Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T23:53:20.151Z Has data issue: false hasContentIssue false

9 - Self assembly: overview

from Part II - Self assembly

Published online by Cambridge University Press:  06 January 2011

Barry W. Ninham
Affiliation:
Australian National University, Canberra
Pierandrea Lo Nostro
Affiliation:
Università degli Studi di Firenze, Italy
Get access

Summary

This and succeeding chapters deal with how it is that molecular forces conspire with the size and shape of molecules called surfactants to associate spontaneously in solution into a myriad multimolecular aggregates. They can be ephemeral entities called micelles. Typical micelles formed by short-chained surfactants exist as entities for times of around 10−5 seconds. On the other hand they can be as long-lived as three or more months. That is so for membrane mimetic long-chained phospholipids that form complex single-walled vesicles and multi-bilayered structures. These self-assembled aggregates provide the organized microstructural scaffolding that forms the basis of biological cell membranes. Self-assembled entities direct biochemical cell traffic.

We have tried to identify conceptual developments in self assembly as they emerged over the past three decades. The result of a great deal of theorizing and experimentation is that some simple rules emerge. These allow the prediction of microstructure, as a function of components, component ratios and physicochemical solution conditions. This, combined with an understanding of how to change molecular forces via specific ion effects, gives some insights into the astonishingly complex background self-organization that occurs in biology. (The genius of DNA, RNA and proteins in biology is not in dispute. What is not generally recognized is that their work takes place within a hidden framework built from and involving the lipids, which are not just passive bystanders.)

Type
Chapter
Information
Molecular Forces and Self Assembly
In Colloid, Nano Sciences and Biology
, pp. 253 - 292
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nostro, P. Lo, Choi, S.-M., Ku, C.-Y. and Chen, S.-H., J. Phys. Chem. B 103 (1999), 5347–5352.CrossRef
Ninham, B. W. and Evans, D. F., Faraday Discuss. Chem. Soc. 81 (1986), 1–17.CrossRef
Brady, J. E., Evans, D. F., Warr, G. G., Grieser, F. and Ninham, B. W., J. Phys. Chem. 90 (1986), 1853–1859.CrossRef
Lunkenheimer, K., Theil, F. and Lerche, K. H., Langmuir 8 (1992), 403–408.CrossRef
Evans, D. F., Mukherjee, S., Mitchell, D. J. and Ninham, B. W., J. Coll. Interface Sci.93 (1983), 184–203.
Evans, D. F., Allen, M., Ninham, B. W. and Fouda, A., J. Solution Chem. 13 (1984), 87–101.CrossRef
Evans, D. F., Mitchell, D. J. and Ninham, B. W., J. Phys. Chem. 90 (1986), 2817–2825.CrossRef
Ramadan, M. S., Evans, D. F. and Lumry, R., J. Phys. Chem. 87 (1983), 4538–4543.CrossRef
Hyde, S. T., Andersson, S., Larsson, K., Blum, Z., Landh, T., Lidin, S. and Ninham, B. W., The Language of Shape. The role of curvature in condensed matter physics, chemistry and biology. Amsterdam: Elsevier (1997).Google Scholar
http://wwwrsphysse.anu.edu.au/∼sth110/sth.html
http://medicine.nus.edu.sg/phys/FacultyMembers_Deng.html
http://www.sandforsk.se/
Ninham, B. W., Talmon, Y. and Evans, D. F., Science 221 (1983), 1047–1048.
Tanford, C., The Hydrophobic Effect. New York: John Wiley (1973).Google Scholar
Israelachvili, J. N., Mitchell, D. J. and Ninham, B.W., J. Chem. Soc. Faraday Trans. II 72 (1976), 1525–1568.CrossRef
Mitchell, D. J. and Ninham, B. W., J. Chem. Soc. Faraday Trans. II 77 (1981), 601–629.CrossRef
Bäckström, K., Lindman, B. and Engström, S., Langmuir 4 (1988), 872–878.CrossRef
Pashley, R. M., McGuiggan, P. M. and Ninham, B. W., J. Phys. Chem. 90 (1986), 5841–5845.CrossRef
Filankembo, A., André, P., Lisiecki, I., Petit, C., Gulik-Krzywicki, T., Ninham, B. W. and Pileni, M. P., Coll. Surf. A 174 (2000), 221–232.CrossRef
André, P., Filankembo, A., Lisiecki, I., Petit, C., Gulik-Krzywicki, T., Ninham, B. W. and Pileni, M. P., Adv. Mat. 12 (2000), 119–123.3.0.CO;2-Y>CrossRef
André, P., Ninham, B. W. and Pileni, M. P., New J. Chem. 25 (2001), 563–571.CrossRef
Pashley, R. M. and Ninham, B.W., J. Phys. Chem. 91 (1987), 2902–2904.CrossRef
Evans, D. F., Allen, M., Ninham, B. W. and Fouda, A., J. Solution Chem. 13 (1984), 68–84.CrossRef
Jonsson, B. and Wennerström, H., J. Phys. Chem. 91 (1987), 338–352.CrossRef
Mitchell, D. J., Tiddy, G. J. T., Waring, L., Bostock, T. and McDonald, M. P., J. Chem. Soc. Faraday Trans. I (1983), 975–1000.CrossRef
D'Errico, G., Ciccarelli, D., Ortona, O., Paduano, L. and Sartorio, R., J. Coll. Interface Sci. 270 (2004), 490–495.CrossRef
Weckström, K. and Papageorgiou, A. C., J. Coll. Interface Sci. 310 (2007), 151–162.CrossRef
Nilsson, P. G. and Lindman, B., J. Phys. Chem. 87 (1983), 4756–4761.CrossRef
Claesson, P. M., Kjellander, R., Stenius, P. and Christenson, H. K., J. Chem. Soc. Faraday Trans. I 9 (1986), 2735–2746.CrossRef
Nostro, P. Lo, Murgia, S., Lagi, M., Fratini, E., Karlsson, G., Almgren, M., Monduzzi, M., Ninham, B. W. and Baglioni, P., J. Phys. Chem. B 112 (2008), 12625–12634.CrossRef
Nostro, P. Lo, Adv. Coll. Interface Sci. 56 (1995), 245–287.CrossRef
Campagna, M., Dei, L., Gambi, C. M. C., Nostro, P. Lo, Zini, S. and Baglioni, P., J. Phys. Chem. B 101 (1997), 10373–10377.CrossRef
Berti, D., Curr. Op. Coll. Interface Sci. 11 (2007), 74–78.CrossRef
Milani, S., Bombelli, F. Baldelli, Berti, D. and Baglioni, P., J. Am. Chem. Soc. 129 (2007), 11664–11665.CrossRef
Mouritsen, O. G. and Mouritsen, O., Life – As a Matter of Fat. Berlin: Springer-Verlag (2005).Google Scholar
Friberg, S., Larsson, K. and Sjoblom, J., Food Emulsions. 4th edn. New York: Marcel Dekker (2004).Google Scholar
Jonsson, B., Lindman, B., Kronberg, B. and Holmberg, K., Surfactants and Polymers in Aqueous Solution. Chichester: John Wiley (2003).Google Scholar
Wärnheim, T. and Jönsson, A., J. Coll. Interface Sci. 125 (1988), 627–633.CrossRef
Suzuki, Z. M., Inoue, T. and Lindman, B., Langmuir 18 (2002), 9204–9210.
Nostro, P. Lo, Stubicar, N. and Chen, S. H., Langmuir 10 (1994), 1040–1043.CrossRef
Fontell, K., Ceglie, A., Lindman, B. and Ninham, B. W., Acta Chem. Scand. A 40 (1986), 247–256.CrossRef
Adamson, A. W., Physical Chemistry of Surfaces. New York: John Wiley (1976).Google Scholar
Evans, D. F. and Wennerström, H., The Colloidal Domain: where physics, chemistry, biology, and technology meet. New York: VCH (1994).Google Scholar
Tanford, C., J. Phys. Chem. 76 (1972), 3020–3024.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×