Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T10:55:38.706Z Has data issue: false hasContentIssue false

8 - Neural networks and neuro-oncology: the complex interplay between brain tumour, epilepsy and cognition

from Part II - The use of artificial neural networks to elucidate the nature of perceptual processes in animals

Published online by Cambridge University Press:  05 July 2011

L. Douw
Affiliation:
VU University Medical Centre
C.J. Stam
Affiliation:
VU University Medical Centre
M. Klein
Affiliation:
VU University Medical Centre
J.J. Heimans
Affiliation:
VU University Medical Centre
J.C. Reijneveld
Affiliation:
VU University Medical Centre
Colin R. Tosh
Affiliation:
University of Leeds
Graeme D. Ruxton
Affiliation:
University of Glasgow
Get access

Summary

Introduction

The human brain is by far the most complex network known to man. Neuroscience has for a long time focused on a reductionistic approach when studying the brain, in part precisely because of its daunting complexity. Although highly important insights have been obtained by using a localisational method, this type of research has failed to elucidate the elaborate mechanisms involved in higher brain functioning and perception. As a consequence, an increasing body of research regarding the brain's functional status has become founded on modern network theory. In this subdivision of mathematics and physics, emphasis is placed on the manner in which several parts of the brain interact, instead of on which specific part of the cortex is responsible for a certain task. The first studies using networks to investigate the brain have made use of computational models and animal studies. Due to the great research advances in recent years, network theory is now being readily applied to the human brain. Studies are being performed in both the healthy population and several patient groups, in order to find out what constitutes a healthy versus a diseased brain (for an introduction into brain networks, see Watts & Strogatz, 1998; Bassett & Bullmore, 2006; Reijneveld et al., 2007).

Brain tumours almost invariably cause highly burdensome symptoms, such as cognitive deficits and epileptic seizures. The tumour has significant impact on the brain, since it forces the non-tumoural tissue to adapt to the presence and constant expansion of a foreign entity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarabi, A., Wallois, F.et al. 2008. Does spatiotemporal synchronization of EEG change prior to absence seizures?Brain Res 1188, 207–221.CrossRefGoogle ScholarPubMed
Achard, S. & Bullmore, E. 2007. Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2), e17.CrossRefGoogle ScholarPubMed
Achard, S., Salvador, R.et al. 2006. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1), 63–72.CrossRefGoogle ScholarPubMed
Aertsen, A. M., Gerstein, G. L.et al. 1989. Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61(5), 900–917.CrossRefGoogle ScholarPubMed
Anand, A., Li, Y.et al. 2005. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry 57(10), 1079–1088.CrossRefGoogle ScholarPubMed
Anderson, S. W., Damasio, H.et al. 1990. Neuropsychological impairments associated with lesions caused by tumor or stroke. Arch Neurol 47(4), 397–405.CrossRefGoogle ScholarPubMed
Atay, F. M. & Biyikoglu, T. 2005. Graph operations and synchronization of complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 72(1 Pt 2), Art. no. 016217.CrossRefGoogle ScholarPubMed
Atay, F. M., Jost, J., et al. 2004. Delays, connection topology, and synchronization of coupled chaotic maps. Phys Rev Lett 92(14), Art. no. 144101.CrossRefGoogle ScholarPubMed
Auer, D. P. 2008. Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the ‘resting’ brain. Magn Reson Imaging26, 1055–1064.
Barahona, M. & Pecora, L. M. 2002. Synchronization in small-world systems. Phys Rev Lett 89(5), Art. no. 054101.CrossRefGoogle ScholarPubMed
Barrat, A., Barthelemy, M.et al. 2004. The architecture of complex weighted networks. Proc Natl Acad Sci USA 101(11), 3747–3752.CrossRefGoogle ScholarPubMed
Barthelemy, M., Barrat, A.et al. 2005. Characterization and modelling of weighted networks. Physica A 346, 34–43.CrossRefGoogle Scholar
Bartolomei, F., Bosma, I.et al. 2006a. Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices. Clin Neurophysiol 117(9), 2039–2049.CrossRefGoogle ScholarPubMed
Bartolomei, F., Bosma, I.et al. 2006b. How do brain tumors alter functional connectivity? A magnetoencephalography study. Ann Neurol 59(1), 128–138.CrossRefGoogle ScholarPubMed
Bartolomei, F., Wendling, F.et al. 2008. [The concept of an epileptogenic network in human partial epilepsies]. Neurochirurgie 54(3), 174–184.CrossRefGoogle Scholar
Bassett, D. S. & Bullmore, E. 2006. Small-world brain networks. Neuroscientist 12(6), 512–523.CrossRefGoogle ScholarPubMed
Bassett, D. S., Meyer-Lindenberg, A.et al. 2006. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103(51), 19518–19523.CrossRefGoogle ScholarPubMed
Beaumont, A. & Whittle, I. R. 2000. The pathogenesis of tumour associated epilepsy. Acta Neurochir (Wien) 142(1), 1–15.CrossRefGoogle ScholarPubMed
Bettus, G., Guedj, E.et al. 2008a. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp.
Bettus, G., Wendling, F., et al. 2008b. Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res.
Biswal, B., Yetkin, F. Z.et al. 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4), 537–541.CrossRefGoogle ScholarPubMed
Boccaletti, S., Latora, V.et al. 2006. Complex networks: structure and dynamics. Phys Reports 424, 175–308.CrossRefGoogle Scholar
Bosma, I., Douw, L.et al. 2008. Synchronized brain activity and neurocognitive function in patients with low-grade glioma: a magnetoencephalography study. Neuro Oncol.
Bosma, I., Reijneveld, J. C.et al. 2009. Disturbed functional brain networks and neurocognitive function in low-grade glioma patients: a graph theoretical analysis of resting-state MEG Nonlinear Biomed Phys3(1), 9.CrossRef
Brenner, R. P. 2002. Is it status?Epilepsia 43 (Suppl. 3), 103–113.CrossRefGoogle Scholar
Bressler, S. 2002. Understanding cognition through large-scale cortical networks. Current Directions in Psychological Science 11, 58–61.CrossRefGoogle Scholar
Bressler, S. L. 1995. Large-scale cortical networks and cognition. Brain Res Brain Res Rev 20(3), 288–304.CrossRefGoogle ScholarPubMed
Brogna, C., Gil Robles, S.et al. 2008. Brain tumors and epilepsy. Expert Rev Neurother 8(6), 941–955.CrossRefGoogle ScholarPubMed
Bromfield, E. B. 2004. Epilepsy in patients with brain tumors and other cancers. Rev Neurol Dis 1(Suppl. 1), S27–S33.Google Scholar
Buckner, J. C. 2003. Factors influencing survival in high-grade gliomas. Semin Oncol 30(6 Suppl. 19), 10–4.CrossRefGoogle ScholarPubMed
Cao, Q., Zang, Y.et al. 2006. Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport 17(10), 1033–1036.CrossRefGoogle ScholarPubMed
Chavez, M., Hwang, D. U.et al. 2006. Synchronizing weighted complex networks. Chaos 16(1), Art. no. 015106.CrossRefGoogle ScholarPubMed
Chavez, M., Hwang, D. U.et al. 2005. Synchronization is enhanced in weighted complex networks. Phys Rev Lett 94(21), Art. no. 218701.CrossRefGoogle ScholarPubMed
Curran, W. J., Jr., Scott, C. B.et al. 1993. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 85(9), 704–710.CrossRefGoogle ScholarPubMed
Vico Fallani, F., Astolfi, L.et al. 2007. Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum Brain Mapp 28(12), 1334–1346.CrossRefGoogle ScholarPubMed
DeAngelis, L. M. 2001. Brain tumors. N Engl J Med 344(2), 114–123.CrossRefGoogle ScholarPubMed
Desmurget, M., Bonnetblanc, F.et al. 2007. Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain 130(Pt 4), 898–914.CrossRefGoogle ScholarPubMed
Dodel, S., Hermann, J. M.et al. 2002. Functional connectivity by cross-correlation clustering. Neurocomputing 44–46, 1065–1070.CrossRefGoogle Scholar
Donetti, L., Hurtado, P. I.et al. 2005. Entangled networks, synchronization, and optimal network topology. Phys Rev Lett 95(18), Art. no. 188701.CrossRefGoogle ScholarPubMed
Douw, L., Baayen, H., et al. 2008. Treatment-related changes in functional connectivity in brain tumor patients: a magnetoencephalography study. Exp Neurol 212, 285–290.CrossRefGoogle ScholarPubMed
Douw, L., Baayen, J. C.et al. 2009. Functional connectivity in the brain before and during intra-arterial amobarbital injection (Wada test) Neuroimage46(3), 584–588.
Dyhrfjeld-Johnsen, J., Santhakumar, V.et al. 2007. Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97(2), 1566–1587.CrossRefGoogle ScholarPubMed
Eguiluz, V. M., Chialvo, D. R. et al. 2005. Scale-free brain functional networks. Phys Rev Lett 94(1), Art. no. 018102.CrossRefGoogle ScholarPubMed
Erdos, P. & Renyi, A. 1960. On the evolution of random graphs. Publications Mathemat Inst Hungarian Acad Sci 12, 17–61.Google Scholar
Felleman, D. J. & Van Essen, D. C. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1), 1–47.CrossRefGoogle ScholarPubMed
Forsgren, L. 1990. Prospective incidence study and clinical characterization of seizures in newly referred adults. Epilepsia 31(3), 292–301.CrossRefGoogle ScholarPubMed
French, D. A. & Gruenstein, E. I. 2006. An integrate-and-fire model for synchronized bursting in a network of cultured cortical neurons. J Comput Neurosci 21(3), 227–241.CrossRefGoogle Scholar
Guggisberg, A. G., Honma, S. M.et al. 2008. Mapping functional connectivity in patients with brain lesions. Ann Neurol 63, 193–203.CrossRefGoogle ScholarPubMed
Guye, M., Bartolomei, F.et al. 2008. Imaging structural and functional connectivity: towards a unified definition of human brain organization?Curr Opin Neurol 24(4), 393–403.CrossRefGoogle Scholar
Guye, M., Regis, J.et al. 2006. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 129(7), 1917–1928.CrossRefGoogle ScholarPubMed
Hagmann, P., Kurant, M.et al. 2007. Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2(7), e597.CrossRefGoogle ScholarPubMed
Harmony, T., Marosi, E.et al. 1994. EEG coherences in patients with brain lesions. Int J Neurosci 74(1–4), 203–226.CrossRefGoogle ScholarPubMed
He, Y., Chen, Z. J.et al. 2007. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17(10), 2407–2419.CrossRefGoogle ScholarPubMed
Hilgetag, C. C., Burns, G. A.et al. 2000. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Phil Trans R Soc B 355(1393), 91–110.CrossRefGoogle ScholarPubMed
Hochberg, F. H. & Slotnick, B. 1980. Neuropsychologic impairment in astrocytoma survivors. Neurology 30(2), 172–177.CrossRefGoogle ScholarPubMed
Hom, J. & Reitan, R. M. 1984. Neuropsychological correlates of rapidly vs. slowly growing intrinsic cerebral neoplasms. J Clin Neuropsychol 6(3), 309–324.CrossRefGoogle ScholarPubMed
Honey, C. J., Kotter, R.et al. 2007. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104(24), 10240–10245.CrossRefGoogle ScholarPubMed
Honey, C. J. & Sporns, O. 2008. Dynamical consequences of lesions in cortical networks. Hum Brain Mapp 29(7), 802–809.CrossRefGoogle ScholarPubMed
Hong, H., Choi, M. Y.et al. 2002. Synchronization on small-world networks. Phys Rev E Stat Nonlin Soft Matter Phys 65(2 Pt 2), Art. no. 026139.CrossRefGoogle ScholarPubMed
Humphries, M. D. & Gurney, K. 2008. Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS ONE 3(4), e0002051.CrossRefGoogle ScholarPubMed
Humphries, M. D., Gurney, K.et al. 2006. The brainstem reticular formation is a small-world, not scale-free, network. Proc R Soc B 273(1585), 503–511.CrossRefGoogle Scholar
Imperato, J. P., Paleologos, N. A.et al. 1990. Effects of treatment on long-term survivors with malignant astrocytomas. Ann Neurol 28(6), 818–822.CrossRefGoogle ScholarPubMed
Iturria-Medina, Y., Sotero, R. C.et al. 2008. Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage 40(3), 1064–1076.CrossRefGoogle ScholarPubMed
Kaiser, M. & Hilgetag, C. C. 2006. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2(7), e95.CrossRefGoogle ScholarPubMed
Klein, M., Engelberts, N. H.et al. 2003a. Epilepsy in low-grade gliomas: the impact on cognitive function and quality of life. Ann Neurol 54(4), 514–520.CrossRefGoogle ScholarPubMed
Klein, M. & Heimans, J. J. 2004. The measurement of cognitive functioning in low-grade glioma patients after radiotherapy. J Clin Oncol 22(5), 966–967; author reply 967–968.CrossRefGoogle ScholarPubMed
Klein, M., Heimans, J. J.et al. 2002. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study. Lancet 360(9343), 1361–1368.CrossRefGoogle ScholarPubMed
Klein, M., Postma, T. J.et al. 2003b. The prognostic value of cognitive functioning in the survival of patients with high-grade glioma. Neurology 61(12), 1796–1798.CrossRefGoogle ScholarPubMed
Klein, M., Taphoorn, M. J.et al. 2001. Neurobehavioral status and health-related quality of life in newly diagnosed high-grade glioma patients. J Clin Oncol 19(20), 4037–4047.CrossRefGoogle ScholarPubMed
Kotter, R. & Sommer, F. T. 2000. Global relationship between anatomical connectivity and activity propagation in the cerebral cortex. Phil Trans R Soc B 355(1393), 127–134.CrossRefGoogle ScholarPubMed
Kozma, R., Puljic, M.et al. 2005. Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol Cybern 92(6), 367–379.CrossRefGoogle ScholarPubMed
Kramer, M. A., Kolaczyk, E. D.et al. 2008. Emergent network topology at seizure onset in humans. Epilepsy Res 79(2–3), 173–186.CrossRefGoogle ScholarPubMed
Lago-Fernandez, L. F., Huerta, R.et al. 2000. Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84(12), 2758–2761.CrossRefGoogle ScholarPubMed
Langheim, F. J., Leuthold, A. C.et al. 2006. Synchronous dynamic brain networks revealed by magnetoencephalography. Proc Natl Acad Sci USA 103(2), 455–459.CrossRefGoogle ScholarPubMed
Latora, V. & Marchiori, M. 2001. Efficient behavior of small-world networks. Phys Rev Lett 87(19), Art. no. 198701.CrossRefGoogle ScholarPubMed
Latora, V. & Marchiori, M. 2003. Economic small-world behavior in weighted networks. Eur Phys 32, 249–263.CrossRefGoogle Scholar
Laufs, H. 2008. Endogenous brain oscillations and related networks detected by surface EEG-combined fMRI. Hum Brain Mapp 29(7), 762–769.CrossRefGoogle ScholarPubMed
Van Quyen, M., Soss, J.et al. 2005. Preictal state identification by synchronization changes in long-term intracranial EEG recordings. Clin Neurophysiol 116(3), 559–568.CrossRefGoogle ScholarPubMed
Lee, D. S. 2005. Synchronization transition in scale-free networks: clusters of synchrony. Phys Rev E Stat Nonlin Soft Matter Phys 72(2 Pt 2), Art. no. 026208.CrossRefGoogle Scholar
Levine, V. A., Leibel, S. A.et al. 1993. Neoplasms of the central nervous system. Cancer: Principles and Practice of Oncology, 4th Edn. (ed. DeVita, V. T., Hellman, S. & Rosenberg, S. A.), pp. 2022–2032. J.B.Lippincott.Google Scholar
Liu, Y., Liang, M.et al. 2008. Disrupted small-world networks in schizophrenia. Brain 131(4), 945–961.CrossRefGoogle Scholar
Lopes da Silva, F., Blanes, W.et al. 2003. Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(Suppl. 12), 72–83.CrossRefGoogle Scholar
Lote, K., Stenwig, A. E.et al. 1998. Prevalence and prognostic significance of epilepsy in patients with gliomas. Eur J Cancer 34(1), 98–102.CrossRefGoogle ScholarPubMed
Lowe, M. J., Mock, B. J.et al. 1998. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7(2), 119–132.CrossRefGoogle ScholarPubMed
Lowe, M. J., Phillips, M. D.et al. 2002. Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 224(1), 184–192.CrossRefGoogle ScholarPubMed
Lytton, W. W. 2008. Computer modelling of epilepsy. Nat Rev Neurosci 9(8), 626–637.CrossRefGoogle ScholarPubMed
Masuda, N. & Aihara, K. 2004. Global and local synchrony of coupled neurons in small-world networks. Biol Cybern 90(4), 302–309.CrossRefGoogle ScholarPubMed
McIntosh, A. R. 2000. Towards a network theory of cognition. Neural Netw 13(8–9), 861–870.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Bauer, U.et al. 1998. The topography of non-linear cortical dynamics at rest, in mental calculation and moving shape perception. Brain Topogr 10(4), 291–299.CrossRefGoogle ScholarPubMed
Micheloyannis, S., Pachou, E.et al. 2006a. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87(1–3), 60–66.CrossRefGoogle Scholar
Micheloyannis, S., Pachou, E.et al. 2006b. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402(3), 273–277.CrossRefGoogle ScholarPubMed
Micheloyannis, S., Vourkas, M.et al. 2003. Changes in linear and nonlinear EEG measures as a function of task complexity: evidence for local and distant signal synchronization. Brain Topogr 15(4), 239–247.CrossRefGoogle ScholarPubMed
Milgram, S. 1967. The small world problem. Psychol Today 2, 60–67.Google Scholar
Montez, T., Linkenkaer-Hansen, K.et al. 2006. Synchronization likelihood with explicit time-frequency priors. Neuroimage 33(4), 1117–1125.CrossRefGoogle ScholarPubMed
Mormann, F., Kreuz, T.et al. 2003. Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res 53(3), 173–185.CrossRefGoogle ScholarPubMed
Motter, A. E., Mattias, M. A.et al. 2006. Dynamics on complex networks and applications. Physica D 224, vii–viii.CrossRefGoogle Scholar
Netoff, T. I., Clewley, R.et al. 2004. Epilepsy in small-world networks. J Neurosci 24(37), 8075–8083.CrossRefGoogle ScholarPubMed
Newman, M. E. 2003. The structure and function of complex networks. SIAM Review 45, 167–256.CrossRefGoogle Scholar
Newman, M. E. 2004. Analysis of weighted networks. Phys Rev E Stat Nonlin Soft Matter Phys 70(5 Pt 2), Art. no. 056131.CrossRefGoogle ScholarPubMed
Nishikawa, T., Motter, A. E.et al. 2003. Heterogeneity in oscillator networks: are smaller worlds easier to synchronize?Phys Rev Lett 91(1), Art. no. 014101.CrossRefGoogle ScholarPubMed
Nolte, G., Bai, O.et al. 2004. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10), 2292–2307.CrossRefGoogle ScholarPubMed
Onnela, J. P., Saramaki, J.et al. 2005. Intensity and coherence of motifs in weighted complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 71(6 Pt 2), Art. no. 065103.CrossRefGoogle ScholarPubMed
Ortega, G. J., Menendez de la Prida, L.et al. 2008a. Synchronization clusters of interictal activity in the lateral temporal cortex of epileptic patients: intraoperative electrocorticographic analysis. Epilepsia 49(2), 269–280.CrossRefGoogle ScholarPubMed
Ortega, G. J., Sola, R. G.et al. 2008b. Complex network analysis of human ECoG data. Neurosci Lett 447(2–3), 129–133.CrossRefGoogle ScholarPubMed
Park, K., Lai, Y. C.et al. 2004. Characterization of weighted complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 70(2 Pt 2), Art. no. 026109.CrossRefGoogle ScholarPubMed
Percha, B., Dzakpasu, R.et al. 2005. Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys Rev E Stat Nonlin Soft Matter Phys 72(3 Pt 1), Art. no. 031909.CrossRefGoogle ScholarPubMed
Pijnenburg, Y. A., v d Made, Y.et al. 2004. EEG synchronization likelihood in mild cognitive impairment and Alzheimer's disease during a working memory task. Clin Neurophysiol 115(6), 1332–1339.CrossRefGoogle ScholarPubMed
Ponten, S. C., Bartolomei, F.et al. 2007. Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118(4), 918–927.CrossRefGoogle ScholarPubMed
Ponten, S. C., Douw, L.et al. 2009. Indications for network analysis during absence seizures: weighted and unweighted graph theoretical analyses Exp Neurol217(1), 197–204.
Quigley, M., Cordes, D.et al. 2001. Effect of focal and nonfocal cerebral lesions on functional connectivity studied with MR imaging. Am J Neuroradiol 22(2), 294–300.Google ScholarPubMed
Reijneveld, J. C., Ponten, S. C.et al. 2007. The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118(11), 2317–2331.CrossRefGoogle Scholar
Reijneveld, J. C., Sitskoorn, M. M.et al. 2001. Cognitive status and quality of life in patients with suspected versus proven low-grade gliomas. Neurology 56(5), 618–623.CrossRefGoogle ScholarPubMed
Roxin, A., Riecke, H.et al. 2004. Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett 92(19), Art. no. 198101.CrossRefGoogle Scholar
Salvador, R., Suckling, J.et al. 2005a. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9), 1332–1342.CrossRefGoogle ScholarPubMed
Salvador, R., Suckling, J.et al. 2005b. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Phil Trans R Soc B 360(1457), 937–946.CrossRefGoogle ScholarPubMed
Schevon, C. A., Cappell, J.et al. 2007. Cortical abnormalities in epilepsy revealed by local EEG synchrony. Neuroimage 35(1), 140–148.CrossRefGoogle ScholarPubMed
Schindler, K., Elger, C. E.et al. 2007a. Increasing synchronization may promote seizure termination: evidence from status epilepticus. Clin Neurophysiol 118(9), 1955–1968.CrossRefGoogle ScholarPubMed
Schindler, K., Leung, H.et al. 2007b. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 130(Pt 1), 65–77.CrossRefGoogle ScholarPubMed
Schindler, K. A., Bialonski, S.et al. 2008. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos 18, DOI:10.1063/1.2966112CrossRefGoogle ScholarPubMed
Singer, W. 1999. Neuronal synchrony: a versatile code for the definition of relations?Neuron 24(1), 49–65, 111–25.CrossRefGoogle ScholarPubMed
Solomonov, R. & Rapoport, A. 1951. Connectivity of random nets. Bull Math Biophys 13, 107–117.CrossRefGoogle Scholar
Sporns, O. & Tononi, G. 2002. Classes of network connectivity and dynamics. Complexity 7, 28–38.CrossRefGoogle Scholar
Sporns, O., Tononi, G.et al. 2000a. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13(8–9), 909–922.CrossRefGoogle ScholarPubMed
Sporns, O., Tononi, G.et al. 2000b. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10(2), 127–141.CrossRefGoogle ScholarPubMed
Sporns, O. & Zwi, J. D. 2004. The small world of the cerebral cortex. Neuroinformatics 2(2), 145–162.CrossRefGoogle ScholarPubMed
Srinivas, K. V., Jain, R.et al. 2007. Small-world network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy. Eur J Neurosci 25(11), 3276–3286.CrossRefGoogle Scholar
Stam, C. J. 2004. Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network?Neurosci Lett 355(1–2), 25–28.CrossRefGoogle ScholarPubMed
Stam, C. J. 2005. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116(10), 2266–2301.CrossRefGoogle ScholarPubMed
Stam, C. J., Haan, W. d.et al. 2008. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain.
Stam, C. J., Jones, B. F.et al. 2007a. Small-world networks and functional connectivity in Alzheimer's disease. Cereb Cortex 17(1), 92–99.CrossRefGoogle ScholarPubMed
Stam, C. J., Nolte, G.et al. 2007b. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11), 1178–1193.CrossRefGoogle ScholarPubMed
Stam, C. J. & Reijneveld, J. C. 2007. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1(1), 3.CrossRefGoogle Scholar
Stam, C. J., Cappellen van Walsum, A. M.et al. 2002a. Variability of EEG synchronization during a working memory task in healthy subjects. Int J Psychophysiol 46(1), 53–66.CrossRefGoogle ScholarPubMed
Stam, C. J., Cappellen van Walsum, A. M.et al. 2002b. Generalized synchronization of MEG recordings in Alzheimer's disease: evidence for involvement of the gamma band. J Clin Neurophysiol 19(6), 562–574.CrossRefGoogle ScholarPubMed
Stam, C. J. & Dijk, B. W. 2002. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 163(3–4), 236–241.CrossRefGoogle Scholar
Stephan, K. E., Hilgetag, C. C.et al. 2000. Computational analysis of functional connectivity between areas of primate cerebral cortex. Phil Trans R Soc B 355(1393), 111–126.CrossRefGoogle ScholarPubMed
Supekar, K., Menon, V.et al. 2008. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Comput Biol 4(6), e1000100.CrossRefGoogle ScholarPubMed
Taphoorn, M. J., Heimans, J. J.et al. 1994a. Quality of life and neuropsychological functions in long-term low-grade glioma survivors. Int J Radiat Oncol Biol Phys 29(5), 1201–1202.CrossRefGoogle ScholarPubMed
Taphoorn, M. J., Heimans, J. J.et al. 1992. Assessment of quality of life in patients treated for low-grade glioma: a preliminary report. J Neurol Neurosurg Psychiatry 55(5), 372–376.CrossRefGoogle ScholarPubMed
Taphoorn, M. J. & Klein, M. 2004. Cognitive deficits in adult patients with brain tumours. Lancet Neurol 3(3), 159–168.CrossRefGoogle ScholarPubMed
Taphoorn, M. J., Schiphorst, A. K.et al. 1994b. Cognitive functions and quality of life in patients with low-grade gliomas: the impact of radiotherapy. Ann Neurol 36(1), 48–54.CrossRefGoogle ScholarPubMed
Tatter, S. B., Wilson, C. B.et al. 1996. Neuroepithelial tumors of the adult brain. In Neurological Surgery, 4th Edn. (ed. J. R. Youmans), Vol. 4: Tumors, pp. 2612–2684. W.B. Saunders.
Tononi, G. & Edelman, G. M. 1998. Consciousness and complexity. Science 282(5395), 1846–1851.CrossRefGoogle ScholarPubMed
Dellen, E., Douw, L.et al. 2009. Long-term effects of temporal lobe epilepsy on local neural networks: a graph theoretical analysis of corticography recordings. PLoS One4(11), 8081.
Berg, & Leeuwen, C. 2004. Adaptive rewiring in chaotic networks renders small-world connectivity with consistent clusters. Europhysics Letters 65, 459–464.CrossRefGoogle Scholar
Vreeswijk, C. & Sompolinsky, H. 1996. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274(5293), 1724–1726.CrossRefGoogle ScholarPubMed
Villemure, J. G. & Tribolet, N. 1996. Epilepsy in patients with central nervous system tumors. Curr Opin Neurol 9(6), 424–428.CrossRefGoogle ScholarPubMed
Vragovic, I., Louis, E.et al. 2005. Efficiency of informational transfer in regular and complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 71(3 Pt 2A), Art. no. 036122.CrossRefGoogle ScholarPubMed
Wang, J., Wang, L.et al. 2008. Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp.
Watts, D. J. & Strogatz, S. H. 1998. Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442.CrossRefGoogle ScholarPubMed
Wessels, P. H., Weber, W. E.et al. 2003. Supratentorial grade II astrocytoma: biological features and clinical course. Lancet Neurol 2(7), 395–403.CrossRefGoogle ScholarPubMed
Wu, H., Li, X. & Guan, X. 2006. Networking property during epileptic seizure with multi-channel EEG recordings. Lecture Notes Comput Sci3976, 573–578.
Yu, S., Huang, D.et al. 2008. A small world of neuronal synchrony. Cereb Cortex.
Zemanova, L., Zou, C.et al. 2006. Structural and functional clusters of complex brain networks. Physica D 224, 202–212.CrossRefGoogle Scholar
Zhou, C. & Kurths, J. 2006. Dynamical weights and enhanced synchronization in adaptive complex networks. Phys Rev Lett 96(16), Art. no. 164102.CrossRefGoogle ScholarPubMed
Zhou, C., Motter, A. E.et al. 2006a. Universality in the synchronization of weighted random networks. Phys Rev Lett 96(3), Art. no. 034101.CrossRefGoogle ScholarPubMed
Zhou, C., Zemanova, L.et al. 2006b. Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys Rev Lett 97(23), Art. no. 238103.CrossRefGoogle ScholarPubMed
Zhou, H. & Lipowsky, R. 2005. Dynamic pattern evolution on scale-free networks. Proc Natl Acad Sci USA 102(29), 10052–10057.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×