Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T23:29:26.737Z Has data issue: false hasContentIssue false

11 - Biocatalysis in Organic Chemistry

Published online by Cambridge University Press:  05 June 2012

Alexander N. Glazer
Affiliation:
University of California, Berkeley
Hiroshi Nikaido
Affiliation:
University of California, Berkeley
Get access

Summary

In carrying out their metabolic processes, microorganisms interconvert diverse organic compounds. These “biotransformations” are catalyzed with high specificity and efficiency by enzymes. The active site of an enzyme, where substrate binding and catalysis are carried out, is an asymmetric surface whose special geometry frequently guarantees that the enzymecatalyzed reaction will yield a particular stereoisomer as the sole product. Such stereospecific, or enantioselective, reactions may be difficult or impossible to achieve by purely chemical means. The terms used to describe the stereochemistry of organic compounds are defined in Box 11.1, and the determination of enantioselectivity is described in Box 11.2.

Even when an organic compound can be synthesized chemically, the process may require many steps, whereas a single enzyme-catalyzed reaction can often achieve the same end. Also, enzymes can catalyze reactions at ambient temperature, away from extremes of pH, and at atmospheric pressure. Undesired isomerization, racemization, epimerization, and rearrangement reactions that are frequently encountered during chemical processes are generally avoided. The absence of such side reactions is a particular advantage when the desired product is rather labile. Finally, enzymes can accelerate the rates of chemical reactions by factors of 108 to 1012. For all these reasons, biotransformations by microorganisms, or by enzymes purified from microorganisms, are highly useful in preparative organic chemistry.

Certain disadvantages do limit the use of enzymes in organic chemical processes, but these limitations have frequently proved to be surmountable challenges rather than impenetrable barriers.

Type
Chapter
Information
Microbial Biotechnology
Fundamentals of Applied Microbiology
, pp. 398 - 429
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×