Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T12:17:05.413Z Has data issue: false hasContentIssue false

Chapter 17 - Planetary volcanism

Published online by Cambridge University Press:  05 March 2013

Sarah A. Fagents
Affiliation:
University of Hawaii, Manoa
Tracy K. P. Gregg
Affiliation:
State University of New York, Buffalo
Rosaly M. C. Lopes
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Overview

Volcanism is of primary importance in shaping the surfaces of many planets and satellites of the Solar System. In this chapter we show how models developed for volcanic processes on Earth can be adapted to model volcanism on other planetary bodies, including those displaying familiar silicate volcanism (such as Mars, Venus, and the Moon), as well as those with more exotic volcanic behavior (such as high-temperature volcanism on Io and “cryovolcanism” on the icy satellites). Due to space limitations, only certain “type example” worlds are detailed here, the intent is more to give an insight into how the volcanic process varies from body to body than to discuss each. Each planet or satellite possesses a unique combination of environmental factors (gravity, atmospheric properties, surface temperature, etc.) that influence almost every aspect of magma ascent and eruption. By incorporating these parameters into models of volcanic behavior it is possible to elucidate the causes of the diversity in volcanic expression on the surfaces of other planetary bodies and hence understand the eruptive history and evolution of our Solar System neighbors.

Introduction

Volcanism has affected all solid planets and most moons in the Solar System and even some of the earliest-forming asteroids, and is therefore of key importance for the study of the evolution of planets and moons. The discovery of numerous extra-terrestrial volcanoes, including active ones, has stretched our traditional definition of “volcano” (Lopes et al., 2010a) and prompted a new understanding of how volcanism, as a process, can operate.

Type
Chapter
Information
Modeling Volcanic Processes
The Physics and Mathematics of Volcanism
, pp. 384 - 413
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arvidson, R. E., Bonitz, R. G., Robinson, M. L. et al. (2009). Results from the Mars Phoenix lander robotic arm experiment. Journal of Geophysical Research, 114, E00E02, doi:.CrossRefGoogle Scholar
Bandfield, J. (2002). Global mineral distribution of Mars. Journal of Geophysical Research 107(E6), 5042, doi:.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E. and Christensen, P. R. (2000). A global view of martian surface composition from MGS-TES. Science, 287, 1626–1630.CrossRefGoogle Scholar
Barnes, J. W., Brown, R. H., Radebaugh, J. et al. (2006). Cassini observations of flow-like features in western Tui Regio, Titan. Geophysical Research Letters, 33, L16204, doi:.CrossRefGoogle Scholar
Bleacher, J. E., Greeley, R., Williams, D. A., Cave, S. R. and Neukum, G. (2007). Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. Journal of Geophysical Research, 112, E09005, doi:.CrossRefGoogle Scholar
Boynton, W. V., Feldman, W. C., Mitrofanov, I. G. et al. (2004). The Mars Odyssey gamma-ray spectrometer instrument suite. Space Science Reviews, 110, 37–83.CrossRefGoogle Scholar
Boynton, W. V., Taylor, G. J., Evans, L. G. et al. (2007). Concentration of H, Si, Cl, K, Fe and Th in the low- and mid-latitude regions of Mars. Journal of Geophysical Research, 112, E12S99, doi:.CrossRefGoogle Scholar
Brown, R. and Kirk, R. (1994). Coupling of volatile transport and internal heat flow on Triton. Journal of Geophysical Research, 99, 1965–1981.CrossRefGoogle Scholar
Brown, R. H., Clark, R. N., Buratti, B. J. et al. (2006). Composition and physical properties of Enceladus’ surface. Science, 311, 1425–1428.CrossRefGoogle ScholarPubMed
Carlson, R., Smythe, W., Lopes-Gautier, R. et al. (1997). The distribution of sulfur dioxide and other infrared absorbers on the surface of Io in 1997. Geophysical Research Letters, 24, 2474–2482.CrossRefGoogle Scholar
Carlson, R. W., Kargel, J. S., Doute, S., Soderblom, L. A. and Dalton, J. B. (2007). Io’s surface composition. In Io After Galileo: A New View of Jupiter’s Volcanic Moon, ed. Lopes, R. M. C. and Spencer, J. R.. Chichester, UK: Praxis-Springer, pp. 193–229.Google Scholar
Carr, M. H. (2006). The Surface of Mars. New York, NY: Cambridge University Press.Google Scholar
Christensen, P. R., McSween, H. Y., Bandfield, J. L. et al. (2005). Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature, 436, 504–882.CrossRefGoogle ScholarPubMed
Choukroun, M., Grasset, O., Tobie, G. and Sotin, C. (2010). Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on Titan. Icarus, 205, 581–593CrossRefGoogle Scholar
Collins, G. C. and Goodman, J. C. (2007). Enceladus’ south polar sea. Icarus, 189, 72–82.CrossRefGoogle Scholar
Crawford, G. D. and Stevenson, D. J. (1988). Gas-driven water volcanism and the resurfacing of Europa. Icarus, 73, 66–79.CrossRefGoogle Scholar
Croft, S. K., Lunine, J. I. and Kargel, J. S. (1988). Equations of state of ammonia–water liquid: Derivation and planetological applications. Icarus, 73, 279–293.CrossRefGoogle Scholar
Croft, S. K., Kargel, J. S., Kirk, R. L. et al. (1990). The geology of Triton. In Neptune and Triton, ed. Cruikshank, D. P.. Tucson: University of Arizona Press, pp. 879–947.Google Scholar
Crown, D. A. and Greeley, R. (1993). Volcanic geology of Hadriaca Patera and the Eastern Hellas Region of Mars. Journal of Geophysical Research, 98, 3431–3451.CrossRefGoogle Scholar
Crumpler, L. S. and Aubele, J. C. (1978). Structural evolution of Arsia Mons, Pavonis Mons, and Ascreus Mons: Tharsis Region of Mars. Icarus, 34, 496–511.CrossRefGoogle Scholar
Davies, A., Keszthelyi, L., Williams, D. et al. (2001). Thermal signature, eruption style and eruption evolution at Pele and Pillan on Io. Journal of Geophysical Research, 106, 33 079–33 104.CrossRefGoogle Scholar
Duxbury, N. S. and Brown, R. H. (1997). The role of an internal heat source for the eruptive plumes on Triton. Icarus, 125, 83–93.CrossRefGoogle Scholar
Fagents, S. A. (2003). Considerations for effusive cryovolcanism on Europa: The post-Galileo perspective. Journal of Geophysical Research, 108, E125139, doi:.CrossRefGoogle Scholar
Fagents, S. A., Greeley, R., Sullivan, R. J. et al. (2000). Cryomagmatic mechanisms for the formation of Rhadamanthys Linea, triple band margins, and other low albedo features on Europa. Icarus, 144, 54–88.CrossRefGoogle Scholar
Fagents, S. A., Lanagan, P. D. and Greeley, R. (2002). Rootless cones on Mars: A consequence of lava–ground ice interaction. In Volcano–Ice Interaction on Earth and Mars, ed. Smellie, J. L. and Chapman, M. G.. Geological Society of London Special Publication, 202, pp. 295–317.Google Scholar
Fassett, C. I. and Head, J. W. (2006). Valleys on Hecates Tholus, Mars: origin by basal melting of summit snowpack. Planetary and Space Science, 54, 370–378.CrossRefGoogle Scholar
Fink, J. H. (1980). Surface folding and viscosity of rhyolite flows. Geology, 8, 250–254.2.0.CO;2>CrossRefGoogle Scholar
Fink, J. H. and Griffiths, R. W. (1990). Radial spreading of viscous gravity currents with solidifying crust. Journal of Fluid Mechanics, 221, 485–509.CrossRefGoogle Scholar
Fink, J. H., Bridges, N. T. and Grimm, R. E. (1993). Shapes of Venusian “pancake” domes imply episodic emplacement and silicic composition. Geophysical Research Letters, 20, 261–264.CrossRefGoogle Scholar
Geissler, P. E. and Goldstein, D. B. (2007). Plumes and their deposits. In Io After Galileo: A New View of Jupiter’s Volcanic Moon, ed. Lopes, R. M. C. and Spencer, J. R.. Chichester, UK: Praxis-Springer, pp. 163–192.Google Scholar
Gioia, G., Pinaki, C., Marshak, S. and Kieffer, S. W. (2007). Unified model of tectonics and heat transport in a frigid Enceladus. Proceedings of the National Academy of Sciences, 103(34), 13 578–13 581.CrossRefGoogle Scholar
Glaze, L. S. and Baloga, S. M. (2002). Volcanic plume heights on Mars: Limits of validity for convective models. Journal of Geophysical Research, 107, doi:.CrossRefGoogle Scholar
Greeley, R. and Crown, D. A. (1990). Volcanic geology of Tyrrhena Patera, Mars. Journal of Geophysical Research, 95, 7133–7149.CrossRefGoogle Scholar
Greeley, R. and Spudis, P. D. (1981). Volcanism on Mars. Reviews of Geophysics and Space Physics, 19, 13–41.CrossRefGoogle Scholar
Greeley, R., Theilig, E. and Christensen, P. (1984). The Mauna Loa sulfur flow as an analog to secondary (?) sulfur flows on Io. Icarus, 60, 189–199.CrossRefGoogle Scholar
Greeley, R., Bridges, N. T., Crown, D. A. et al. (2000). Volcanism on the red planet: Mars. In Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space, ed. Zimbelman, J. R. and Gregg, T. K. P.. New York: Kluwer/Plenum, pp. 75–112.Google Scholar
Greenberg, R., Hoppa, G., Tufts, B. R. et al. (1999). Chaos on Europa. Icarus, 141, 263–286.CrossRefGoogle Scholar
Gregg, T. K. P. and Lopes, R. M. (2008). Lava lakes on Io: New perspectives from modeling. Icarus, 194, 166–172, doi:.CrossRefGoogle Scholar
Grosfils, E. B., Aubele, J., Crumpler, L., Gregg, T. K. P. and Sakimoto, S. (2000). Volcanism on Earth’s seafloor and Venus. In Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space, ed. Zimbelman, J. R. and Gregg, T. K. P.. New York: Kluwer/Plenum, pp. 113–142.Google Scholar
Hamilton, V. E., Christensen, P. R., McSween, H. Y. and Bandfield, J. L. (2003). Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars. Meteoritics and Planetary Science, 38(6), 871–885.CrossRefGoogle Scholar
Hansen, C. J., Esposito, L., Stewart, A. I. F. et al. (2006). Enceladus’ water vapor plume. Science, 311, 1422–1425.CrossRefGoogle ScholarPubMed
Hansen, C. J., Shemansky, D. E., Esposito, L. W. et al. (2011). The composition and structure of the Enceladus plume. Geophysical Research Letters, 38, L11202, doi:.CrossRefGoogle Scholar
Hartmann, W. K. and Berman, D. C. (2000). Elysium Planitia lava flows: crater count chronology and geological implications. Journal of Geophysical Research, 105, 15 011–15 025.CrossRefGoogle Scholar
Hauber, E., Bleacher, J., Gwinner, K., Williams, D. and Greeley, R. (2009). The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region on Mars. Journal of Volcanology and Geothermal Research, 185, 69–95.CrossRefGoogle Scholar
Head, J. W. and Pappalardo, R. T. (1999). Brine mobilization during lithospheric heating on Europa: Implications for formation of chaos terrain, lenticula texture and color variations. Journal of Geophysical Research, 104, 27 143–27 155.CrossRefGoogle Scholar
Head, J. W. and Wilson, L. (1986). Volcanic processes and landforms on Venus: Theory, prediction and observations. Journal of Geophysical Research, 91, 9407–9466.CrossRefGoogle Scholar
Head, J. W., Chapman, C. R., Strom, R. G. et al. (2011). Flood volcanism in the northern high latitudes of Mercury Revealed by MESSENGER. Science, 333, 1853–1856.CrossRefGoogle ScholarPubMed
Hedman, M. M., Nicholson, P. D., Showalter, M. R. et al. (2009). Spectral observations of the Enceladus plume with Cassini-VIMS. Astronomical Journal, 693, 1749–1762.Google Scholar
Hon, K., Kauahikaua, J., Denlinger, R. and Mackay, K. (1994). Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geological Society of America Bulletin, 106, 351–370.2.3.CO;2>CrossRefGoogle Scholar
Howell, R. R. and R. M. C. Lopes (2011). Morphology, temperature, and eruption dynamics at Pele. Icarus, 213, 593–607, doi:.CrossRefGoogle Scholar
Hulme, G. (1974). The interpretation of lava flow morphology. Geophysical Journal of the Royal Astronomical Society, 39(2), 361–383.CrossRefGoogle Scholar
Hulme, G. (1976). The determination of the rheological properties and effusion rate of an Olympus Mons lava. Icarus, 27(2), 207–213.CrossRefGoogle Scholar
Jaeger, W. L., Turtle, E. P., Keszthelyi, L. P. et al. (2003). Orogenic tectonism on Io. Journal of Geophysical Research, 108, doi:.CrossRefGoogle Scholar
Jaeger, W. L., Keszthelyi, L. P., McEwen, A. S., Dundas, C. M. and Russell, P. S. (2007). Athabasca Valles, Mars: A lava-draped channel system. Science, 317, 1709–1711.CrossRefGoogle ScholarPubMed
Jaumann, R., Stephan, K., Hansen, G. B. et al. (2008). Distribution of icy particles across Enceladus’ surface as derived from Cassini-VIMS measurements. Icarus, 193, 407–419.CrossRefGoogle Scholar
Jessup, K. L., Spencer, J. R., Ballester, G. E. et al. (2004). The atmospheric signature of Io’s Prometheus plume and anti-jovian hemisphere: Evidence for a sublimation atmosphere. Icarus, 169, 197–215.CrossRefGoogle Scholar
Jewitt, D. C. and Luu, J. (2004). Crystalline water ice in Kuiper Belt Object (50000) Quaoar. Nature, 432, 731–733.CrossRefGoogle ScholarPubMed
Jolliff, B. K., Wiseman, S. A., Lawrence, S. J. et al. (2011). Non-mare silicic volcanism on the lunar farside at Compton–Belkovich. Nature Geoscience, 4, 566–571.CrossRefGoogle Scholar
Kargel, J. S., Croft, S. K., Lunine, J. I. and Lewis, J. S. (1991). Rheological properties of ammonia–water liquids and crystal–liquid slurries: Planetological applications. Icarus, 89, 93–112.CrossRefGoogle Scholar
Keszthelyi, L., McEwen, A. S., Phillips, C. B. et al. (2001). Imaging of volcanic activity on Jupiter’s moon Io by Galileo during GEM and GMM. Journal of Geophysical Research, 106, 33 025–33 052.CrossRefGoogle Scholar
Keszthelyi, L. P., Jaeger, W. and Milazzo, M. et al. (2007). New estimates for Io eruption temperatures: implications for the interior. Icarus, 192, 491–502.CrossRefGoogle Scholar
Khurana, K. K., Jia, X., Kivelson, M. G., Nimmo, F., Schubert, G. and Russell, C. T. (2011). Evidence of a global magma ocean in Io’s interior. Science, 332, 1186–1189.CrossRefGoogle ScholarPubMed
Kieffer, S. W. (1982). Dynamics and thermodynamics of volcanic eruptions: Implications for the plumes on Io. In Satellites of Jupiter, ed. Morrison, D.. Tuscon, AZ: University of Arizona Press, pp. 647–723.Google Scholar
Kieffer, S. W., Lopes-Gautier, R., McEwen, S. et al. (2000). Prometheus: Io’s wandering plume. Science, 288, 1204–1208.CrossRefGoogle ScholarPubMed
Kieffer, S. W., Lu, X., Bethke, C. M. et al. (2006). A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science, 314, 1764–1766, doi:.CrossRefGoogle ScholarPubMed
Kirk, R. L., Howington-Kraus, E., Barnes, J. W. et al. (2010). La Sotra y las otras: Topographic evidence for (and against) cryovolcanism on Titan. Presented at the American Geophysical Union Fall Meeting, 2010, San Francisco.
Kivelson, M. G., Khurana, K. K., Russell, C. T. et al. (2000). Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science, 289, 1340–1343.CrossRefGoogle ScholarPubMed
Leone, G. and Wilson, L. (2001). The density structure of Io and the migration of magma through its lithosphere. Journal of Geophysical Research, 106, 32 983–32 995.CrossRefGoogle Scholar
Lopes, R. and Williams, D. (2005). Io after Galileo. Reports on Progress in Physics, Institute of Physics Publishing, 68, 303–340.Google Scholar
Lopes, R., Kamp, L. W., Douté, S. et al. (2001). Io in the near-infrared: NIMS results from the Galileo fly-bys in 1999 and 2000. Journal of Geophysical Research, 106, 33 053–33 078.CrossRefGoogle Scholar
Lopes, R., Kamp, L. W., Smythe, W. et al. (2004). Lava lakes on Io. Observations of Io’s volcanic activity from Galileo during the 2001 fly-bys. Icarus, 169, 140–174.CrossRefGoogle Scholar
Lopes, R. M. C., Mitchell, K. L., Stofan, E. R. et al. (2007). Cryovolcanic features on Titan’s surface as revealed by the Cassini Titan Radar Mapper. Icarus, 186, 395–412.CrossRefGoogle Scholar
Lopes, R. M. C., Stofan, E. R., Peckyno, R. et al. (2010a). Distribution and interplay of geologic processes on Titan from Cassini RADAR data. Icarus, 205, 540–588.CrossRefGoogle Scholar
Lopes, R. M. C., Mitchell, K. L., Williams, D. A., and Mitri, G. (2010b). Beyond Earth: How extra-terrestrial volcanism has changed our definition of a volcano. In What’s a volcano? New answers to an old question, ed. E. Canon and A. Szakacs. Geological Society of America Special Paper 470, pp. 11–30.
Lorenz, R. D. (1996). Pillow lava on Titan: expectations and constraints on cryovolcanic processes. Planetary and Space Science, 44, 1021–1028.CrossRefGoogle Scholar
Macdonald, G. A. (1972). Volcanoes. New Jersey: Prentice-Hall.Google Scholar
Manga, M. and Wang, C. Y. (2007). Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophysical Research Letters, 34, L07202, doi:.CrossRefGoogle Scholar
Marchis, F., Prangé, R. and Christou, J. (2000). Adaptive optics mapping of Io’s volcanism in the IR (3.8 μm). Icarus, 148, 384–396.CrossRefGoogle Scholar
Mastin, L. G. (1995). Thermodynamics of gas and steam-blast eruptions. Bulletin of Volcanology, 57, 85–98.CrossRefGoogle Scholar
Mastin, L. G. (2005). The controlling effect of viscous dissipation on magma flow in silicic conduits. Journal of Volcanology and Geothermal Research, 143, 17–28.CrossRefGoogle Scholar
McEwen, A. S. and Soderblom, L. (1983). Two classes of volcanic plumes on Io. Icarus, 58, 197–226.Google Scholar
McEwen, A. S., Keszthelyi, L. P., Spencer, J. et al. (1998). High-temperature silicate volcanism on Jupiter’s moon Io. Science, 281, 87–90.CrossRefGoogle ScholarPubMed
McKinnon, W. B. (1984). On the origin of Triton and Pluto. Nature, 311, 355–358.CrossRefGoogle Scholar
McSween, H. Y. (1994). What we have learned about Mars from SNC Meteorites. Meteoritics, 29, 757–779.CrossRefGoogle Scholar
McSween, H. Y., Murchie, S. L., Crisp, J. A. et al. (1999). Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. Journal of Geophysical Research, 104, 8679–8715.CrossRefGoogle Scholar
McSween, H. Y., Taylor, G. J. and Wyatt, M. B. (2009). Elemental composition of the martian crust. Science, 324, 736–739.CrossRefGoogle ScholarPubMed
Milazzo, M., Keszthelyi, L. and McEwen, A. (2001). Observations and initial modeling of lava–SO2 interactions at Prometheus, Io. Journal of Geophysical Research, 106, 33 121–33 127.CrossRefGoogle Scholar
Mitchell, K. L. (2005). Coupled conduit flow and shape in explosive volcanic eruptions. Journal of Volcanology and Geothermal Research, 143, 187–203.CrossRefGoogle Scholar
Mitri, G. and Showman, A. P. (2008a). A model for the temperature-dependence of tidal dissipation in convective plumes on icy satellites: implications for Europa and Enceladus. Icarus, 195, 758–764.CrossRefGoogle Scholar
Mitri, G. and Showman A. P. (2008b). Thermal convection in ice-I shells of Titan and Enceladus. Icarus, 193, 387–396.CrossRefGoogle Scholar
Mitri, G., Showman, A. P., Lunine, J. I. and Lopes, R. M. C. (2008). Resurfacing of Titan by ammonia-water cryomagma. Icarus, 196, 216–224.CrossRefGoogle Scholar
Moore, W. B. (2001). The thermal state of Io. Icarus, 154, 548–550.CrossRefGoogle Scholar
Moore, J. M. and Pappalardo, R. T. (2011). Titan: An exogenic world?Icarus, 212, 790–806.CrossRefGoogle Scholar
Morabito, L. A., Synnott, S. P., Kupferman, P. N. and Collins, S. A. (1979). Discovery of currently active extraterrestrial volcanism. Science, 204, 972.CrossRefGoogle ScholarPubMed
Mouginis-Mark, P. J., Wilson, L. and Head, J. W. (1982). Explosive volcanism on Hecates Tholus, Mars: Investigation of eruption conditions. Journal of Geophysical Research, 87, 9890–9904.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Wilson, L. and Zimbelman, J. R. (1988). Polygenic eruptions on Alba Patera, Mars. Bulletin of Volcanology, 50, 361–379.CrossRefGoogle Scholar
Nelson, R. M., Kamp, L. W., Matson, D. L. et al. (2009a). Saturn’s Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity. Icarus, 199, 429–441.CrossRefGoogle Scholar
Nelson, R. M., Kamp, L. W., Lopes, R. M. C. et al. (2009b). Photometric changes on Saturn’s moon Titan: Evidence for cryovolcanism. Geophysical Research Letters, 36, L04202, doi:.CrossRefGoogle Scholar
Neukum, G., Jaumann, R., Hoffmann, H. et al. (2004). Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature, 432, 971–979.CrossRefGoogle ScholarPubMed
Newman, S. F., Buratti, B. J., Brown, R. H. et al. (2008). Photometric and spectral analysis of the distribution of crystalline and amorphous ices on Enceladus as seen by Cassini. Icarus, 193, 397–406.CrossRefGoogle Scholar
Niemann, H. B., Atreya, S. K., Bauer, S. J. et al. (2005). The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature, 438, 778–794.CrossRefGoogle ScholarPubMed
Nimmo, F. and Pappalardo, R. T. (2006). Diapir-induced reorientation of Enceladus. Nature, 441, 614–616.CrossRefGoogle ScholarPubMed
Nyquist, L. E., Bogard, D. D., Shih, C.-Y. et al. (2001). Ages and geologic histories of martian meteorites. In Chronology and Evolution of Mars, ed. Kallenbach, R., Geiss, J. and Hartmann, W. K.. Boston, MA: Kluwer Academic Publishers, pp. 105–164.Google Scholar
Pappalardo, R. T., Belton, M. J. S., Breneman, H. H. et al. (1999). Does Europa have a subsurface ocean? Evaluation of the geological evidence. Journal of Geophysical Research, 104, 24 015–24 055.CrossRefGoogle Scholar
Pearl, J., Hanel, R., Kunde, V. et al. (1979). Identification of gaseous SO2 and new upper limits for other gases on Io. Nature, 280, 755–758.CrossRefGoogle Scholar
Porco, C. C., Helfenstein, P., Thomas, P. C. et al. (2006). Cassini observes the active south pole of Enceladus. Science, 311, 1393–1401.CrossRefGoogle ScholarPubMed
Postberg, F., Kempf, S., Schmidt, J. et al. (2009). Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 459, 1098–1101, doi: .CrossRefGoogle ScholarPubMed
Postberg, F., Schmidt, J.Hillier, J., Kempf, S. and Srama, R. (2011). A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 474, 620–622, doi:.CrossRefGoogle ScholarPubMed
Poulet, F., Gomez, C., Bibring, J.-P. et al. (2007). Martian surface mineralogy from OMEGA/MEx: Global mineral maps. Journal of Geophysical Research, 112, E08S02, doi:.Google Scholar
Radebaugh, J., Keszthelyi, L. P., McEwen, A. S. et al. (2001). Paterae on Io: A new type of volcanic caldera?Journal of Geophysical Research, 106, 33 005–33 020.CrossRefGoogle Scholar
Radebaugh, J., McEwen, A. S., Milazzo, M. P. et al. (2004). Observations and temperatures of Io’s Pele Patera from Cassini and Galileo spacecraft images. Icarus, 169, 65–79.CrossRefGoogle Scholar
Rathbun, J. A., Spencer, J. R., Davies, A. G., Howell, R. R. and Wilson, L. (2002). Loki, Io: A periodic volcano. Geophysical Research Letters, 29, 1443, doi:.CrossRefGoogle Scholar
Ruff, S. W., Christensen, P. R., Blaney, D. L. et al. (2006). The rocks of Gusev crater as viewed by the Mini-TES instrument. Journal of Geophysical Research, 111, E12S18, doi:.CrossRefGoogle Scholar
Schaber, G. G. (1980). The surface of Io: Geologic units, morphology, and tectonics. Icarus, 43, 302–333.CrossRefGoogle Scholar
Showman, A. P, Mosqueira, I. and Head, J. W. (2004). On the resurfacing of Ganymede by liquid-water volcanism. Icarus, 172, 625–640.CrossRefGoogle Scholar
Skok, J. R., Mustard, J. F., Ehlmann, B. L., Milliken, R. E. and Murchie, S. L. (2010). Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. Nature Geoscience, doi:.CrossRefGoogle Scholar
Smith, B. A., Soderblom, L. A., Banfield, D. et al. (1989). Voyager 2 at Neptune: Imaging science results. Science, 246, 1422–1449.CrossRefGoogle ScholarPubMed
Soderblom, L., Kieffer, S. W., Becker, T. L. et al. (1990). Triton’s geyser-like plumes: Discovery and basic characterization. Science, 250, 410–415.CrossRefGoogle ScholarPubMed
Soderblom, L. A., Brown, R. H., Soderblom, J. M. et al. (2009). The geology of Hotei Regio, Titan: Correlation of Cassini VIMS and RADAR. Icarus, 204, 610–618.CrossRef
Sotin, C., Jaumann, R., Buratti, B. J. et al. (2005). Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature, 435, 786–789.CrossRefGoogle ScholarPubMed
Spahn, F., Schmidt, J., Albers, N. et al. (2006). Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science, 311, 1416–1418.CrossRefGoogle ScholarPubMed
Spencer, J. R., Jessup, K. L., McGrath, M. A., Ballester, G. E. and Yelle, R. (2000). Discovery of gaseous S2 in Io’s Pele plume. Science, 288, 1208–1210.CrossRefGoogle ScholarPubMed
Spencer, J. R., Pearl, J. C., Segura, M. et al. (2006). Cassini encounters Enceladus: Background and the discovery of a south polar hot spot. Science, 311, 1401–1405.CrossRefGoogle ScholarPubMed
Spencer, J. R., Stern, S. A., Cheng, A. F. et al. (2007). Io volcanism seen by New Horizons: A major eruption of the Tvashtar volcano. Science, 318, 240–243.CrossRefGoogle Scholar
Spencer, J. R., Barr, A. C., Esposito, L. W. et al. (2009). Enceladus: An active cryovolcanic satellite. In Saturn From Cassini-Huygens, ed. Dougherty, M. K., Esposito, L. W. and Krimigis, S. M.. Dordrecht, Netherlands: Springer, pp. 683–724.Google Scholar
Spitale, J. N. and Porco, C. C. (2007). Association of the jets of Enceladus with the warmest regions on its south-polar fractures. Nature, 449, 695–697.CrossRefGoogle ScholarPubMed
Squyres, S. W., Arvidson, R. E., Bollen, D. et al. (2006). Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle crater to Purgatory ripple. Journal of Geophysical Research, 111, E12S12, doi:.CrossRefGoogle Scholar
Stofan, E. R. and Smrekar, S. E. (2005). Large topographic rises, coronae, large flow fields and large volcanoes on Venus: Evidence for mantle plumes? In Plates, Plumes, and Paradigms, ed. Foulger, G. R., Natland, J. H., Presnall, D. C. and Anderson, D. L.. Geological Society of America Special Paper, 388, pp. 841–861.
Tobie, G., Čadek, O. and Sotin, C. (2008). Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus, 196, 642–652CrossRefGoogle Scholar
Treiman, A. H. (2007). Geochemistry of Venus’s surface: Current limitations as future opportunities. In Exploring Venus as a Terrestrial Planet. Washington, DC: American Geophysical Union Monograph 176, pp. 7–22.Google Scholar
Treiman, A. H., Gleason, J. D. and Bogard, D. D. (2000). The SNC meteorites are from Mars. Planetary and Space Science, 48, 1213–1230.CrossRefGoogle Scholar
Veeder, G. J., Matson, D. L., Johnson, T. V., Blaney, D. L. and Goguen, J. D. (1994). Io’s heat flow from infrared radiometry: 1983–1993. Journal of Geophysical Research, 99, 17 095–17 162.CrossRefGoogle Scholar
Wadge, G. and Lopes, R. M. C. (1991). The lobes of lava flows on Earth and Olympus Mons, Mars. Bulletin of Volcanology, 54, 10–24.CrossRefGoogle Scholar
Wall, S. D., Lopes, R. M., Stofan, E. R. et al. (2009). Cassini RADAR images at Hotei Arcus and Western Xanadu, Titan: Evidence for recent cryovolcanic activity. Geophysical Research Letters, 36, L04203, doi:.CrossRefGoogle Scholar
Waite, J. H., Combi, M. R., Ip, W.-H. et al. (2006). Cassini Ion and Neutral Mass Spectrometer: Enceladus plume composition and structure. Science, 311, 1419–1422.CrossRefGoogle ScholarPubMed
Waite, J. H., Lewis, W. S., Magee, B. A. et al. (2009). Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 460, 487–490.CrossRefGoogle Scholar
Warner, N. and Gregg, T. K. P. (2003). Evolved lavas on Mars? Observations from southwest Arsia Mons and Sabancaya volcano, Peru. Journal of Geophysical Research, 108, doi:.CrossRefGoogle Scholar
Weitz, C. M. and Head, J. W. (1999). Spectral properties of the Marius Hills volcanic complex and implications for the formation of lunar domes and cones. Journal of Geophysical Research, 104, 18 933–18 956.CrossRefGoogle Scholar
Wichura, H., Bousquet, R. and Oberhansli, R. (2010). Emplacement of the mid-Miocene Yatta lava flow, Kenya: Implications for modeling long channeled lava flows. Journal of Volcanology and Geothermal Research, 198, 325–338.CrossRefGoogle Scholar
Williams, D. A. and Greeley, R. (1994). Assessment of antipodal-impact terrains on Mars. Icarus, 110, 196–202.CrossRefGoogle Scholar
Williams, D. A. and Howell, R. R. (2007). Active volcanism: Effusive eruptions. In Io after Galileo, ed. Lopes, R. M. C. and Spencer, J. R.. Chichester, UK: Praxis, pp. 133–161.Google Scholar
Williams, D. A., Greeley, R. and Davies, A. G. (2001). Evaluation of sulfur flow emplacement on Io from Galileo data and numerical modeling. Journal of Geophysical Research, 106, 33 161–33 174.CrossRefGoogle Scholar
Williams, D. A., Turtle, E. P., Keszthelyi, L. P. et al. (2004). Geologic mapping of the Culann-Tohil region of Io from Galileo imaging data. Icarus, 169, 80–97.CrossRefGoogle Scholar
Williams, D. A., Greeley, R.Fergason, R. L. et al. (2009). The Circum-Hellas Volcanic Province: Overview. Planetary and Space Science, 57, 895–916.CrossRefGoogle Scholar
Williams, D. A., Keszthelyi, L. P., Crown, D. A. et al. (2011). Volcanism on Io: New insights from global geologic mapping. Icarus, 214, 91–112.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (1981). Ascent and eruption of basaltic magma on the Earth and Moon. Journal of Geophysical Research, 86, 2971–3001.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (1983). A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus. Nature, 302, 663–669.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (1994). Mars: Review and analysis of volcanic eruption theory and relationships to observed landforms. Reviews of Geophysics, 32, 221–264.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (2001). Lava fountains from the 1999 Tvashtar Catena fissure eruption on Io: Implications for dike emplacement mechanisms, eruption rates and crustal structure. Journal of Geophysical Research, 106, 32 997–33 004.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (2004). Evidence for a massive phreatomagmatic eruption in the initial stages of formation of the Mangala Valles outflow channel, Mars. Geophysical Research Letters, 31, L15701, doi:.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (2007). Explosive volcanic eruptions on Mars: Tephra and accretionary lapilli formation, dispersal and recognition in the geologic record. Journal of Volcanology and Geothermal Research, 163, 83–97.CrossRefGoogle Scholar
Wilson, L. and Mouginis-Mark, P. J. (2003a). Phreatomagmatic explosive origin of Hrad Vallis, Mars. Journal of Geophysical Research, 108, doi:.CrossRefGoogle Scholar
Wilson, L. and Mouginis-Mark, P. J. (2003b). Phreatomagmatic dike–cryosphere interactions as the origin of small ridges north of Olympus Mons, Mars. Icarus, 165, 242–252.CrossRefGoogle Scholar
Zhang, J., Goldstein, D. B., Varghese, P. L. et al. (2003). Simulation of gas dynamics and radiation in volcanic plumes on Io. Icarus, 163, 182–197.CrossRefGoogle Scholar
Zimbelman, J. R. (1985). Estimates of rheologic properties for flows on the Martian volcano Ascraeus Mons. Proceedings of the 16th Lunar and Planetary Science Conference, Journal of Geophysical Research, 90 (supplement), 157–162.Google Scholar
Zimbelman, J. R. and Gregg, T. K. P. (2000). Volcanic diversity throughout the Solar System. In Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space, ed. Zimbelman, J. R. and Gregg, T. K. P.. New York: Kluwer/Plenum, pp. 1–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×