Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-20T00:05:41.318Z Has data issue: false hasContentIssue false

3 - Electrostatic forces in electrolytes in outline

from Part I - Molecular forces

Published online by Cambridge University Press:  06 January 2011

Barry W. Ninham
Affiliation:
Australian National University, Canberra
Pierandrea Lo Nostro
Affiliation:
Università degli Studi di Firenze, Italy
Get access

Summary

The assumptions of classical theories

The classical theory of electrolyte solutions starts with the assumption that ionic interactions in solution or between colloid particles are dictated by Coulomb, electrostatic forces alone. An ion is considered to first approximation to have a charge distribution confined to a hard sphere of a given radius. In the ‘primitive’ model the ions are immersed in water (or another solvent) within which they interact by electrostatic interactions. The solvent is treated as a passive dielectric continuum. The radius of an ion is not always just its crystallographic radius. It is an effective radius that includes one or two water layers of ‘hydration’. What occurs in the theory for the free energy of interactions involves the sum of hydrated ion radii besides the Coulomb force. The hydrated ion size is derived as a fitting parameter from comparison of theory with experiments.

For interactions between ions the long-range Coulomb interactions dominate for very dilute solutions below about 5·10−2 M, and ion size is irrelevant. At higher electrolyte concentrations, around and above about 10−1 M, the cooperative electrostatic interactions that dominate at low concentrations become progressively less important. Shorter-range forces subsumed in the ionic ‘radii’ begin to come into play. When short-range interactions between the ions become significant the molecular structure of the water in the immediate neighbourhood of the ions (hydration) becomes a dominant feature. Hydration and local hydrogen bonding are words that attempt to describe this ion-specific, local water structure induced by the ions.

Type
Chapter
Information
Molecular Forces and Self Assembly
In Colloid, Nano Sciences and Biology
, pp. 35 - 64
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Diesendorf, M. and Ninham, B. W., J. Math. Phys. 9 (1968), 745–752.CrossRef
Mahanty, J. and Ninham, B. W., Dispersion Forces. London: Academic Press (1976).Google Scholar
Israelachvili, J., Intermolecular and Surfaces Forces. New York: Academic Press (1991).Google Scholar
Evans, D. F. and Wennerström, H., The Colloidal Domain. New York: Wiley-VCH (1999).Google Scholar
Adamson, A. W., Physical Chemistry of Surfaces. 2nd edn. New York: Interscience (1967).Google Scholar
Harned, H. S. and Owen, B. B., The Physical Chemistry of Electrolytic Solutions. New York: Reinhold (1958).Google Scholar
Hunter, R. H., Foundations of Colloid Science. New York: Oxford University Press (2000).Google Scholar
Robinson, R. A. and Stokes, R. H., Electrolyte Solutions. London: Butterworths (1959).Google Scholar
Kalidas, C., Hefter, G. and Marcus, Y., Chem. Rev. 100 (2000), 819–852.CrossRef
Hefter, G., Marcus, Y. and Waghorne, W. E., Chem. Rev. 102 (2002), 2773–2836.CrossRef
Marcus, Y. and Hefter, G., Chem. Rev. 104 (2004), 3405–3452.CrossRef
Marcus, Y. and Hefter, G., Chem. Rev. 106 (2006), 4585–4621.CrossRef
Evans, D. F. and Ninham, B. W., J. Phys. Chem. 87 (1983), 5025–5032.CrossRef
Böstrom, M. and Ninham, B. W., J. Phys. Chem. B 108 (2004), 12593–12595.CrossRef
Böstrom, M. and Ninham, B. W., Biophys. Chem. 114 (2005), 95–101.CrossRef
Pailthorpe, B. A., Mitchell, D. J. and Ninham, B. W., J. Chem. Soc. Faraday II 80 (1984), 115–139.CrossRef
Lucasse, W. W., J. Am. Chem. Soc. 51 (1929), 2597–2604.CrossRef
Butler, J. N. and Cogley, D. R., Ionic Equlibrium: Solubility and pH Calculations. New York: John Wiley (1998).Google Scholar
Voinescu, A., Bauduin, P., Pinna, C., Touraud, D., Kunz, W. and Ninham, B. W., J. Phys. Chem. B 110 (2006), 8870–8876.CrossRef
Jenkin, H. D. B. and Marcus, Y., Chem. Rev. 95 (1995), 2695–2724.CrossRef
Collins, K. D., Methods 34 (2004), 300–311.CrossRef
Collins, K. D., Neilson, G. W. and Enderby, J. E., Biophys. Chem. 128 (2007), 95–104.CrossRef
Jiang, J. and Sandler, S. I., Ind. Eng. Chem. Res. 42 (2003), 6267–6272.CrossRef
Setschenow, J., Z. phys. Chem. 4 (1889), 117–125.CrossRef
Ries-Kautt, M. M. and Ducruix, A. F., J. Biol. Chem. 264 (1989), 745–748.
Ni, N. and Yalkowsky, S. H., Int. J. Pharm. 254 (2003), 167–172.CrossRef
Long, F. A. and McDevit, W. F., Chem. Rev. 51 (1952), 119–169.CrossRef
Hippel, P. H. and Schleich, T., in Structure and Stability of Biological Macromolecules, ed. Timasheff, S. N. and Fashman, G. D.. New York: Marcel Dekker (1969).Google Scholar
Lagi, M., Nostro, P. Lo, Fratini, E., Ninham, B. W. and Baglioni, P., J. Phys. Chem. B 111 (2007), 589–597.CrossRef
Nostro, P. Lo, Ninham, B. W., Milani, S., Fratoni, L. and Baglioni, P., Biopolymers 81 (2006), 136–148.CrossRef
Rossi, S., Nostro, P. Lo, Lagi, M., Ninham, B. W. and Baglioni, P., J. Phys. Chem. B 111 (2007), 10510–10519.CrossRef
Nostro, P. Lo, Ninham, B. W., Nostro, A. Lo, Pesavento, G., Fratoni, L. and Baglioni, P., Phys. Biol. 2 (2005), 1–7.CrossRef
Kunz, W., Henle, J. and Ninham, B. W., Curr. Op. Coll. Interface Sci. 9 (2004), 19–37.CrossRef
Gustavson, K. H., Specific ion effects in the behaviour of tanning agents toward collagen treated with neutral salts. In Colloid Symposium Monograph, ed. Weiser, H. Boyer. New York: The Chemical Catalog Company (1926), and references therein.Google Scholar
Loeb, J., Science 52 (1920), 449–456.CrossRef
Finet, S., Skouri-Panet, F., Casselyn, M., Bonnete, F. and Tardieu, A., Curr. Op. Coll. Interface Sci. 9 (2004), 112–116 and references therein.CrossRef
Boström, M., Tavares, F. W., Finet, S., Skouri-Panet, F., Tardieu, A. and Ninham, B. W., Biophys. Chem. 117 (2005), 115–122.CrossRef
Omta, A. W., Kropman, M. F., Woutersen, S. and Bakker, H. J., Science 301 (2003), 347–349.CrossRef
Naslund, L.-Å., Edwards, D. C., Wernet, P., Bergmann, U., Ogasawara, H., Pettersson, L. G. M., Myneni, S. and Nilsson, A., J. Phys. Chem. A 109 (2005), 5995–6002.CrossRef
Rosenfeld, D., Science 287 (2000), 1793–1796.CrossRef
Ninham, B. W. and Yaminsky, V., Langmuir 13 (1997), 2097–2108.CrossRef
Henry, C. L., Dalton, C. N., Scruton, L. and Craig, V. S. J., J. Phys. Chem. C. 111 (2007), 1015–1023.CrossRef
Onsager, L. and Samaris, N. N. T., J. Chem. Phys. 2 (1934), 528–536.CrossRef
Stairs, R. A., Can. J. Phys. 73 (1995) 781–787.
Boström, M., Williams, D. R. M. and Ninham, B. W., Langmuir 17 (2001), 4475–4478.CrossRef
Weissenborn, P. K. and Pugh, R. J., J. Coll. Interface Sci. 184 (1996), 550–563.CrossRef
Abramzon, A. A. and Gaukhberg, R. D., Russ. J. Appl. Chem. 66 (1993), 1139–1146; 1315–1320; 1473–1480.
Aveyard, R. and Saleem, S. M., J. Chem. Soc. Faraday Trans. 1 72 (1976), 1609–1617.CrossRef
Kunz, W., Lo, P. Nostro and Ninham, B. W., Curr. Op. Coll. Interface Sci. 9 (2004), 1–18.CrossRef
Ninham, B. W. and Parsegian, V. A., J. Theor. Biol. 31 (1971), 405–428.CrossRef
Mitchell, D. J. and Ninham, B. W., Phys. Rev. 174 (1968), 280–289.CrossRef
Mitchell, D. J. and Ninham, B. W., Chem. Phys. Lett. 53 (1978), 397–399.CrossRef
Knackstedt, M. A. and Ninham, B. W., J. Phys. Chem. 100 (1996), 1330–1335.CrossRef
Kékicheff, P. and Ninham, B. W., Europhys. Lett. 12 (1990), 471–477.CrossRef
Nylander, T., Kékicheff, P. and Ninham, B. W., J. Coll. Interface Sci. 164 (1994), 136–150.CrossRef
Beresford–Smith, B., Chan, D. Y. C. and Mitchell, D. J. J., J. Coll. Interface Sci. 105 (1985), 218–234.CrossRef
Pashley, R. M. and Ninham, B. W., J. Phys. Chem. 91 (1987), 2902–2904.CrossRef
Connor, J. N. and Horn, R. G., Langmuir 17 (2001), 7194–7197.CrossRef
Manica, R., Connor, J. N., Dagastine, R. R., Carnie, S. L., Horn, R. G. and Chan, D. Y. C., Physics Fluids 20 (2008), 032101 (1–12).CrossRef
Horn, R. G., Asadullah, M. and Connor, J. N., Langmuir 22 (2006), 2610–2619.CrossRef
Connor, J. N. and Horn, R. G., Faraday Discuss. 123 (2003), 193–206.CrossRef
Manica, R., Connor, J. N., Carnie, S. L., Horn, R. G. and Chan, D. Y. C., Langmuir 23 (2007), 626–637.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×