8:2821–32.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A. et al. Osteonecrosis of the jaw in patients with multiple myeloma treated with bisphosphonates: evidence of increased risk after treatment with zoledronic acid. Haematologica 2006;91:968–71.Google ScholarPubMed
Zervas, K. et al. Incidence, risk factors and management of osteonecrosis of the jaw in patients with multiple myeloma: a single-centre experience in 303 patients. Br. J. Haematol. 2006;134:620–3.CrossRefGoogle ScholarPubMed
Rajkumar, S. V.Zoledronic acid in myeloma: MRC Myeloma IX. Lancet 2010;376:1965–6.CrossRefGoogle ScholarPubMed
Henry, D. H. et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J. Clin. Oncol. 2011;29:1125–32.CrossRefGoogle ScholarPubMed
Body, J. J. et al. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 2003;97:887–92.CrossRefGoogle ScholarPubMed
Rabin, N. et al. A new xenograft model of myeloma bone disease demonstrating the efficacy of human mesenchymal stem cells expressing osteoprotegerin by lentiviral gene transfer. Leukemia 2007;21:2181–91.CrossRefGoogle ScholarPubMed
Heath, D. J. et al. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma. Cancer Res. 2007;67:202–8.CrossRefGoogle Scholar
Vallet, S. et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc. Natl Acad. Sci. USA 2010;107(11):5124–9.CrossRefGoogle ScholarPubMed
Chantry, A. D. et al. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. J. Bone Miner. Res. 2010;25:2357–70.CrossRefGoogle ScholarPubMed
Yaccoby, S.Bone anabolism and tumour growth in myeloma. Haematologica 2011;96(s1).Google Scholar
Li, X., Pennisi, A., Yaccoby, S.Role of decorin in the antimyeloma effects of osteoblasts. Blood 2008;112:159–68.CrossRefGoogle ScholarPubMed
Pennisi, A. et al. Consequences of daily administered parathyroid hormone on myeloma growth, bone disease, and molecular profiling of whole myelomatous bone. PLoS One 2010;5:e15233.CrossRefGoogle ScholarPubMed
Li, X. et al. Human placenta-derived adherent cells prevent bone loss, stimulate bone formation, and suppress growth of multiple myeloma in bone. Stem Cells 2011;29:263–73.CrossRefGoogle ScholarPubMed
Edwards, C. M., Esparza, J., Oyajobi, B. O. et al. Lithium inhibits the development of myeloma bone disease in vivo (abstract). J. Bone Miner. Res. 2006; Abstracts 21, Suppl. 1.
Guiliani, N.Effect of new anti-myeloma drugs on bone microenvironment. Haematologica 2011; 96(s1).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×