Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T09:24:11.301Z Has data issue: false hasContentIssue false

2 - The Layered Architecture and Its Resources

Published online by Cambridge University Press:  05 June 2012

Thomas E. Stern
Affiliation:
Columbia University, New York
Georgios Ellinas
Affiliation:
University of Cyprus
Krishna Bala
Affiliation:
Xtellus, New Jersey
Get access

Summary

Ultimately, the performance of a network is limited by the quantity and functionality of its physical resources. In this chapter we examine the various functions performed in a multiwavelength network, emphasizing the role of the optical resources (located in the physical layer of Figure 1.3) in providing connectivity and throughput. For the most part we use the terms transparent optical, purely optical, and just optical interchangeably to refer to entities in the physical layer. The implication is that there is a clean break between the underlying technology and functionality in the physical layer and that in the logical layer. The physical layer contains optical components executing linear (transparent) operations on optical signals, whereas the logical layers contain electronic components executing nonlinear operations on electrical signals. In reality, as mentioned in Chapter 1, the picture in real networks is more nuanced. For example, some simple signal processing (either electronic or optical) may be present in the physical layers of today's networks, making them “opaque” to a greater or lesser degree. Conversely, as optical technology for signal processing matures, it is beginning to make its way into the logical layers. Nevertheless, the somewhat simplified view of a transparent (linear) optical layer underlying an electronic (nonlinear) logical layer is very helpful in providing a generic model for most multiwavelength networks. It will be used throughout this book, with exceptions duly noted as they appear. To provide a proper framework for the discussion that follows, we start in Section 2.1 with a description of layers and sublayers of the multiwavelength network architecture.

Type
Chapter
Information
Multiwavelength Optical Networks
Architectures, Design, and Control
, pp. 28 - 90
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×