Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T13:38:46.889Z Has data issue: false hasContentIssue false

Chap 29 - MERKEL CELL CARCINOMA AND METASTATIC AND SARCOMATOID CARCINOMAS INVOLVING SOFT TISSUE

Published online by Cambridge University Press:  01 March 2011

Markku Miettinen
Affiliation:
Armed Forces Institute of Pathology, Washington DC
Get access

Summary

A Merkel cell carcinoma is a primary cutaneous neuroendocrine carcinoma that often involves soft tissue, especially the subcutis. Metastatic carcinomas are common diagnostic problems, especially in determining their primary origin. When sarcomatoid, carcinomas often simulate primary soft tissue sarcomas. The discussion of carcinomas from specific sources is therefore twofold in this chapter: (1) histologic features and specific markers to evaluate the site of origin, and (2) problems related to sarcomatoid carcinomas of a particular organ site or tumor type. This chapter includes the most common carcinomas, and selected practical, well-established, and important markers are emphasized. Clinical or radiologic correlation is always necessary to confirm the primary site for a metastasis from an unknown source. Carcinosarcoma of the gynecological tract is discussed in Chapter 18.

MERKEL CELL CARCINOMA (PRIMARY NEUROENDOCRINE CARCINOMA OF THE SKIN, TRABECULAR CARCINOMA OF THE SKIN)

Merkel cell carcinoma is a distinctive, relatively rare primary cutaneous or subcutaneous high-grade neuroendocrine carcinoma, originally reported as trabecular carcinoma of the skin by Toker in 1972. Its ultrastructural resemblance to Merkel cells, the cutaneous neuroendocrine cells that are scattered in the basal epidermis and hair shafts, led to its being named Merkel cell carcinoma during the early 1980s. Positivity for keratin 20 also mirrors Merkel cells, but in neurofilament positivity it differs from normal Merkel cells. Therefore, the histogenetic origin of Merkel cell carcinoma from Merkel cells is not uniformly agreed on, and some authors prefer the designation of primary neuroendocrine carcinoma of the skin.

Type
Chapter
Information
Modern Soft Tissue Pathology
Tumors and Non-Neoplastic Conditions
, pp. 834 - 861
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Toker, C. Trabecular carcinoma of the skin. Arch Dermatol 1972;105:107–110.CrossRefGoogle ScholarPubMed
Sibley, RK, Dehner, LP, Rosai, J. Primary neuroendocrine (Merkel cell) carcinoma of the skin. I: A clinicopathologic and ultrastructural study. Am J Surg Pathol 1985;9:95–108.CrossRefGoogle ScholarPubMed
Gould, VE, Moll, R, Moll, I, Lee, I, Franke, WW. Neuroendocrine (Merkel) cells of the skin: hyperplasias, dysplasias and neoplasms. Lab Invest 1985;52:334–353.Google ScholarPubMed
Agelli, M, Clegg, LX. Epidemiology of primary Merkel cell carcinoma in the United States. J Am Acad Dermatol 2003;49:832–841.CrossRefGoogle ScholarPubMed
Penn, I, First, MR. Merkel cell carcinoma in organ recipients: report of 41 cases. Transplantation 1999;68:1717–1721.CrossRefGoogle ScholarPubMed
Engels, EA, Frisch, M, Goedert, JJ, Biggar, RJ, Miller, RW. Merkel cell carcinoma and HIV infection. Lancet 2002;359:497–498.CrossRefGoogle ScholarPubMed
Lien, HC, Tsai, TF, Lee, YY, Hsiao, CH. Merkel cell carcinoma and chronic arsenicism. J Am Acad Dermatol 1999;41:641–643.Google ScholarPubMed
Tuneu, A, Pujol, RM, Moreno, A, Barnadas, MA, Moragas, JM. Postirradiation Merkel cell carcinoma. J Am Acad Dermatol 1989;20:506–507.CrossRefGoogle ScholarPubMed
Eusebi, V, Capella, C, Cossu, A, Rosai, J. Neuroendocrine carcinoma within lymph nodes in the absence of a primary tumor, with a special reference to Merkel cell carcinoma. Am J Surg Pathol 1992;16:658–666.CrossRefGoogle ScholarPubMed
Allen, PJ, Bowne, WB, Jaques, DP, Brennan, MF, Busam, K, Coit, DG. Merkel cell carcinoma: Prognosis and treatment of patients from a single institution. J Clin Oncol 2005;23:2300–2309.CrossRefGoogle ScholarPubMed
Skelton, HG, Smith, KJ, Hitchcock, CL, McCarthy, WF, Lupton, GP, Graham, JH. Merkel cell carcinoma: analysis of clinical, histologic, and immunohistologic features of 132 cases with relation to survival. J Am Acad Dermatol 1997;37:734–739.CrossRefGoogle ScholarPubMed
Connelly, TJ, Cribier, B, Brown, TJ, Yanguas, I. Complete spontaneous regression of Merkel cell carcinoma: a review of 10 reported cases. Dermatol Surg 2000;26:853–856.CrossRefGoogle ScholarPubMed
Goessling, W, McKee, PH, Mayer, RJ. Merkel cell carcinoma. J Clin Oncol 2002;20:588–598.CrossRefGoogle ScholarPubMed
Swann, MH, Yonn, J. Merkel cell carcinoma. Semin Oncol 2007;34:51–56.CrossRefGoogle ScholarPubMed
Eng, TY, Boersma, MG, Fuller, CD, Goytia, V, Jones, WE, Joyner, M. A comprehensive review of the treatment of Merkel cell carcinoma. Am J Clin Oncol 2007;30:624–635.CrossRefGoogle ScholarPubMed
Silva, EG, Mackay, B, Goepfert, H, Burgess, MA, Fields, RS. Endocrine carcinoma of the skin (Merkel cell carcinoma). Pathol Annu 1984;19 Pt 2:1–30.Google Scholar
Plaza, JA, Suster, S. The Toker tumor: Spectrum of morphologic features in primary neuroendocrine carcinomas of the skin (Merkel cell carcinoma). Ann Diagn Pathol 2006;10:376–385.CrossRefGoogle Scholar
Walsh, NMG. Primary neuroendocrine (Merkel cell) carcinoma of the skin: morphologic diversity and implications thereof. Hum Pathol 2001;32:680–689.CrossRefGoogle ScholarPubMed
Gomez, LG, DiMaio, S, Silva, EG, Mackay, B. Association between neuroendocrine (Merkel cell) carcinoma and squamous carcinoma of the skin. Am J Surg Pathol 1983;7:171–177.CrossRefGoogle ScholarPubMed
Ball, NJ, Tanhuanco-Kho, G. Merkel cell carcinoma frequently shows histologic features of basal cell carcinoma: a study of 30 cases. J Cutan Pathol 2007;34:612–619.CrossRefGoogle ScholarPubMed
Foschini, MP, Eusebi, V. Divergent differentiation in endocrine and nonendocrine tumors of the skin. Semin Diagn Pathol 2000;17:162–168.Google Scholar
Feng, H, Shuda, M, Chang, Y, Moore, PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008;319:1096–1100.CrossRefGoogle ScholarPubMed
Kassem, A, Schöpflin, A, Diaz, C, Weyers, W, Stickeler, E, Werner, M. Frequent detection of Merkel cell polyomavirus in human Merkel cell carcinomas and identification of a unique deletion in the VP1 gene. Cancer Res 2008;68:5009–5013.CrossRefGoogle ScholarPubMed
Becker, JC, Houben, R, Ugurel, S, Trefzer, U, Pföhler, S, Schrama, D. MC polyomavirus is frequently present in Merkel cell carcinoma in European patients. J Invest Dermatol 2009;129:248–250.CrossRefGoogle ScholarPubMed
Garneski, KM, Warcola, AH, Feng, O, Kiviat, NB, Leonard, JH, Nghiem, P. Merkel cell carcinoma polyomavirus is more frequently present in North American than Australian Merkel cell carcinoma tumors. J Invest Dermatol 2009;129:246–248.CrossRefGoogle ScholarPubMed
Sibley, RK, Dahl, D. Primary neuroendocrine (Merkel cell?) carcinoma of the skin. II: An immunocytochemical study of 21 cases. Am J Surg Pathol 1985;9:109–116.CrossRefGoogle ScholarPubMed
Moll, R, Lowe, A, Leufer, J, Franke, WW. Cytokeratin 20 in human carcinomas: A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol 1992;140:427–447.Google ScholarPubMed
Chan, JK, Suster, S, Wenig, BM, Tsang, WY, Chank, JB, Lau, AL. Cytokeratin 20 immunoreactivity distinguishes Merkel cell (primary cutaneous neuroendocrine) carcinomas and salivary gland small cell carcinomas from small cell carcinomas of various sites. Am J Surg Pathol 1997;21:226–234.CrossRefGoogle ScholarPubMed
Byrd-Gloster, AL, Khoor, A, Glass, LF, Messina, JL, Whitsett, JA, Livingston, SK. Differential expression of thyroid transcription factor I in small cell lung carcinomas and Merkel cell tumor. Hum Pathol 2000;31:58–62.CrossRefGoogle ScholarPubMed
Asioli, S, Righi, A, Volante, M, Eusebi, V, Bussolati, G. p63 expression as a new prognostic marker in Merkel cell carcinoma. Cancer 2007;110:640–647.CrossRefGoogle ScholarPubMed
Su, LD, Fullen, DR, Lowe, L, Uherova, P, Schnitzer, B, Valdez, R. CD117 (KIT receptor) expression in Merkel cell carcinoma. Am J Dermatopathol 2002;24:289–293.CrossRefGoogle ScholarPubMed
Gele, M, Roy, N, Ronan, SG, Messiaen, L, Vandesompele, J, Geerts, ML. Molecular analysis of 1p breakpoints in two Merkel cell carcinomas. Genes Chromosomes Cancer 1998;23:67–71.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Gele, M, Speleman, F, Vandesompele, J, Roy, N, Leonard, JH. Characteristic pattern of chromosomal gains and losses in Merkel cell carcinoma detected by comparative genomic hybridization. Cancer Res 1998; 58:1503–1508.Google ScholarPubMed
Gancberg, D, Feoli, F, Hamels, J, Saint-Aubain, N, Andre, J, Rouas, G. Trisomy 6 in Merkel cell carcinoma: a recurrent chromosomal aberration. Histopathology 2000;37:445–451.CrossRefGoogle ScholarPubMed
Begum, S, Cao, D, Gillison, M, Zahurak, M, Westra, WH. Tissue distribution of human papillomavirus 16 DNA integration in patients with tonsillar carcinoma. Clin Cancer Res 2006:11;5694–5699.CrossRefGoogle Scholar
Leventon, GS, Evans, HL. Sarcomatoid squamous cell carcinoma of the mucous membranes of the head and neck: a clinicopathologic study of 20 cases. Cancer 1981;48:994–1003.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Patel, NK, McKee, PH, Smith, NP, Fletcher, CD. Primary metaplastic carcinoma (carcinosarcoma) of the skin: A clinicopathologic study of four cases and review of the literature. Am J Dermatopathol 1997;19:363–372.CrossRefGoogle ScholarPubMed
Takata, T, Ito, H, Ogawa, I, Miyauchi, M, Ijuhin, N, Nikai, H. Spindle cell squamous carcinoma of the oral region: An immunohistochemical and ultrastructural study on the histogenesis and differential diagnosis with a clinicopathologic analysis of six cases. Virchows Arch A Pathol Anat Histopathol 1991;419:177–182.CrossRefGoogle Scholar
Lewis, JE, Olsen, KD, Sebo, TJ. Spindle cell carcinoma of the larynx: review of 26 cases including DNA content and immunohistochemistry. Hum Pathol 1997;28:664–673.CrossRefGoogle ScholarPubMed
Thompson, LD, Wieneke, JA, Miettinen, M, Heffner, DK. Spindle cell (sarcomatoid) carcinomas of the larynx: a clinicopathologic study of 187 cases. Am J Surg Pathol 2002;26:153–170.CrossRefGoogle ScholarPubMed
Wick, MR, Ritter, JH, Humphrey, PA. Sarcomatoid carcinomas of the lung: a clinicopathologic review. Am J Clin Pathol 1997;108:40–53.CrossRefGoogle ScholarPubMed
Sigel, JE, Skacel, M, Bergfeld, WF, House, NS, Rabkin, MS, Goldblum, JR. The utility of cytokeratin 5/6 in the recognition of cutaneous spindle cell squamous cell carcinoma. J Cutan Pathol 2001;28:520–524.CrossRefGoogle ScholarPubMed
Morgan, MB, Purohit, C, Anglin, TR. Immunohistochemical distinction of cutaneous spindle cell carcinoma. Am J Dermatopathol 2008;30:228–232.CrossRefGoogle ScholarPubMed
Dotto, JE, Glusac, EJ. p63 is useful marker for cutaneous spindle cell squamous cell carcinoma. J Cutan Pathol 2006;33:413–417.CrossRefGoogle ScholarPubMed
Choi, HR, Sturgis, EM, Rosenthal, DI, Luna, MA, Batsakis, JG, El-Naggar, AK. Sarcomatoid carcinoma of the head and neck: molecular evidence for evolution and progression from conventional squamous cell carcinomas. Am J Surg Pathol 2003;27:1216–1220.CrossRefGoogle ScholarPubMed
Wick, MR, Lillemoe, TJ, Copland, GT, Swanson, PE, Manivel, JC, Kiang, DT. Gross cystic disease fluid protein-15 as a marker for breast cancer: immunohistochemical analysis of 690 human neoplasms and comparison with alpha-lactalbumin. Hum Pathol 1989;20:281–287.CrossRefGoogle ScholarPubMed
Kaufmann, O, Deidesheimer, T, Meuhlenberg, M, Deicke, P, Dietel, M. Immunohistochemical differentiation of breast carcinomas from metastatic adenocarcinomas of other common sites. Histopathology 1996;29:233–240.CrossRefGoogle Scholar
Dennis, JL, Hvidsten, TR, Wit, EC, Komorowski, J, Bell, AK, Downie, I. Markers of adenocarcinoma characteristic of the site of origin: Development of a diagnostic algorithm. Clin Cancer Res 2005;11:3766–3772.CrossRefGoogle ScholarPubMed
Young, BR, Wick, MR. Immunohistologic evaluation of metastatic carcinomas of unknown origin: An algorithmic approach. Semin Diagn Pathol 2000;17:184–193.Google Scholar
Han, JK, Kang, Y, Shin, HC, Kim, HS, Kang, YM, Kim, YB. Mammaglobin expression in lymph nodes is an important marker of metastatic breast carcinoma. Arch Pathol Lab Med 2003;127:1330–1334.Google ScholarPubMed
Takeda, Y, Tsuta, K, Shibuki, Y, Hoshino, T, Tochigi, N, Maeshima, AN. Analysis of expression patterns of breast cancer-specific markers (mammaglobin and gross cystic disease fluid protein 15) in lung and pleural tumors. Arch Pathol Lab Med 2008;132:239–243.Google ScholarPubMed
Oberman, HA. Metaplastic carcinoma of the breast: A clinicopathologic study of 29 cases. Am J Surg Pathol 1987;11:918–929.CrossRefGoogle Scholar
Wargotz, ES, Deos, PH, Norris, HJ. Metaplastic carcinomas of the breast. II: Spindle cell carcinoma. Hum Pathol 1989;20:732–740.CrossRefGoogle ScholarPubMed
Wargotz, ES, Norris, HJ. Metaplastic carcinomas of the breast. I: Matrix-producing carcinoma. Hum Pathol 1989;20:628:635.Google ScholarPubMed
Foschini, MP, Dina, RE, Eusebi, V. Sarcomatoid neoplasms of the breast: proposed definition for biphasic and monophasic sarcomatoid mammary carcinomas. Semin Diagn Pathol 1993;10:128–136.Google Scholar
Gobbi, H, Simpson, JF, Borowsky, A, Jensen, RA, Page, DL. Metaplastic breast tumors with a dominant fibromatosis-like phenotype have a high risk of local recurrence. Cancer 1999;85:2170–2182.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Sneide, N, Yaziji, H, Mandavilli, SR, Perez, ER, Ordonez, NG, Gown, AM. Low-grade (fibromatosis-like) spindle cell carcinoma of the breast. Am J Surg Pathol 2001;25:1009–1016.Google Scholar
Kurian, KM, Al-Nafussi, A. Sarcomatoid/metaplastic carcinoma of the breast: a clinicopathologic study of 12 cases. Histopathology 2002;40:58–64.CrossRefGoogle Scholar
Carter, MR, Hornick, JL, Lester, S, Fletcher, CDM. Spindle cell (sarcomatoid) carcinoma of the breast: A clinicopathologic and immunohistochemical analysis of 29 cases. Am J Surg Pathol 2006;30:300–309.CrossRefGoogle ScholarPubMed
Reis-Filho, JS, Carrilho, C, Valenti, C, Leitao, D, Ribeiro, CA, Ribeiro, SG. Is TTF1 a good immunohistochemical marker to distinguish primary from metastatic lung adenocarcinomas. Pathol Res Pract 2000;196:835–840.CrossRefGoogle ScholarPubMed
Kaufmann, O, Dietel, M. Thyroid transcription factor 1 is a superior immunohistochemical marker for pulmonary adenocarcinoma and large cell carcinoma compared to surfactant proteins A and B. Histopathology 2000;36:8–16.CrossRefGoogle ScholarPubMed
Lau, SK, Luthringer, DJ, Eisen, RN. Thyroid transcription factor-1: a review. Appl Immunohistochem Mol Morphol 2002;10:97–102.CrossRefGoogle ScholarPubMed
Zhu, W, Michael, CW. WT1, monoclonal CEA, TTF1, and CA125 antibodies in the differential diagnosis of lung, breast, and ovarian adenocarcinomas in serous effusions. Diagn Cytopathol 2007;35:370–375.CrossRefGoogle ScholarPubMed
Siami, K, McCluggage, WG, Ordonez, NG, Euscher, ED, Malpica, A, Sneige, N. Thyroid transcription factor-1 expression in endometrial and endocervical adenocarcinomas. Am J Surg Pathol 2007;31:1759–1763.CrossRefGoogle ScholarPubMed
Agoff, SN, Lamps, LW, Philip, AT, Amin, MB, Schmidt, RA, True, LD. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol 2000;13;238–242.CrossRefGoogle Scholar
Cheuk, W, Kwan, MY, Suster, S, Chank, JK. Immunostaining for thyroid transcription factor 1 and cytokeratin 20 aids the distinction of small cell carcinoma from Merkel cell carcinoma, but not pulmonary from extrapulmonary small cell carcinomas. Arch Pathol Lab Med 2001;125:228–231.Google Scholar
Kaufmann, O, Georgi, T, Dietel, M. Utility of 123C3 monoclonal antibody against CD56 (NCAM) for the diagnosis of small cell carcinomas on paraffin sections. Hum Pathol 1998;28:1373–1378.CrossRefGoogle Scholar
Lin, X, Saad, RS, Lukasevic, TM, Selverman, JF, Liu, Y. Diagnostic value of CDX-2 and TTF-1 expressions in separating metastatic neuroendocrine neoplasms of unknown origin. Appl Immunohistochem Mol Morphol 2007;15:407–414.CrossRefGoogle Scholar
Nakajima, M, Kasai, T, Hashimoto, H, Iwata, Y, Manabe, H. Sarcomatoid carcinoma of the lung: A clinicopathologic study of 37 cases. Cancer 1999;86:608–616.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Pelosi, G, Scarpa, A, Manzotti, M, Veronesi, G, Spaggiari, L, Fraggetta, F. K-ras gene mutational analysis supports a monoclonal origin of biphasic pleomorphic carcinoma of the lung. Mod Pathol 2004;17:538–546.CrossRefGoogle ScholarPubMed
Rossi, G, Cavazza, A, Sturm, N, Migaldi, M, Facciolongo, N, Longo, L. Pulmonary carcinomas with pleomorphic, sarcomatoid, or sarcomatous elements: a clinicopathologic and immunohistochemical study of 75 cases. Am J Surg Pathol 2003;27:311–324.CrossRefGoogle ScholarPubMed
Werling, RW, Yaziji, H, Bacchi, CE, Gown, AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol 2003;27:303–310.CrossRefGoogle ScholarPubMed
Moskaluk, CA, Zhang, H, Powell, SM, Cerilli, , Hampton, GM, Frierson, HF. CDX2 protein expression in normal and malignant human tissues: an immunohistochemical survey using tissue microarrays. Mod Pathol 2003;16: 913–919.CrossRefGoogle ScholarPubMed
Vang, R, Gown, AM, Wu, LS, Barry, TS, Wheeler, DT, Yemelyanova, A. Immunohistochemical expression of CDX2 in primary ovarian mucinous tumors and metastatic mucinous carcinomas involving the ovary: comparison with CK20 and correlation with coordinate expression of CK7. Mod Pathol 2006;19:1421–1428.CrossRefGoogle ScholarPubMed
McCluggage, WG, Shar, R, Connolly, , McBride, HA. Intestinal type cervical adenocarcinoma in situ and adenocarcinomas exhibit a partial enteric immunophenotype with consistent expression of CDX2. Int J Gynecol Pathol 2008;27:92–100.CrossRefGoogle ScholarPubMed
Cathro, HP, Mills, SE. Immunophenotypic differences between intestinal-type and low-grade papillary sinonasal adenocarcinomas: an immunohistochemical study of 2 cases utilizing CDX2 and MUC2. Am J Surg Pathol 2004;28:1026–1032.CrossRefGoogle ScholarPubMed
Swierczynski, SL, Maitra, A, Abraham, SC, Iacobuzio-Donahue, CA, Ashfaq, R, Cameron, JL. Analysis of novel tumor markers in pancreatic and biliary carcinomas using tissue microarrays. Hum Pathol 2004;35:357–366.CrossRefGoogle ScholarPubMed
Chu, PG, Ishizawa, S, Wu, E, Weiss, LM. Hepatocyte antigen as a marker for hepatocellular carcinoma: an immunohistochemical comparison to carcinoembryonic antigen, CD10, and alpha-fetoprotein. Am J Surg Pathol 2002;26:978–988.CrossRefGoogle ScholarPubMed
Kakar, S, Muir, T, Murphy, LM, Lloyd, RV, Burgart, LJ. Immunoreactivity of Hep Par 1 in hepatic and extrahepatic tumors and its correlation with albumin is situ hybridization in hepatocellular carcinoma. Am J Clin Pathol 2003;119:361–366.CrossRefGoogle Scholar
Morrison, C, Marsh, W, Frankel, WL. A comparison of CD10 to pCEA, MOC-31, and hepatocyte for the distinction of malignant tumors in the liver. Mod Pathol 2002;15:1279–1287.CrossRefGoogle ScholarPubMed
Varma, V, Cohen, C. Immunohistochemical and molecular markers in the diagnosis of hepatocellular carcinoma. Adv Anat Pathol 2004;11:239–249.CrossRefGoogle ScholarPubMed
Chandrel, RW, Shulman, I, Moore, IM. Renal cell carcinoma presenting as a skeletal muscle mass: a case report. Clin Orthop Relat Res 1979;145:227–229.Google Scholar
Kierney, PC, Heerden, JA, Sgura, JW, Weaver, AL. Surgeon's role in the management of solitary renal cell carcinoma metastases occurring subsequent to initial curative nephrectomy: an institutional review. Ann Surg Oncol 1994;1:345–352.CrossRefGoogle Scholar
McGregor, DK, Khurana, KK, Cao, C, Tsao, CC, Ayala, G, Khrisnan, B. Diagnosing primary and metastatic renal cell carcinoma: the use of the monoclonal antibody “renal carcinoma marker.” Am J Surg Pathol 2001;25:1485–1492.CrossRefGoogle Scholar
Avery, AK, Beckstead, J, Renshaw, AA, Corless, CL. Use of antibodies to RCC and CD10 in the differential diagnosis of renal neoplasms. Am J Surg Pathol 2000;24:203–210.CrossRefGoogle ScholarPubMed
Pan, CC, Chen, PC, Ho, DM. The diagnostic utility of MOC31, BerEp4, RCC marker and CD10 in the classification of renal carcinoma and renal oncocytoma: an immunohistochemical analysis of 328 cases. Histopathology 2004;45:452–459.CrossRefGoogle ScholarPubMed
Bakshi, N, Kunju, LP, Giordano, T, Shah, RB. Expression of renal cell carcinoma antigen (RCC) in renal epithelial and nonrenal tumors: diagnostic implications. Appl Immunohistochem Mol Morphol 2007;15:310–315.CrossRefGoogle ScholarPubMed
Takashi, M, Haimoto, H, Murase, T, Mitsuya, H, Kato, K. An immunochemical and immunohistochemical study of S100 protein in renal cell carcinoma. Cancer 1988;61:889–895.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Gokden, N, Gokden, M, Phan, DC, McKenney, JK. The utility of PAX-2 in distinguishing metastatic clear cell renal cell carcinoma from its morphological mimics: an immunohistochemical study with comparison to renal cell carcinoma marker. Am J Surg Pathol 2008;32:1462–1467.CrossRefGoogle Scholar
Lin, F, Zhang, PL, Yang, XJ, Shi, J, Blasick, T, Han, WK. Human kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg Pathol 2007;31:371–381.CrossRefGoogle ScholarPubMed
Farrow, GM, Harrison, EG, Utz, DC. Sarcomas and sarcomatoid and mixed malignant tumors of the kidney in adults: 3. Cancer 1968;22:556–563.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Bertoni, F, Ferri, C, Benati, A, Bacchini, P, Corrado, F. Sarcomatoid carcinoma of the kidney. J Urol 1987;137:25–28.CrossRefGoogle ScholarPubMed
Ro, JY, Ayala, AG, Sella, A, Samuels, ML, Sanson, DA. Sarcomatoid renal cell carcinoma: A clinicopathologic study of 42 cases. Cancer 1987;59:516–526.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Baer, SC, Ro, JY, Ordonez, NG, Maiese, RL, Lose, JH, Grignon, DG. Sarcomatoid collecting duct carcinoma: a clinicopathologic and immunohistochemical study of five cases. Hum Pathol 1993;24:1017–1022.CrossRefGoogle ScholarPubMed
Akhtar, M, Tulbah, A, Kardar, AH, Ali, MA. Sarcomatoid renal cell carcinoma: The chromophobe connection. Am J Surg Pathol 1997;21:1188–1195.CrossRefGoogle ScholarPubMed
da Peralta Venturina, M, Moch, H, Amin, M, Tamboli, P, Hailemariam, S, Mihatsch, M. Sarcomatoid differentiation in renal cell carcinoma: a study of 101 cases. Am J Surg Pathol 2001;25:275–284.CrossRefGoogle Scholar
Cheville, JC, Lohse, CM, Zincke, H, Weaver, AL, Leibovich, BC, Frank, I. Sarcomatoid renal cell carcinoma: an examination of underlying histologic subtype and an analysis of association with patient outcome. Am J Surg Pathol 2004;28:435–441.CrossRefGoogle Scholar
DeLong, W, Grignon, DJ, Eberwein, P, Shum, DT, Wyatt, JK. Sarcomatoid renal cell carcinoma: An immunohistochemical study of 18 cases. Arch Pathol Lab Med 1993;117:636–640.Google ScholarPubMed
Li, L, Teichberg, S, Steckel, J, Chen, QH. Sarcomatoid renal cell carcinoma with divergent sarcomatoid growth patterns: a case report and review of the literature. Arch Pathol Lab Med 2005;129:1057–1060.Google ScholarPubMed
Itoh, T, Chikai, K, Ota, S, Nakagawa, T, Takiyama, A, Mouri, G. Chromophobe renal cell carcinoma with osteosarcoma-like differentiation. Am J Surg Pathol 2002;26:1358–1362.CrossRefGoogle ScholarPubMed
Jones, TD, Eble, JN, Wang, M, McLennan, GT, Jain, S, Cheng, L. Clonal divergence and genetic heterogeneity in clear cell renal cell carcinomas with sarcomatoid transformation. Cancer 2005;104:1195–1203.CrossRefGoogle ScholarPubMed
Jiang, J, Ulbright, TM, Younger, C, Sanchez, K, Bostwick, DG, Koch, MO. Cytokeratin 7 and cytokeratin 20 in primary urinary bladder carcinoma and matched lymph node metastases. Arch Pathol Lab Med 2001;125:921–923.Google Scholar
Wu, X, Kakehi, Y, Zeng, Y, Taoka, R, Tsunemori, H, Inui, M. Uroplakin II as a promising marker for molecular diagnosis of nodal metastases from bladder cancer: Comparison with cytokeratin 20. J Urol 2005;174:2138–2142.CrossRefGoogle ScholarPubMed
Huang, HY, Shariat, SR, Sun, TT, Lepor, H, Shapiro, E, Hsieh, JT. Persistent uroplakin expression in advanced urothelial carcinomas: implications in urothelial tumor progression and clinical outcome. Hum Pathol 2007;38:1703–1713.CrossRefGoogle ScholarPubMed
Stein, BS, Vangore, S, Petersen, RO, Kendall, AR. Immunoperoxidase localization of prostate-specific antigen. Am J Surg Pathol 1982;6:553–557.CrossRefGoogle ScholarPubMed
Fan, CY, Wang, J, Barnes, EL. Expression of androgen receptor and prostatic specific markers in salivary duct carcinoma: an immunohistochemical analysis of 13 cases and review of the literature. Am J Surg Pathol 2000;24:579–586.CrossRefGoogle ScholarPubMed
Hameed, O, Humphrey, PA. Immunohistochemistry in diagnostic surgical pathology of the prostate. Semin Diagn Pathol 2005;22:88–104.CrossRefGoogle ScholarPubMed
Bostwick, DG, Pacelli, A, Blute, M, Roche, P, Murphy, GP. Prostate-specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 1998;82:2256–2261.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Sheridan, T, Herawi, M, Epstein, JI, Illei, PB. The role of P501S and PSA in the diagnosis of metastatic adenocarcinoma of the prostate. Am J Surg Pathol 2007;31:1351–1355.CrossRefGoogle Scholar
Busam, KJ, Iversen, K, Coplan, KA, Old, LJ, Stockert, E, Chen, YT. Immunoreactivity for A103, an antibody to melan-A (Mart-1), in adrenocortical and other steroid cell tumors. Am J Surg Pathol 1998;22:57–63.CrossRefGoogle Scholar
Arola, J, Liu, J, Heikkila, P, Voutilainen, R, Kahri, A. Expression of inhibin alpha in the human adrenal gland and adrenocortical tumors. Endocr Res 1998;24:865–867.CrossRefGoogle ScholarPubMed
Renshaw, AA, Granter, SR. A comparison of A103 and inhibin reactivity in adrenal cortical tumors: distinction from hepatocellular carcinoma and renal tumors. Mod Pathol 1999;11:1160–1164.Google Scholar
Pan, CC, Chen, PC, Tsay, SH, Ho, DM. Differential immunoprofiles of hepatocellular carcinoma, renal cell carcinoma, and adrenocortical carcinoma: a systemic immunohistochemical survey using tissue array technique. Appl Immunohistochem Mol Morphol 2005;13:347–352.CrossRefGoogle ScholarPubMed
Loy, TS, Quesenberry, JT, Sharp, SC. Distribution of CA125 in adenocarcinomas: An immunohistochemical study of 481 cases. Am J Clin Pathol 1992;98:175–179.CrossRefGoogle Scholar
Langendijk, DH, Mullink, H, Diest, PJ, Meijer, GA, Meijer, CJ. Tracing the origin of adenocarcinomas with unknown primary using immunohistochemistry: differential diagnosis between colonic and ovarian carcinomas as primary sites. Hum Pathol 1998;29:491–497.CrossRefGoogle Scholar
Baker, TM, Oliva, E. Immunohistochemistry as a tool in the differential diagnosis of ovarian tumors: an update. Int J Gynecol Pathol 2005;24:39–55.Google ScholarPubMed
Soslow, RA. Histologic subtypes of ovarian carcinoma: an overview. Int J Gynecol Pathol 2008;27:161–174.Google ScholarPubMed
Acs, G, Pasha, T, Zhang, PJ. WT1 is differentially expressed in serous, endometrioid, clear cell, and mucinous carcinomas of the peritoneum, fallopian tube, ovary, and endometrium. Int J Gynecol Pathol 2004;23:110–118.CrossRefGoogle ScholarPubMed
Tornos, C, Soslow, R, Chen, S, Akram, M, Hummer, AJ, Abu-Rustum, N. Expression of WT1, CA125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary. Am J Surg Pathol 2005;29:1482–1489.CrossRefGoogle ScholarPubMed
Rosai, J. Immunohistochemical markers of thyroid tumors: significance and diagnostic applications. Tumori 2003;89:517–519.CrossRefGoogle ScholarPubMed
Miettinen, M, Franssila, K. Variable expression of keratins and nearly uniform lack of thyroid transcription factor 1 in thyroid anaplastic carcinoma. Hum Pathol 2000;31:1139–1145.CrossRefGoogle ScholarPubMed
Bussolati, G, Papotti, M, Pagani, A. Diagnostic problems in medullary carcinoma of the thyroid. Pathol Res Pract 1995;191:332–344.CrossRefGoogle ScholarPubMed
Hamada, S, Hamada, S. Localization of carcinoembryonic antigen in medullary thyroid carcinoma by immunofluorescent techniques. Br J Cancer 1977;36:572–576.CrossRefGoogle ScholarPubMed
Sung, MT, MacLennan, GT, Cheng, L. Retroperitoneal seminoma in limited biopsies: morphologic criteria and immunohistochemical findings in 30 cases. Am J Surg Pathol 2006;30:766–773.CrossRefGoogle ScholarPubMed
Jones, TD, Ulbright, TM, Ebje, JN, Beldridge, , Cheng, L. OCT4 staining in testicular tumors: a sensitive and specific marker for seminoma and embryonal carcinoma. Am J Surg Pathol 2004;28:935–940.CrossRefGoogle ScholarPubMed
Cheng, L. Establishing germ cell origin for metastatic tumors using OCT4 immunohistochemistry. Cancer 2004;101:2006–2010.CrossRefGoogle ScholarPubMed
Emerson, RE, Ulbright, TM. The use of immunohistochemistry in the differential diagnosis of tumors of the testis and paratestis. Semin Diagn Pathol 2005;22:33–50.CrossRefGoogle ScholarPubMed
Hoei-Hansen, CE, Almstrup, K, Nielsen, JE, Brask Sonne, S, Graem, N, Skakkebaek, NE. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumors. Histopathology 2005;47;48–66.CrossRefGoogle Scholar
Hart, AH, Hartley, L, Parker, K, Ibrahim, M, Looijenga, LH, Pauchnik, M. The pluripotency homeobox gene is expressed in human germ cell tumors. Cancer 2005;104:2092–2098.CrossRefGoogle ScholarPubMed
Santagata, S, Ligon, KL, Hornick, JL. Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors. Am J Surg Pathol 2007;31:836–845.CrossRefGoogle Scholar
Ezeh, UI, Turek, PJ, Reijo, RA, Clark, AT. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 2005;104:2255–2265.CrossRefGoogle ScholarPubMed
Iczkowski, KA, Butler, SL, Shanks, JH, Hossain, D, Schall, A, Meiers, I. Trials of new germ cell immunohistochemical stains in 93 extragonadal and metastatic germ cell tumors. Hum Pathol 2008;39:275–281.CrossRefGoogle ScholarPubMed
Biermann, K, Klingmuller, D, Koch, A, Pietsch, T, Schorle, H, Büttner, R. Diagnostic value of markers M2A, OCT3/4, AP-2 gamma, PLAP and c-KIT in the detection of extragonadal seminomas. Histopathology 2006;49:290–297.CrossRefGoogle ScholarPubMed
Kemmer, K, Corless, CL, Fletcher, JA, McGreevey, L, Haley, A, Griffith, D. KIT mutations are common in testicular seminoma. Am J Pathol 2004;164:305–313.CrossRefGoogle Scholar
Moll, R. Cytokeratins in the histologic diagnosis of malignant tumors. Int J Biol Markers 1994;9:63–69.CrossRefGoogle Scholar
Chu, PG, Weiss, LM. Keratin expression in human tissues and neoplasms. Histopathology 2002;40:403–439.CrossRefGoogle ScholarPubMed
Paul, SA, Stoeckli, SJ, Schulthess, GK, Goerres, GW. FDG PET and PET/CT for the detection of the primary tumour in patients with cervical non-squamous cell carcinoma metastasis of an unknown primary. Eur Arch Otorhinolaryngol 2007;264:189–195.CrossRefGoogle ScholarPubMed
Tothill, RW, Kowalczyk, A, Rischin, D, Bousioutas, A, Haviv, I, Laar, RK. An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. Cancer Res 2005;65:4031–4040.CrossRefGoogle ScholarPubMed
Horlings, HM, Laar, RK, Kerst, JM, Helgason, HH, Wesseling, J, Hoeven, JJM. Gene expression profiling to identify the histogenetic origin of metastatic adenocarcinomas of unknown primary. J Clin Oncol 2008;26: 4435–4441.CrossRefGoogle ScholarPubMed
Varadhachary, GR, Talantov, D, Raber, MN, Meng, C, Hess, KR, Jatkoe, T. Molecular profiling of carcinoma of unknown primary and correlation with clinical evaluation. J Clin Oncol 2008;26:4442–4448.CrossRefGoogle ScholarPubMed
Toker, C. Trabecular carcinoma of the skin. Arch Dermatol 1972;105:107–110.CrossRefGoogle ScholarPubMed
Sibley, RK, Dehner, LP, Rosai, J. Primary neuroendocrine (Merkel cell) carcinoma of the skin. I: A clinicopathologic and ultrastructural study. Am J Surg Pathol 1985;9:95–108.CrossRefGoogle ScholarPubMed
Gould, VE, Moll, R, Moll, I, Lee, I, Franke, WW. Neuroendocrine (Merkel) cells of the skin: hyperplasias, dysplasias and neoplasms. Lab Invest 1985;52:334–353.Google ScholarPubMed
Agelli, M, Clegg, LX. Epidemiology of primary Merkel cell carcinoma in the United States. J Am Acad Dermatol 2003;49:832–841.CrossRefGoogle ScholarPubMed
Penn, I, First, MR. Merkel cell carcinoma in organ recipients: report of 41 cases. Transplantation 1999;68:1717–1721.CrossRefGoogle ScholarPubMed
Engels, EA, Frisch, M, Goedert, JJ, Biggar, RJ, Miller, RW. Merkel cell carcinoma and HIV infection. Lancet 2002;359:497–498.CrossRefGoogle ScholarPubMed
Lien, HC, Tsai, TF, Lee, YY, Hsiao, CH. Merkel cell carcinoma and chronic arsenicism. J Am Acad Dermatol 1999;41:641–643.Google ScholarPubMed
Tuneu, A, Pujol, RM, Moreno, A, Barnadas, MA, Moragas, JM. Postirradiation Merkel cell carcinoma. J Am Acad Dermatol 1989;20:506–507.CrossRefGoogle ScholarPubMed
Eusebi, V, Capella, C, Cossu, A, Rosai, J. Neuroendocrine carcinoma within lymph nodes in the absence of a primary tumor, with a special reference to Merkel cell carcinoma. Am J Surg Pathol 1992;16:658–666.CrossRefGoogle ScholarPubMed
Allen, PJ, Bowne, WB, Jaques, DP, Brennan, MF, Busam, K, Coit, DG. Merkel cell carcinoma: Prognosis and treatment of patients from a single institution. J Clin Oncol 2005;23:2300–2309.CrossRefGoogle ScholarPubMed
Skelton, HG, Smith, KJ, Hitchcock, CL, McCarthy, WF, Lupton, GP, Graham, JH. Merkel cell carcinoma: analysis of clinical, histologic, and immunohistologic features of 132 cases with relation to survival. J Am Acad Dermatol 1997;37:734–739.CrossRefGoogle ScholarPubMed
Connelly, TJ, Cribier, B, Brown, TJ, Yanguas, I. Complete spontaneous regression of Merkel cell carcinoma: a review of 10 reported cases. Dermatol Surg 2000;26:853–856.CrossRefGoogle ScholarPubMed
Goessling, W, McKee, PH, Mayer, RJ. Merkel cell carcinoma. J Clin Oncol 2002;20:588–598.CrossRefGoogle ScholarPubMed
Swann, MH, Yonn, J. Merkel cell carcinoma. Semin Oncol 2007;34:51–56.CrossRefGoogle ScholarPubMed
Eng, TY, Boersma, MG, Fuller, CD, Goytia, V, Jones, WE, Joyner, M. A comprehensive review of the treatment of Merkel cell carcinoma. Am J Clin Oncol 2007;30:624–635.CrossRefGoogle ScholarPubMed
Silva, EG, Mackay, B, Goepfert, H, Burgess, MA, Fields, RS. Endocrine carcinoma of the skin (Merkel cell carcinoma). Pathol Annu 1984;19 Pt 2:1–30.Google Scholar
Plaza, JA, Suster, S. The Toker tumor: Spectrum of morphologic features in primary neuroendocrine carcinomas of the skin (Merkel cell carcinoma). Ann Diagn Pathol 2006;10:376–385.CrossRefGoogle Scholar
Walsh, NMG. Primary neuroendocrine (Merkel cell) carcinoma of the skin: morphologic diversity and implications thereof. Hum Pathol 2001;32:680–689.CrossRefGoogle ScholarPubMed
Gomez, LG, DiMaio, S, Silva, EG, Mackay, B. Association between neuroendocrine (Merkel cell) carcinoma and squamous carcinoma of the skin. Am J Surg Pathol 1983;7:171–177.CrossRefGoogle ScholarPubMed
Ball, NJ, Tanhuanco-Kho, G. Merkel cell carcinoma frequently shows histologic features of basal cell carcinoma: a study of 30 cases. J Cutan Pathol 2007;34:612–619.CrossRefGoogle ScholarPubMed
Foschini, MP, Eusebi, V. Divergent differentiation in endocrine and nonendocrine tumors of the skin. Semin Diagn Pathol 2000;17:162–168.Google Scholar
Feng, H, Shuda, M, Chang, Y, Moore, PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008;319:1096–1100.CrossRefGoogle ScholarPubMed
Kassem, A, Schöpflin, A, Diaz, C, Weyers, W, Stickeler, E, Werner, M. Frequent detection of Merkel cell polyomavirus in human Merkel cell carcinomas and identification of a unique deletion in the VP1 gene. Cancer Res 2008;68:5009–5013.CrossRefGoogle ScholarPubMed
Becker, JC, Houben, R, Ugurel, S, Trefzer, U, Pföhler, S, Schrama, D. MC polyomavirus is frequently present in Merkel cell carcinoma in European patients. J Invest Dermatol 2009;129:248–250.CrossRefGoogle ScholarPubMed
Garneski, KM, Warcola, AH, Feng, O, Kiviat, NB, Leonard, JH, Nghiem, P. Merkel cell carcinoma polyomavirus is more frequently present in North American than Australian Merkel cell carcinoma tumors. J Invest Dermatol 2009;129:246–248.CrossRefGoogle ScholarPubMed
Sibley, RK, Dahl, D. Primary neuroendocrine (Merkel cell?) carcinoma of the skin. II: An immunocytochemical study of 21 cases. Am J Surg Pathol 1985;9:109–116.CrossRefGoogle ScholarPubMed
Moll, R, Lowe, A, Leufer, J, Franke, WW. Cytokeratin 20 in human carcinomas: A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol 1992;140:427–447.Google ScholarPubMed
Chan, JK, Suster, S, Wenig, BM, Tsang, WY, Chank, JB, Lau, AL. Cytokeratin 20 immunoreactivity distinguishes Merkel cell (primary cutaneous neuroendocrine) carcinomas and salivary gland small cell carcinomas from small cell carcinomas of various sites. Am J Surg Pathol 1997;21:226–234.CrossRefGoogle ScholarPubMed
Byrd-Gloster, AL, Khoor, A, Glass, LF, Messina, JL, Whitsett, JA, Livingston, SK. Differential expression of thyroid transcription factor I in small cell lung carcinomas and Merkel cell tumor. Hum Pathol 2000;31:58–62.CrossRefGoogle ScholarPubMed
Asioli, S, Righi, A, Volante, M, Eusebi, V, Bussolati, G. p63 expression as a new prognostic marker in Merkel cell carcinoma. Cancer 2007;110:640–647.CrossRefGoogle ScholarPubMed
Su, LD, Fullen, DR, Lowe, L, Uherova, P, Schnitzer, B, Valdez, R. CD117 (KIT receptor) expression in Merkel cell carcinoma. Am J Dermatopathol 2002;24:289–293.CrossRefGoogle ScholarPubMed
Gele, M, Roy, N, Ronan, SG, Messiaen, L, Vandesompele, J, Geerts, ML. Molecular analysis of 1p breakpoints in two Merkel cell carcinomas. Genes Chromosomes Cancer 1998;23:67–71.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Gele, M, Speleman, F, Vandesompele, J, Roy, N, Leonard, JH. Characteristic pattern of chromosomal gains and losses in Merkel cell carcinoma detected by comparative genomic hybridization. Cancer Res 1998; 58:1503–1508.Google ScholarPubMed
Gancberg, D, Feoli, F, Hamels, J, Saint-Aubain, N, Andre, J, Rouas, G. Trisomy 6 in Merkel cell carcinoma: a recurrent chromosomal aberration. Histopathology 2000;37:445–451.CrossRefGoogle ScholarPubMed
Begum, S, Cao, D, Gillison, M, Zahurak, M, Westra, WH. Tissue distribution of human papillomavirus 16 DNA integration in patients with tonsillar carcinoma. Clin Cancer Res 2006:11;5694–5699.CrossRefGoogle Scholar
Leventon, GS, Evans, HL. Sarcomatoid squamous cell carcinoma of the mucous membranes of the head and neck: a clinicopathologic study of 20 cases. Cancer 1981;48:994–1003.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Patel, NK, McKee, PH, Smith, NP, Fletcher, CD. Primary metaplastic carcinoma (carcinosarcoma) of the skin: A clinicopathologic study of four cases and review of the literature. Am J Dermatopathol 1997;19:363–372.CrossRefGoogle ScholarPubMed
Takata, T, Ito, H, Ogawa, I, Miyauchi, M, Ijuhin, N, Nikai, H. Spindle cell squamous carcinoma of the oral region: An immunohistochemical and ultrastructural study on the histogenesis and differential diagnosis with a clinicopathologic analysis of six cases. Virchows Arch A Pathol Anat Histopathol 1991;419:177–182.CrossRefGoogle Scholar
Lewis, JE, Olsen, KD, Sebo, TJ. Spindle cell carcinoma of the larynx: review of 26 cases including DNA content and immunohistochemistry. Hum Pathol 1997;28:664–673.CrossRefGoogle ScholarPubMed
Thompson, LD, Wieneke, JA, Miettinen, M, Heffner, DK. Spindle cell (sarcomatoid) carcinomas of the larynx: a clinicopathologic study of 187 cases. Am J Surg Pathol 2002;26:153–170.CrossRefGoogle ScholarPubMed
Wick, MR, Ritter, JH, Humphrey, PA. Sarcomatoid carcinomas of the lung: a clinicopathologic review. Am J Clin Pathol 1997;108:40–53.CrossRefGoogle ScholarPubMed
Sigel, JE, Skacel, M, Bergfeld, WF, House, NS, Rabkin, MS, Goldblum, JR. The utility of cytokeratin 5/6 in the recognition of cutaneous spindle cell squamous cell carcinoma. J Cutan Pathol 2001;28:520–524.CrossRefGoogle ScholarPubMed
Morgan, MB, Purohit, C, Anglin, TR. Immunohistochemical distinction of cutaneous spindle cell carcinoma. Am J Dermatopathol 2008;30:228–232.CrossRefGoogle ScholarPubMed
Dotto, JE, Glusac, EJ. p63 is useful marker for cutaneous spindle cell squamous cell carcinoma. J Cutan Pathol 2006;33:413–417.CrossRefGoogle ScholarPubMed
Choi, HR, Sturgis, EM, Rosenthal, DI, Luna, MA, Batsakis, JG, El-Naggar, AK. Sarcomatoid carcinoma of the head and neck: molecular evidence for evolution and progression from conventional squamous cell carcinomas. Am J Surg Pathol 2003;27:1216–1220.CrossRefGoogle ScholarPubMed
Wick, MR, Lillemoe, TJ, Copland, GT, Swanson, PE, Manivel, JC, Kiang, DT. Gross cystic disease fluid protein-15 as a marker for breast cancer: immunohistochemical analysis of 690 human neoplasms and comparison with alpha-lactalbumin. Hum Pathol 1989;20:281–287.CrossRefGoogle ScholarPubMed
Kaufmann, O, Deidesheimer, T, Meuhlenberg, M, Deicke, P, Dietel, M. Immunohistochemical differentiation of breast carcinomas from metastatic adenocarcinomas of other common sites. Histopathology 1996;29:233–240.CrossRefGoogle Scholar
Dennis, JL, Hvidsten, TR, Wit, EC, Komorowski, J, Bell, AK, Downie, I. Markers of adenocarcinoma characteristic of the site of origin: Development of a diagnostic algorithm. Clin Cancer Res 2005;11:3766–3772.CrossRefGoogle ScholarPubMed
Young, BR, Wick, MR. Immunohistologic evaluation of metastatic carcinomas of unknown origin: An algorithmic approach. Semin Diagn Pathol 2000;17:184–193.Google Scholar
Han, JK, Kang, Y, Shin, HC, Kim, HS, Kang, YM, Kim, YB. Mammaglobin expression in lymph nodes is an important marker of metastatic breast carcinoma. Arch Pathol Lab Med 2003;127:1330–1334.Google ScholarPubMed
Takeda, Y, Tsuta, K, Shibuki, Y, Hoshino, T, Tochigi, N, Maeshima, AN. Analysis of expression patterns of breast cancer-specific markers (mammaglobin and gross cystic disease fluid protein 15) in lung and pleural tumors. Arch Pathol Lab Med 2008;132:239–243.Google ScholarPubMed
Oberman, HA. Metaplastic carcinoma of the breast: A clinicopathologic study of 29 cases. Am J Surg Pathol 1987;11:918–929.CrossRefGoogle Scholar
Wargotz, ES, Deos, PH, Norris, HJ. Metaplastic carcinomas of the breast. II: Spindle cell carcinoma. Hum Pathol 1989;20:732–740.CrossRefGoogle ScholarPubMed
Wargotz, ES, Norris, HJ. Metaplastic carcinomas of the breast. I: Matrix-producing carcinoma. Hum Pathol 1989;20:628:635.Google ScholarPubMed
Foschini, MP, Dina, RE, Eusebi, V. Sarcomatoid neoplasms of the breast: proposed definition for biphasic and monophasic sarcomatoid mammary carcinomas. Semin Diagn Pathol 1993;10:128–136.Google Scholar
Gobbi, H, Simpson, JF, Borowsky, A, Jensen, RA, Page, DL. Metaplastic breast tumors with a dominant fibromatosis-like phenotype have a high risk of local recurrence. Cancer 1999;85:2170–2182.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Sneide, N, Yaziji, H, Mandavilli, SR, Perez, ER, Ordonez, NG, Gown, AM. Low-grade (fibromatosis-like) spindle cell carcinoma of the breast. Am J Surg Pathol 2001;25:1009–1016.Google Scholar
Kurian, KM, Al-Nafussi, A. Sarcomatoid/metaplastic carcinoma of the breast: a clinicopathologic study of 12 cases. Histopathology 2002;40:58–64.CrossRefGoogle Scholar
Carter, MR, Hornick, JL, Lester, S, Fletcher, CDM. Spindle cell (sarcomatoid) carcinoma of the breast: A clinicopathologic and immunohistochemical analysis of 29 cases. Am J Surg Pathol 2006;30:300–309.CrossRefGoogle ScholarPubMed
Reis-Filho, JS, Carrilho, C, Valenti, C, Leitao, D, Ribeiro, CA, Ribeiro, SG. Is TTF1 a good immunohistochemical marker to distinguish primary from metastatic lung adenocarcinomas. Pathol Res Pract 2000;196:835–840.CrossRefGoogle ScholarPubMed
Kaufmann, O, Dietel, M. Thyroid transcription factor 1 is a superior immunohistochemical marker for pulmonary adenocarcinoma and large cell carcinoma compared to surfactant proteins A and B. Histopathology 2000;36:8–16.CrossRefGoogle ScholarPubMed
Lau, SK, Luthringer, DJ, Eisen, RN. Thyroid transcription factor-1: a review. Appl Immunohistochem Mol Morphol 2002;10:97–102.CrossRefGoogle ScholarPubMed
Zhu, W, Michael, CW. WT1, monoclonal CEA, TTF1, and CA125 antibodies in the differential diagnosis of lung, breast, and ovarian adenocarcinomas in serous effusions. Diagn Cytopathol 2007;35:370–375.CrossRefGoogle ScholarPubMed
Siami, K, McCluggage, WG, Ordonez, NG, Euscher, ED, Malpica, A, Sneige, N. Thyroid transcription factor-1 expression in endometrial and endocervical adenocarcinomas. Am J Surg Pathol 2007;31:1759–1763.CrossRefGoogle ScholarPubMed
Agoff, SN, Lamps, LW, Philip, AT, Amin, MB, Schmidt, RA, True, LD. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol 2000;13;238–242.CrossRefGoogle Scholar
Cheuk, W, Kwan, MY, Suster, S, Chank, JK. Immunostaining for thyroid transcription factor 1 and cytokeratin 20 aids the distinction of small cell carcinoma from Merkel cell carcinoma, but not pulmonary from extrapulmonary small cell carcinomas. Arch Pathol Lab Med 2001;125:228–231.Google Scholar
Kaufmann, O, Georgi, T, Dietel, M. Utility of 123C3 monoclonal antibody against CD56 (NCAM) for the diagnosis of small cell carcinomas on paraffin sections. Hum Pathol 1998;28:1373–1378.CrossRefGoogle Scholar
Lin, X, Saad, RS, Lukasevic, TM, Selverman, JF, Liu, Y. Diagnostic value of CDX-2 and TTF-1 expressions in separating metastatic neuroendocrine neoplasms of unknown origin. Appl Immunohistochem Mol Morphol 2007;15:407–414.CrossRefGoogle Scholar
Nakajima, M, Kasai, T, Hashimoto, H, Iwata, Y, Manabe, H. Sarcomatoid carcinoma of the lung: A clinicopathologic study of 37 cases. Cancer 1999;86:608–616.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Pelosi, G, Scarpa, A, Manzotti, M, Veronesi, G, Spaggiari, L, Fraggetta, F. K-ras gene mutational analysis supports a monoclonal origin of biphasic pleomorphic carcinoma of the lung. Mod Pathol 2004;17:538–546.CrossRefGoogle ScholarPubMed
Rossi, G, Cavazza, A, Sturm, N, Migaldi, M, Facciolongo, N, Longo, L. Pulmonary carcinomas with pleomorphic, sarcomatoid, or sarcomatous elements: a clinicopathologic and immunohistochemical study of 75 cases. Am J Surg Pathol 2003;27:311–324.CrossRefGoogle ScholarPubMed
Werling, RW, Yaziji, H, Bacchi, CE, Gown, AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol 2003;27:303–310.CrossRefGoogle ScholarPubMed
Moskaluk, CA, Zhang, H, Powell, SM, Cerilli, , Hampton, GM, Frierson, HF. CDX2 protein expression in normal and malignant human tissues: an immunohistochemical survey using tissue microarrays. Mod Pathol 2003;16: 913–919.CrossRefGoogle ScholarPubMed
Vang, R, Gown, AM, Wu, LS, Barry, TS, Wheeler, DT, Yemelyanova, A. Immunohistochemical expression of CDX2 in primary ovarian mucinous tumors and metastatic mucinous carcinomas involving the ovary: comparison with CK20 and correlation with coordinate expression of CK7. Mod Pathol 2006;19:1421–1428.CrossRefGoogle ScholarPubMed
McCluggage, WG, Shar, R, Connolly, , McBride, HA. Intestinal type cervical adenocarcinoma in situ and adenocarcinomas exhibit a partial enteric immunophenotype with consistent expression of CDX2. Int J Gynecol Pathol 2008;27:92–100.CrossRefGoogle ScholarPubMed
Cathro, HP, Mills, SE. Immunophenotypic differences between intestinal-type and low-grade papillary sinonasal adenocarcinomas: an immunohistochemical study of 2 cases utilizing CDX2 and MUC2. Am J Surg Pathol 2004;28:1026–1032.CrossRefGoogle ScholarPubMed
Swierczynski, SL, Maitra, A, Abraham, SC, Iacobuzio-Donahue, CA, Ashfaq, R, Cameron, JL. Analysis of novel tumor markers in pancreatic and biliary carcinomas using tissue microarrays. Hum Pathol 2004;35:357–366.CrossRefGoogle ScholarPubMed
Chu, PG, Ishizawa, S, Wu, E, Weiss, LM. Hepatocyte antigen as a marker for hepatocellular carcinoma: an immunohistochemical comparison to carcinoembryonic antigen, CD10, and alpha-fetoprotein. Am J Surg Pathol 2002;26:978–988.CrossRefGoogle ScholarPubMed
Kakar, S, Muir, T, Murphy, LM, Lloyd, RV, Burgart, LJ. Immunoreactivity of Hep Par 1 in hepatic and extrahepatic tumors and its correlation with albumin is situ hybridization in hepatocellular carcinoma. Am J Clin Pathol 2003;119:361–366.CrossRefGoogle Scholar
Morrison, C, Marsh, W, Frankel, WL. A comparison of CD10 to pCEA, MOC-31, and hepatocyte for the distinction of malignant tumors in the liver. Mod Pathol 2002;15:1279–1287.CrossRefGoogle ScholarPubMed
Varma, V, Cohen, C. Immunohistochemical and molecular markers in the diagnosis of hepatocellular carcinoma. Adv Anat Pathol 2004;11:239–249.CrossRefGoogle ScholarPubMed
Chandrel, RW, Shulman, I, Moore, IM. Renal cell carcinoma presenting as a skeletal muscle mass: a case report. Clin Orthop Relat Res 1979;145:227–229.Google Scholar
Kierney, PC, Heerden, JA, Sgura, JW, Weaver, AL. Surgeon's role in the management of solitary renal cell carcinoma metastases occurring subsequent to initial curative nephrectomy: an institutional review. Ann Surg Oncol 1994;1:345–352.CrossRefGoogle Scholar
McGregor, DK, Khurana, KK, Cao, C, Tsao, CC, Ayala, G, Khrisnan, B. Diagnosing primary and metastatic renal cell carcinoma: the use of the monoclonal antibody “renal carcinoma marker.” Am J Surg Pathol 2001;25:1485–1492.CrossRefGoogle Scholar
Avery, AK, Beckstead, J, Renshaw, AA, Corless, CL. Use of antibodies to RCC and CD10 in the differential diagnosis of renal neoplasms. Am J Surg Pathol 2000;24:203–210.CrossRefGoogle ScholarPubMed
Pan, CC, Chen, PC, Ho, DM. The diagnostic utility of MOC31, BerEp4, RCC marker and CD10 in the classification of renal carcinoma and renal oncocytoma: an immunohistochemical analysis of 328 cases. Histopathology 2004;45:452–459.CrossRefGoogle ScholarPubMed
Bakshi, N, Kunju, LP, Giordano, T, Shah, RB. Expression of renal cell carcinoma antigen (RCC) in renal epithelial and nonrenal tumors: diagnostic implications. Appl Immunohistochem Mol Morphol 2007;15:310–315.CrossRefGoogle ScholarPubMed
Takashi, M, Haimoto, H, Murase, T, Mitsuya, H, Kato, K. An immunochemical and immunohistochemical study of S100 protein in renal cell carcinoma. Cancer 1988;61:889–895.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Gokden, N, Gokden, M, Phan, DC, McKenney, JK. The utility of PAX-2 in distinguishing metastatic clear cell renal cell carcinoma from its morphological mimics: an immunohistochemical study with comparison to renal cell carcinoma marker. Am J Surg Pathol 2008;32:1462–1467.CrossRefGoogle Scholar
Lin, F, Zhang, PL, Yang, XJ, Shi, J, Blasick, T, Han, WK. Human kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg Pathol 2007;31:371–381.CrossRefGoogle ScholarPubMed
Farrow, GM, Harrison, EG, Utz, DC. Sarcomas and sarcomatoid and mixed malignant tumors of the kidney in adults: 3. Cancer 1968;22:556–563.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Bertoni, F, Ferri, C, Benati, A, Bacchini, P, Corrado, F. Sarcomatoid carcinoma of the kidney. J Urol 1987;137:25–28.CrossRefGoogle ScholarPubMed
Ro, JY, Ayala, AG, Sella, A, Samuels, ML, Sanson, DA. Sarcomatoid renal cell carcinoma: A clinicopathologic study of 42 cases. Cancer 1987;59:516–526.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Baer, SC, Ro, JY, Ordonez, NG, Maiese, RL, Lose, JH, Grignon, DG. Sarcomatoid collecting duct carcinoma: a clinicopathologic and immunohistochemical study of five cases. Hum Pathol 1993;24:1017–1022.CrossRefGoogle ScholarPubMed
Akhtar, M, Tulbah, A, Kardar, AH, Ali, MA. Sarcomatoid renal cell carcinoma: The chromophobe connection. Am J Surg Pathol 1997;21:1188–1195.CrossRefGoogle ScholarPubMed
da Peralta Venturina, M, Moch, H, Amin, M, Tamboli, P, Hailemariam, S, Mihatsch, M. Sarcomatoid differentiation in renal cell carcinoma: a study of 101 cases. Am J Surg Pathol 2001;25:275–284.CrossRefGoogle Scholar
Cheville, JC, Lohse, CM, Zincke, H, Weaver, AL, Leibovich, BC, Frank, I. Sarcomatoid renal cell carcinoma: an examination of underlying histologic subtype and an analysis of association with patient outcome. Am J Surg Pathol 2004;28:435–441.CrossRefGoogle Scholar
DeLong, W, Grignon, DJ, Eberwein, P, Shum, DT, Wyatt, JK. Sarcomatoid renal cell carcinoma: An immunohistochemical study of 18 cases. Arch Pathol Lab Med 1993;117:636–640.Google ScholarPubMed
Li, L, Teichberg, S, Steckel, J, Chen, QH. Sarcomatoid renal cell carcinoma with divergent sarcomatoid growth patterns: a case report and review of the literature. Arch Pathol Lab Med 2005;129:1057–1060.Google ScholarPubMed
Itoh, T, Chikai, K, Ota, S, Nakagawa, T, Takiyama, A, Mouri, G. Chromophobe renal cell carcinoma with osteosarcoma-like differentiation. Am J Surg Pathol 2002;26:1358–1362.CrossRefGoogle ScholarPubMed
Jones, TD, Eble, JN, Wang, M, McLennan, GT, Jain, S, Cheng, L. Clonal divergence and genetic heterogeneity in clear cell renal cell carcinomas with sarcomatoid transformation. Cancer 2005;104:1195–1203.CrossRefGoogle ScholarPubMed
Jiang, J, Ulbright, TM, Younger, C, Sanchez, K, Bostwick, DG, Koch, MO. Cytokeratin 7 and cytokeratin 20 in primary urinary bladder carcinoma and matched lymph node metastases. Arch Pathol Lab Med 2001;125:921–923.Google Scholar
Wu, X, Kakehi, Y, Zeng, Y, Taoka, R, Tsunemori, H, Inui, M. Uroplakin II as a promising marker for molecular diagnosis of nodal metastases from bladder cancer: Comparison with cytokeratin 20. J Urol 2005;174:2138–2142.CrossRefGoogle ScholarPubMed
Huang, HY, Shariat, SR, Sun, TT, Lepor, H, Shapiro, E, Hsieh, JT. Persistent uroplakin expression in advanced urothelial carcinomas: implications in urothelial tumor progression and clinical outcome. Hum Pathol 2007;38:1703–1713.CrossRefGoogle ScholarPubMed
Stein, BS, Vangore, S, Petersen, RO, Kendall, AR. Immunoperoxidase localization of prostate-specific antigen. Am J Surg Pathol 1982;6:553–557.CrossRefGoogle ScholarPubMed
Fan, CY, Wang, J, Barnes, EL. Expression of androgen receptor and prostatic specific markers in salivary duct carcinoma: an immunohistochemical analysis of 13 cases and review of the literature. Am J Surg Pathol 2000;24:579–586.CrossRefGoogle ScholarPubMed
Hameed, O, Humphrey, PA. Immunohistochemistry in diagnostic surgical pathology of the prostate. Semin Diagn Pathol 2005;22:88–104.CrossRefGoogle ScholarPubMed
Bostwick, DG, Pacelli, A, Blute, M, Roche, P, Murphy, GP. Prostate-specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 1998;82:2256–2261.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Sheridan, T, Herawi, M, Epstein, JI, Illei, PB. The role of P501S and PSA in the diagnosis of metastatic adenocarcinoma of the prostate. Am J Surg Pathol 2007;31:1351–1355.CrossRefGoogle Scholar
Busam, KJ, Iversen, K, Coplan, KA, Old, LJ, Stockert, E, Chen, YT. Immunoreactivity for A103, an antibody to melan-A (Mart-1), in adrenocortical and other steroid cell tumors. Am J Surg Pathol 1998;22:57–63.CrossRefGoogle Scholar
Arola, J, Liu, J, Heikkila, P, Voutilainen, R, Kahri, A. Expression of inhibin alpha in the human adrenal gland and adrenocortical tumors. Endocr Res 1998;24:865–867.CrossRefGoogle ScholarPubMed
Renshaw, AA, Granter, SR. A comparison of A103 and inhibin reactivity in adrenal cortical tumors: distinction from hepatocellular carcinoma and renal tumors. Mod Pathol 1999;11:1160–1164.Google Scholar
Pan, CC, Chen, PC, Tsay, SH, Ho, DM. Differential immunoprofiles of hepatocellular carcinoma, renal cell carcinoma, and adrenocortical carcinoma: a systemic immunohistochemical survey using tissue array technique. Appl Immunohistochem Mol Morphol 2005;13:347–352.CrossRefGoogle ScholarPubMed
Loy, TS, Quesenberry, JT, Sharp, SC. Distribution of CA125 in adenocarcinomas: An immunohistochemical study of 481 cases. Am J Clin Pathol 1992;98:175–179.CrossRefGoogle Scholar
Langendijk, DH, Mullink, H, Diest, PJ, Meijer, GA, Meijer, CJ. Tracing the origin of adenocarcinomas with unknown primary using immunohistochemistry: differential diagnosis between colonic and ovarian carcinomas as primary sites. Hum Pathol 1998;29:491–497.CrossRefGoogle Scholar
Baker, TM, Oliva, E. Immunohistochemistry as a tool in the differential diagnosis of ovarian tumors: an update. Int J Gynecol Pathol 2005;24:39–55.Google ScholarPubMed
Soslow, RA. Histologic subtypes of ovarian carcinoma: an overview. Int J Gynecol Pathol 2008;27:161–174.Google ScholarPubMed
Acs, G, Pasha, T, Zhang, PJ. WT1 is differentially expressed in serous, endometrioid, clear cell, and mucinous carcinomas of the peritoneum, fallopian tube, ovary, and endometrium. Int J Gynecol Pathol 2004;23:110–118.CrossRefGoogle ScholarPubMed
Tornos, C, Soslow, R, Chen, S, Akram, M, Hummer, AJ, Abu-Rustum, N. Expression of WT1, CA125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary. Am J Surg Pathol 2005;29:1482–1489.CrossRefGoogle ScholarPubMed
Rosai, J. Immunohistochemical markers of thyroid tumors: significance and diagnostic applications. Tumori 2003;89:517–519.CrossRefGoogle ScholarPubMed
Miettinen, M, Franssila, K. Variable expression of keratins and nearly uniform lack of thyroid transcription factor 1 in thyroid anaplastic carcinoma. Hum Pathol 2000;31:1139–1145.CrossRefGoogle ScholarPubMed
Bussolati, G, Papotti, M, Pagani, A. Diagnostic problems in medullary carcinoma of the thyroid. Pathol Res Pract 1995;191:332–344.CrossRefGoogle ScholarPubMed
Hamada, S, Hamada, S. Localization of carcinoembryonic antigen in medullary thyroid carcinoma by immunofluorescent techniques. Br J Cancer 1977;36:572–576.CrossRefGoogle ScholarPubMed
Sung, MT, MacLennan, GT, Cheng, L. Retroperitoneal seminoma in limited biopsies: morphologic criteria and immunohistochemical findings in 30 cases. Am J Surg Pathol 2006;30:766–773.CrossRefGoogle ScholarPubMed
Jones, TD, Ulbright, TM, Ebje, JN, Beldridge, , Cheng, L. OCT4 staining in testicular tumors: a sensitive and specific marker for seminoma and embryonal carcinoma. Am J Surg Pathol 2004;28:935–940.CrossRefGoogle ScholarPubMed
Cheng, L. Establishing germ cell origin for metastatic tumors using OCT4 immunohistochemistry. Cancer 2004;101:2006–2010.CrossRefGoogle ScholarPubMed
Emerson, RE, Ulbright, TM. The use of immunohistochemistry in the differential diagnosis of tumors of the testis and paratestis. Semin Diagn Pathol 2005;22:33–50.CrossRefGoogle ScholarPubMed
Hoei-Hansen, CE, Almstrup, K, Nielsen, JE, Brask Sonne, S, Graem, N, Skakkebaek, NE. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumors. Histopathology 2005;47;48–66.CrossRefGoogle Scholar
Hart, AH, Hartley, L, Parker, K, Ibrahim, M, Looijenga, LH, Pauchnik, M. The pluripotency homeobox gene is expressed in human germ cell tumors. Cancer 2005;104:2092–2098.CrossRefGoogle ScholarPubMed
Santagata, S, Ligon, KL, Hornick, JL. Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors. Am J Surg Pathol 2007;31:836–845.CrossRefGoogle Scholar
Ezeh, UI, Turek, PJ, Reijo, RA, Clark, AT. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 2005;104:2255–2265.CrossRefGoogle ScholarPubMed
Iczkowski, KA, Butler, SL, Shanks, JH, Hossain, D, Schall, A, Meiers, I. Trials of new germ cell immunohistochemical stains in 93 extragonadal and metastatic germ cell tumors. Hum Pathol 2008;39:275–281.CrossRefGoogle ScholarPubMed
Biermann, K, Klingmuller, D, Koch, A, Pietsch, T, Schorle, H, Büttner, R. Diagnostic value of markers M2A, OCT3/4, AP-2 gamma, PLAP and c-KIT in the detection of extragonadal seminomas. Histopathology 2006;49:290–297.CrossRefGoogle ScholarPubMed
Kemmer, K, Corless, CL, Fletcher, JA, McGreevey, L, Haley, A, Griffith, D. KIT mutations are common in testicular seminoma. Am J Pathol 2004;164:305–313.CrossRefGoogle Scholar
Moll, R. Cytokeratins in the histologic diagnosis of malignant tumors. Int J Biol Markers 1994;9:63–69.CrossRefGoogle Scholar
Chu, PG, Weiss, LM. Keratin expression in human tissues and neoplasms. Histopathology 2002;40:403–439.CrossRefGoogle ScholarPubMed
Paul, SA, Stoeckli, SJ, Schulthess, GK, Goerres, GW. FDG PET and PET/CT for the detection of the primary tumour in patients with cervical non-squamous cell carcinoma metastasis of an unknown primary. Eur Arch Otorhinolaryngol 2007;264:189–195.CrossRefGoogle ScholarPubMed
Tothill, RW, Kowalczyk, A, Rischin, D, Bousioutas, A, Haviv, I, Laar, RK. An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. Cancer Res 2005;65:4031–4040.CrossRefGoogle ScholarPubMed
Horlings, HM, Laar, RK, Kerst, JM, Helgason, HH, Wesseling, J, Hoeven, JJM. Gene expression profiling to identify the histogenetic origin of metastatic adenocarcinomas of unknown primary. J Clin Oncol 2008;26: 4435–4441.CrossRefGoogle ScholarPubMed
Varadhachary, GR, Talantov, D, Raber, MN, Meng, C, Hess, KR, Jatkoe, T. Molecular profiling of carcinoma of unknown primary and correlation with clinical evaluation. J Clin Oncol 2008;26:4442–4448.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×