Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T08:45:40.472Z Has data issue: false hasContentIssue false

13 - Mercury’s Polar Deposits

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

Two and a half decades ago, the discovery of Mercury’s polar deposits from Earth-based radar observations provided the first tantalizing, but limited, evidence for the possibility of water ice on the solar system’s innermost planet. Identifying the materials in Mercury’s polar deposits was one of the six major science questions that originally motivated the MESSENGER mission. In the course of the mission’s more than four Earth years of operations in orbit about Mercury, MESSENGER produced multiple datasets to investigate Mercury’s polar deposits: determinations of regions of permanent shadow, neutron spectrometer observations, laser altimeter reflectance measurements, thermal model results, and direct images of the deposits. These datasets provided compelling evidence that in addition to substantial amounts of water ice stored in Mercury’s polar deposits, there are also other volatile materials, postulated to be dark, organic-rich compounds that bury the water ice deposits. This chapter reviews MESSENGER’s investigations of Mercury’s polar deposits and discusses the resulting implications for the origin and evolution of Mercury’s polar water ice. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 346 - 370
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnouin, O. S., Zuber, M. T., Smith, D. E., Neumann, G. A., Herrick, R. R., Chappelow, J. E., Murchie, S. L. and Prockter, L. M. (2012). The morphology of craters on Mercury: Results from MESSENGER flybys. Icarus, 219, 414427.CrossRefGoogle Scholar
Basilevsky, A. T., Abdrakhimov, A. M. and Dorofeeva, V. A. (2012). Water and other volatiles on the Moon: A review. Solar Syst. Res., 46, 89107.CrossRefGoogle Scholar
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R. and Ziethe, R. (2010). BepiColombo – Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci., 58, 220.Google Scholar
Black, G. J., Campbell, D. B. and Nicholson, P. D. (2001). Icy Galilean satellites: Modeling radar reflectivities as coherent backscatter effect. Icarus, 151, 167180.Google Scholar
Black, G. J., Campbell, D. B. and Harmon, J. K. (2010). Radar measurements of Mercury’s north pole at 70 cm wavelength. Icarus, 209, 224229, doi:10.1016/j.icarus.2009.10.009.CrossRefGoogle Scholar
Borin, P., Cremonese, G., Marzari, F., Bruno, M. and Marchi, S. (2009). Statistical analysis of micrometeoroids flux on Mercury. Astron. Astrophys., 503, 259264, doi:10.1051/0004–6361/200912080.Google Scholar
Borin, P., Cremonese, G., Bruno, M. and Marzari, F. (2016). Asymmetries in the dust flux at Mercury. Icarus, 264, 220226.Google Scholar
Botta, O. and Bada, J. L. (2002). Extraterrestrial organic compounds in meteorites. Surv. Geophys., 23, 411467.Google Scholar
Bruck Syal, M. and Schultz, P. H. (2015). Impact delivery of water at the Moon and Mercury. Lunar Planet. Sci., 46, abstract 1680.Google Scholar
Bruck Syal, M., Schultz, P. H. and Riner, M. A. (2015). Darkening of Mercury’s surface by cometary carbon. Nature Geosci., 8, 352356, doi:10.1038/NGE02397.CrossRefGoogle Scholar
Bussey, D. B. J., Spudis, P. D. and Robinson, M. S. (1999). Illumination conditions at the lunar south pole. Geophys. Res. Lett., 26, 11871190.Google Scholar
Bussey, D. B. J., Fristad, K. E., Schenk, P. M., Robinson, M. S. and Spudis, P. D. (2005). Constant illumination at the lunar north pole. Nature, 434, 842.CrossRefGoogle ScholarPubMed
Bussey, D. B. J., McGovern, J. A., Spudis, P. D., Neish, C. D., Noda, H., Ishihara, Y. and Sorensen, S.-A. (2010). Illumination conditions of the south pole of the Moon derived using Kaguya topography. Icarus, 208, 558564.CrossRefGoogle Scholar
Butler, B. J. (1997). The migration of volatiles on the surfaces of Mercury and the Moon. J. Geophys. Res., 102, 19,283–19,291.Google Scholar
Butler, B. J., Muhleman, D. O. and Slade, M. A. (1993). Mercury: Full-disk radar images and the detection and stability of ice at the north pole. J. Geophys. Res., 98, 15,003–15,023.Google Scholar
Campbell, B. A., Campbell, D. B., Chandler, J. F., Hine, A. A., Nolan, M. C. and Perillat, P. J. (2003). Radar imaging of the lunar poles. Nature, 426, 137148.Google Scholar
Campbell, D. B., Chandler, J. F., Ostro, S. J., Pettengill, G. H. and Shapiro, I. I. (1978). Galilean satellites: 1976 radar results. Icarus, 34, 254267.CrossRefGoogle Scholar
Campbell, D. B., Campbell, B. A., Carter, L. M., Margot, J.-L. and Stacy, N. J. S. (2006). No evidence for thick deposits of ice at the lunar south pole. Nature, 443, 835837.Google Scholar
Carrier, W. D. III, Olhoeft, G. R. and Mendell, W. (1991). Physical properties of the lunar surface. In Lunar Sourcebook: A User’s Guide to the Moon, ed. Heiken, G., Vaniman, D. and French, B. M.. Cambridge: Cambridge University Press, pp. 475594.Google Scholar
Cavanaugh, J. F., Smith, J. C., Sun, X., Bartels, A. E., Ramos-Izquierdo, L., Krebs, D. J., McGarry, J. F., Trunzo, R., Novo-Gradac, A. M., Britt, J. L., Karsh, J., Katz, R. B., Lukemire, A. T., Szymkiewicz, R., Berry, D. L., Swinski, J. P., Neumann, G. A., Zuber, M. T. and Smith, D. E. (2007). The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev., 131, 451480.Google Scholar
Chabot, N. L., Ernst, C. M., Denevi, B. W., Harmon, J. K., Murchie, S. L., Blewett, D. T., Solomon, S. C. and Zhong, E. D. (2012). Areas of permanent shadow in Mercury’s south polar region ascertained by MESSENGER orbital imaging. Geophys. Res. Lett., 39, L09204, doi:10.1029/2012GL051526.Google Scholar
Chabot, N. L., Ernst, C. M., Harmon, J. K., Murchie, S. L., Solomon, S. C., Blewett, D. T. and Denevi, B. W. (2013). Craters hosting radar-bright deposits in Mercury’s north polar region: Areas of persistent shadow determined from MESSENGER images. J. Geophys. Res. Planets, 118, 2636.Google Scholar
Chabot, N. L., Ernst, C. M., Denevi, B. W., Nair, H., Deutsch, A. N., Blewett, D. T., Murchie, S. L., Neumann, G. A., Mazarico, E., Paige, D. A., Harmon, J. K., Head, J. W. and Solomon, S. C. (2014). Images of surface volatiles in Mercury’s polar craters acquired by the MESSENGER spacecraft. Geology, 42, 10511054.Google Scholar
Chabot, N. L., Ernst, C. M., Paige, D. A., Nair, H., Denevi, B. W., Blewett, D. T., Murchie, S. L., Deutsch, A. N., Head, J. W. and Solomon, S. C. (2016). Imaging Mercury’s polar deposits during MESSENGER’s low-altitude campaign. Geophys. Res. Lett., 43, 94619468.Google Scholar
Cintala, M. J. (1992). Impact-induced thermal effects in the lunar and mercurian regoliths. J. Geophys. Res., 97, 947973.Google Scholar
Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R. C., Goldstein, D., Summy, D., Bart, G. D., Asphaug, E., Korycansky, D., Landis, D. and Sollitt, L. (2010). Detection of water in the LCROSS ejecta plume. Science, 330, 463468.CrossRefGoogle ScholarPubMed
Collins, G. S., Melosh, H. J. and Marcus, R. A. (2005). Earth impact effects program: A web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci., 40, 817840.Google Scholar
Crider, D. and Killen, R. M. (2005). Burial rate of Mercury’s polar volatile deposits. Geophys. Res. Lett., 32, L12201, doi:10.1029/2005GL022689.CrossRefGoogle Scholar
Crites, S. T., Lucey, P. G. and Lawrence, D. J. (2013). Proton flux and radiation dose from galactic cosmic rays in the lunar regolith and implications for organic synthesis at the poles of the Moon and Mercury. Icarus, 226, 11921200.Google Scholar
Davies, M. E., Dwornik, S. E., Gault, D. E. and Strom, R. G. (1978). Atlas of Mercury, Special Publication SP-423. Washington, DC: National Aeronautics and Space Administration.Google Scholar
Delitsky, M. L., Paige, D. A., Siegler, M. A., Harju, E. R., Schriver, D., Johnson, R. E. and Travnicek, P. (2017). Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury’s north polar region. Icarus, 281, 1931.CrossRefGoogle Scholar
Deutsch, A. N., Chabot, N. L., Mazarico, E., Ernst, C. M., Head, J. W., Neumann, G. A. and Solomon, S. C. (2016). Comparison of areas in shadow in the north polar region of Mercury from imaging and altimetry, with implications for polar ice deposits. Icarus, 280, 158171.Google Scholar
Deutsch, A. N., Neumann, G. A. and Head, J. W. (2017a). New evidence for surface water ice in small-scale cold traps and in three large craters at the north polar region of Mercury from the Mercury Laser Altimeter. Geophys. Res. Lett., 44, 92339241, doi:10.1002/2017GL074723.Google Scholar
Deutsch, A. N., Head, J. W., Neumann, G. A. and Chabot, N. L. (2017b). Constraining the depth of polar ice deposits and evolution of cold traps on Mercury with small craters in permanently shadowed regions. Lunar Planet. Sci., 48, abstract 1634.Google Scholar
Eke, V. R., Lawrence, D. J. and Teodoro, L. F. A. (2017). How thick are Mercury’s polar water deposits? Icarus, 284, 407415.Google Scholar
Ernst, C. M., Chabot, N. L., Susorney, H. C., Barnouin, O. S., Harmon, J. K. and Paige, D. A. (2014). Exploring the morphology of simple craters that host polar deposits on Mercury: Implications for the source and stability of water ice. Lunar Planet. Sci., 45, abstract 1238.Google Scholar
Ernst, C. M., Chabot, N. L. and Barnouin, O. S. (2016). Examining the potential contributions of the Hokusai impact to water ice on Mercury. Lunar Planet. Sci., 47, abstract 1374.Google Scholar
Feldman, W. C. and Drake, D. M. (1986). A Doppler filter technique to measure the hydrogen content of planetary surfaces. Nucl. Instrum. Methods A, 245, 182190.Google Scholar
Feldman, W. C., Drake, D. M., O’Dell, R. D., Brinkley, F. W., Jr. and Anderson, R. C. (1989). Gravitational effects on planetary neutron flux spectra. J. Geophys. Res., 94, 513525.Google Scholar
Feldman, W. C., Barraclough, B. L., Hansen, C. J. and Sprague, A. L. (1997). The neutron signature of Mercury’s volatile polar deposits. J. Geophys. Res., 102, 25,565–25,574.CrossRefGoogle Scholar
Feldman, W. C., Maurice, S., Binder, A. B., Barraclough, B. L., Elphic, R. C. and Lawrence, D. J. (1998). Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles. Science, 281, 1496–500.Google Scholar
Feldman, W. C., Lawrence, D. J., Elphic, R. C., Barraclough, B. L., Maurice, S., Genetay, I. and Binder, A. B. (2000). Polar hydrogen deposits on the Moon. J. Geophys. Res., 105, 41754195.Google Scholar
Feldman, W. C., Maurice, D., Lawrence, D. J., Little, R. C., Lawson, S. L., Gasnault, O., Wiens, R. C., Barraclough, B. L., Elphic, R. C., Prettyman, T. H., Steinberg, J. T. and Binder, A. B. (2001). Evidence for water ice near the lunar poles. J. Geophys. Res., 106, 23,231–23,251, doi:10.1029/2000JE001444.Google Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., Prettyman, T. H., Gasnault, O., Squyres, S. W., Elphic, R. C., Lawrence, D. J., Lawson, S. L., Maurice, S., McKinnet, G. W., Moore, K. R. and Reedy, R. C. (2002). Global distribution of neutrons from Mars: Results from Mars Odyssey, Science, 297, 7578.Google Scholar
Feldman, W. C., Mellon, M. T., Gasnault, O., Diez, B., Elphic, R. C., Hagerty, J. J., Lawrence, D. J., Maurice, S. and Prettyman, T. H. (2007). Vertical distribution of hydrogen at high northern latitudes on Mars: The Mars Odyssey Neutron Spectrometer. Geophys. Res. Lett., 34, L05201, doi:10.1029/2006GL028530.Google Scholar
Gladstone, G. R., Retherford, K. D., Egan, A. F., Kaufmann, D. E., Miles, P. F., Parker, J. W., Horvath, D., Rojas, P. M., Versteeg, M. H., Davis, M. W., Greathouse, T. K., Slater, D. C., Mukherjee, J., Steffl, A. J., Feldman, P. D., Hurley, D. M., Pryor, W. R., Hendrix, A. R., Mazarico, E. and Stern, S. A. (2012). Far-ultraviolet reflectance properties of the Moon’s permanently shadowed regions. J. Geophys. Res., 117, E00H04, doi:10.1029/2011JE003913.Google Scholar
Goldsten, J. O., Rhodes, E. A., Boynton, W. V., Feldman, W. C., Lawrence, D. J., Trombka, J. I., Smith, D. M., Evans, L. G., White, J., Madden, N. W., Berg, P. C., Murphy, G. A., Gurnee, R. S., Strohbehn, K., Williams, B. D., Schaefer, E. D., Monaco, C. A., Cork, C. P., Del Eckels, J., Miller, W. O., Burks, M. T., Hagler, L. B., DeTeresa, S. J. and Witte, M. C. (2007). The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Sci. Rev., 131, 339391.Google Scholar
Hapke, B. (1990). Coherent backscatter and the radar characteristics of outer planet satellites. Icarus, 88, 407–17.Google Scholar
Hapke, B. and Blewett, D. (1991). Coherent backscatter model for the unusual radar reflectivity of icy satellites. Nature, 352, 4647.CrossRefGoogle Scholar
Harcke, L. J. (2005). Radar imaging of solar system ices. Ph.D. thesis, Stanford University, Stanford, CA, 201 pp.Google Scholar
Harmon, J. K. (2007). Radar imaging of Mercury. Space Sci. Rev., 132, 307349.Google Scholar
Harmon, J. K. and Slade, M. A. (1992). Radar mapping of Mercury: Full-disk images and polar anomalies. Science, 258, 640643.Google Scholar
Harmon, J. K., Perillat, P. J. and Slade, M. A. (2001). High-resolution radar imaging of Mercury’s north pole. Icarus, 149, 115.Google Scholar
Harmon, J. K., Slade, M. A., Vélez, R. A., Crespo, A., Dryer, M. J. and Johnson, J. M. (1994). Radar mapping of Mercury’s polar anomalies. Nature, 369, 213215.Google Scholar
Harmon, J. K., Slade, M. A. and Rice, M. S. (2011). Radar imagery of Mercury’s putative polar ice: 1999–2005 Arecibo results. Icarus, 211, 3750.CrossRefGoogle Scholar
Haruyama, J., Ohtake, M., Matsunaga, T., Morota, T., Honda, C., Yokota, Y., Pieters, C. M., Hara, S., Hioki, K., Saiki, K., Miyamoto, H., Iwasaki, A., Abe, M., Ogawa, Y., Takeda, H., Shirao, M., Yamaji, A. and Josset, J. L. (2008). Lack of exposed ice inside lunar south pole Shackleton crater. Science, 322, 938939, doi:10.1126/science.1164020.Google Scholar
Hawkins, S. E. III, Boldt, J. D., Darlington, E. H., Espiritu, R., Gold, R. E., Gotwols, B., Grey, M. P., Hash, C. D., Hayes, J. R., Jaskulek, S. E., Kardian, C. J. Jr., Keller, M. R., Malaret, E. R., Murchie, S. L., Murphy, P. K., Peacock, K., Prockter, L. M., Reiter, R. A., Robinson, M. S., Schaefer, E. D., Shelton, R. G., Sterner, R. E. II, Taylor, H. W., Watters, T. R. and Williams, B. D. (2007). The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev., 131, 247338.Google Scholar
Hiesinger, H., Helbert, J. and MERTIS Co-I Team (2010). The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission. Planet. Space Sci., 58, 144165.Google Scholar
Ingersoll, A. P., Svitek, T. and Murray, B. C. (1992). Stability of polar frosts in spherical bowl-shaped craters on Moon, Mercury, and Mars. Icarus, 100, 4047.CrossRefGoogle Scholar
Lawrence, D. J. (2017). A tale of two poles: Toward understanding the presence, distribution, and origin of volatiles at the polar regions of the Moon and Mercury. J. Geophys. Res. Planets, 122, 2152.Google Scholar
Lawrence, D. J., Feldman, W. C., Elphic, R. C., Hagerty, J. J., Maurice, S., McKinney, G. W. and Prettyman, T. H. (2006). Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles. J. Geophys. Res., 111, E08001, doi:10.1029/2005JE002637.Google Scholar
Lawrence, D. J., Harmon, J. K., Feldman, W. C., Goldsten, J. O., Paige, D. A., Peplowski, P. N., Rhodes, E. A., Selby, C. M. and Solomon, S. C. (2011). Predictions of MESSENGER Neutron Spectrometer measurements of Mercury’s north polar region. Planet. Space Sci., 59, 16651669.Google Scholar
Lawrence, D. J., Feldman, W. C., Goldsten, J. O., Maurice, S., Peplowski, P. N., Anderson, B. J., Bazell, D., McNutt, R. L., Nittler, L. R., Prettyman, T. H., Rodgers, D. J., Solomon, S. C. and Weider, S. Z. (2013). Evidence for water ice near Mercury’s north pole from MESSENGER Neutron Spectrometer measurements. Science, 339, 292296, doi:10.1126/science.1229953.CrossRefGoogle ScholarPubMed
Le Feuvre, M. and Wieczorek, M. A. (2008). Nonuniform cratering of the terrestrial planets. Icarus, 197, 291306.Google Scholar
Li, L. and Mustard, J. F. (2000). Compositional gradients across mare-highland contacts: Importance and geological implication of lateral transport: J. Geophys. Res., 105, 20,43120,450.Google Scholar
Lucey, P. G., Neumann, G. A., Riner, M. A., Mazarico, E., Smith, D. E., Zuber, M. T., Paige, D. A., Bussey, D. B., Cahill, J. T., McGovern, A., Isaacson, P., Corley, L. M., Torrence, M. H., Melosh, H. J., Head, J. W. and Song, E. (2014). The global albedo of the Moon at 1064 nm from LOLA. J. Geophys. Res. Planets, 119, 16651679, doi:10.1002/2013JE004592.Google Scholar
Marchi, S., Mottola, S., Cremonese, G., Massironi, M. and Martellato, E. (2009). A new chronology for the Moon and Mercury. Astron. J., 137, 49364948.Google Scholar
Margot, J.-L., Peale, S. J., Solomon, S. C., Hauck, S. A. II, Ghigo, F. D., Jurgens, R. F., Yseboodt, M., Giorgini, J. D., Padovan, S. and Campbell, D. B. (2012). Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res., 117, E00L09, doi:10.1029/2012JE004161.Google Scholar
Mazarico, E., Neumann, G. A., Smith, D. E., Zuber, M. T. and Torrence, M. H. (2011). Illuminations conditions of the lunar polar regions using LOLA topography. Icarus, 211, 10661081.Google Scholar
Mazarico, E., Nicholas, J. B., Neumann, G. A., Smith, D. E. and Zuber, M. T. (2014). Illumination conditions at the poles of the Moon and Mercury, and application to data analysis. Lunar Planet. Sci., 45, abstract 1867.Google Scholar
McCord, T. B., Taylor, L. A., Combe, J.-P., Kramer, G., Pieters, C. M., Sunshine, J. M. and Clark, R. N. (2011). Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res., 116, E00G05, doi:10.1029/2010JE003711.Google Scholar
Miller, R. S., Nerurkar, G. and Lawrence, D. J. (2012). Enhanced hydrogen at the lunar poles: New insights from the detection of epithermal and fast neutron signatures. J. Geophys. Res., 117, E11007, doi:10.1029/2012JE004112.Google Scholar
Miller, R. S., Lawrence, D. J. and Hurley, D. M. (2014). Identification of surface hydrogen enhancements within the Moon’s Shackleton crater. Icarus, 233, 229232.CrossRefGoogle Scholar
Mitrofanov, I. G., Sanin, A. B., Boynton, W. V., Chin, G., Garvin, J. B., Golovin, D., Evans, L. G., Harshman, K., Kozyrev, A. S., Litvak, M. L., Malakhov, A., Mazarico, E., McClanahan, T., Milikh, G., Mokrousov, M., Nandikotkur, G., Neumann, G. A., Nuzhdin, I., Sagdeev, R., Shevchenko, V., Shvetsov, V., Smith, D. E., Starr, R., Tretyakov, V. I., Trombka, J., Usikov, D., Varenikov, A., Vostrukhin, A. and Zuber, M. T. (2010). Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND. Science, 330, 483486.Google Scholar
Morgan, T. H. and Shemansky, D. C. (1991). Limits to the lunar atmosphereJ. Geophys. Res., 9613511367.Google Scholar
Moses, J. I., Rawlins, K., Zahnle, K. and Dones, L. (1999). External sources of water for Mercury’s putative ice deposits. Icarus, 137, 197221.Google Scholar
Muhleman, D. O., Butler, B. J., Grossman, A. W. and Slade, M. A. (1991). Radar images of Mars. Science, 253, 15081513.Google Scholar
Neish, C. D., Bussey, D. B. J., Spudis, P., Marshall, W., Thomson, B. J., Patterson, G. W. and Carter, L. M. (2011). The nature of lunar volatiles as revealed by Mini-RF observations of the LCROSS impact site. J. Geophys. Res., 116, E01005, doi:10.1029/2010JE003647.Google Scholar
Nesvorný, D., Jenniskens, P., Levison, H. F., Bottke, W. F., Vokrouhlický, D. and Gounelle, M. (2010). Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for host debris disks. Astrophys. J., 713, 816836, doi:10.1088/0004-637X/713/2/816.Google Scholar
Neumann, G. A., Cavanaugh, J. F., Sun, X., Mazarico, E., Smith, D. E., Zuber, M. T., Mao, D., Paige, D. A., Solomon, S. C., Ernst, C. M. and Barnouin, O. S. (2013). Bright and dark polar deposits on Mercury: Evidence for surface volatiles. Science, 339, 296300.Google Scholar
Neumann, G. A., Sun, X., Mazarico, E., Deutsch, A. N., Head, J. W., Paige, D. A., Rubanenko, L. and Susorney, H. C. M. (2017). Latitudinal variation in Mercury’s reflectance from the Mercury Laser Altimeter. Lunar Planet. Sci., 48, abstract 2660.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Schlemm, C. E. II, Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850.Google Scholar
Noda, H., Araki, H., Goossens, S., Ishihara, Y., Matsumoto, K., Tazawa, S., Kawano, N. and Sasaki, S. (2008). Illumination conditions at the lunar polar regions by KAGUYA (SELENE) laser altimeter. Geophys. Res. Lett., 35, L24203, doi:10.1029/2008GL035692.CrossRefGoogle Scholar
Nozette, S., Lichtenberg, C. L., Spudis, P., Bonner, R., Ort, W., Malaret, E., Robinson, M. and Shoemaker, E. M. (1996). The Clementine bistatic radar experiment. Science, 274, 14951498.Google Scholar
Ong, L., Asphaug, E. I., Korycansky, D. and Coker, R. F. (2010). Volatile retention from cometary impacts on the Moon. Icarus, 207, 578589.Google Scholar
Ostro, S. J., Campbell, D. B., Pettengill, G. H. and Shapiro, I. I. (1980). Radar observations of the icy Galilean satellites. Icarus, 44, 431440.Google Scholar
Paige, D. A., Wood, S. E. and Vasavada, A. R. (1992). The thermal stability of water ice at the poles of Mercury. Science, 258, 643646.Google Scholar
Paige, D. A., Siegler, M. A., Zhang, J. A., Hayne, P. O., Foote, E. J., Bennett, K. A., Vasavada, A. R., Greenhagen, B. T., Schofield, J. T., McCleese, D. J., Foote, M. C., DeJong, E., Bills, B. G., Hartford, W., Murray, B. C., Allen, C. C., Snook, K., Soderblom, L. A., Calcutt, S., Taylor, F. W., Bowles, N. E., Bandfield, J. L., Elphic, R., Ghent, R., Glotch, T. D., Wyatt, M. B. and Lucey, P. G. (2010). Diviner lunar radiometer observations of cold traps in the Moon’s south polar region. Science, 330, 479482.CrossRefGoogle ScholarPubMed
Paige, D. A., Siegler, M. A., Harmon, J. K., Neumann, G. A., Mazarico, E. M., Smith, D. E., Zuber, M. T., Harju, E., Delitsky, M. L. and Solomon, S. C. (2013). Thermal stability of volatiles in the north polar region of Mercury. Science, 339, 300303.Google Scholar
Paige, D. A., Hayne, D. A., Siegler, M. A., Smith, D. E., Zuber, M. T., Neumann, G. A., Mazarico, E. M., Denevi, B. W. and Solomon, S. C. (2014). Dark surface deposits in the north polar region of Mercury: Evidence for widespread small-scale volatile cold traps. Lunar Planet. Sci., 45, abstract 2501.Google Scholar
Peale, S. J. (1988). The rotational dynamics of Mercury and the state of its core. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 461493.Google Scholar
Pelowitz, D. B. (ed.) (2005). MCNPX User’s Manual, Version 2.5.0. Report LA-UR-94–1817. Los Alamos, NM: Los Alamos National Laboratory.Google Scholar
Pierazzo, E. and Chyba, C. F. (1999). Amino acid survival in large cometary impacts. Meteorit. Planet. Sci., 34, 909918.Google Scholar
Pierazzo, E. and Chyba, C. F. (2006). Impact delivery of prebiotic organic matter to planetary surfaces. In Comets and the Origin and Evolution of Life, 2nd edn, ed. Thomas, P. J., Hicks, R. D., Chyba, C. F. and McKay., C. P. Advances in Astrobiology and Biogeophysics. Berlin: Springer-Verlag, pp. 137168, doi:10.1007/10903490_5.Google Scholar
Pike, R. J. (1988). Geomorphology of impact craters on Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 165273.Google Scholar
Prem, P., Artemieva, N. A., Goldstein, D. B., Varghese, P. L. and Trafton, L. M. (2015). Transport of water in a transient impact-generated lunar atmosphere, Icarus, 255, 148158, doi:10.1016/j.icarus.2014.10.017.Google Scholar
Prettyman, T. H. (2007). Remote chemical sensing using nuclear spectroscopy. In Encyclopedia of the Solar System, 2nd edn, ed. McFadden, L. A., Weissman, P. R. and Johnson, T. V.. San Diego, CA: Academic Press, pp. 765786.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., Lawrence, D. J., Beck, A. W., Feldman, W. C., McCoy, T. J., McSween, H. Y., Toplis, M. J., Titus, T. N., Tricarico, P., Reedy, R. C., Hendricks, J. S., Forni, O., Le Corre, L., Li, J.-Y., Mizzon, H., Reddy, V., Raymond, C. A. and Russell, C. T. (2012). Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.Google Scholar
Rubanenko, L., Mazarico, E., Neumann, G. A. and Paige, D. A. (2017). Evidence for surface and subsurface ice inside micro cold-traps on Mercury’s north pole. Lunar Planet. Sci., 48, abstract 1461.Google Scholar
Salvail, J. R. and Fanale, F. P. (1994). Near-surface ice on Mercury and the Moon: A topographic thermal model. Icarus, 111, 441455.Google Scholar
Schorghofer, N. and Taylor, G. J. (2007). Subsurface migration of H2O at lunar cold traps. J. Geophys. Res., 112, E02010, doi:10.1029/2006JE002779.Google Scholar
Siegler, M. A., Bills, B. G. and Paige, D. A. (2011). Effects of orbital evolution on lunar ice stability. J. Geophys. Res., 116, E03010, doi:10.1029/2010JE003652.Google Scholar
Siegler, M., Paige, D., Williams, J.-P. and Bills, B. (2015). Evolution of lunar polar ice stability. Icarus, 255, 7887.Google Scholar
Siegler, M. A., Miller, R. S., Keane, J. T., Paige, D. A., Matsuyama, I., Lawrence, D. J., Crotts, A. and Poston, M. J. (2016). Lunar true polar wander inferred from polar hydrogen. Nature, 531, 480484.CrossRefGoogle ScholarPubMed
Simpson, R. A. and Tyler, G. L. (1999). Reanalysis of Clementine bistatic radar data from the lunar South Pole. J. Geophys. Res., 104, 38453862.Google Scholar
Slade, M. A., Butler, B. J. and Muhleman, D. O. (1992). Mercury radar imaging: Evidence for polar ice. Science, 258, 635640.Google Scholar
Speyerer, E. J. and Robinson, M. S. (2013). Persistently illuminated regions at the lunar poles: Ideal sites for future exploration. Icarus, 222, 122136.Google Scholar
Sprague, A. L., Hunten, D. M. and Lodders, K. (1995). Sulfur at Mercury, elemental at the poles and sulfides in the regolith. Icarus, 118, 211215.Google Scholar
Spudis, P. D., Bussey, D. B. J., Baloga, S. M., Butler, B. J., Carl, D., Carter, L. M., Chakraborty, M., Elphic, R. C., Gillis-Davis, J. J., Goswami, J. N., Heggy, E., Hillyard, M., Jensen, R., Kirk, R. L., LaVallee, D., McKerracher, P., Neish, C. D., Nozette, S., Nylund, S., Palsetia, M., Patterson, W., Robinson, M. S., Raney, R. K., Schulze, R. C., Sequeira, H., Skura, J., Thompson, T. W., Thomson, B. J., Ustinov, E. A. and Winters, H. L. (2010). Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission. Geophys. Res. Lett., 37, L06204, doi:10.1029/2009GL042259.Google Scholar
Stacy, N. J. S., Campbell, D. B. and Ford, P. G. (1997). Arecibo radar mapping of the lunar poles: A search for ice deposits. Science, 276, 15271530.CrossRefGoogle Scholar
Starukhina, L. (2001). Water detection on atmosphereless celestial bodies: Alternative explanations of the observations. J. Geophys. Res., 106, 14,701–14,710.Google Scholar
Stewart, B. D., Pierazzo, E., Goldstein, D. B., Varghese, P. L. and Trafton, L. M. (2011). Simulations of a comet impact on the Moon and associated ice deposition in polar cold traps. Icarus, 215, 116.Google Scholar
Sun, X. and Neumann, G. A. (2015). Calibration of the Mercury Laser Altimeter on the MESSENGER spacecraft. IEEE Trans. Geosci. Remote Sensing, 53, 28602874.Google Scholar
Susorney, H. C. M., Barnouin, O. S., Ernst, C. M. and Johnson, C. L. (2016). Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging. Icarus, 271, 180193.Google Scholar
Susorney, H. C. M., James, P. B., Chabot, N. L., Ernst, C. M., Mazarico, E. M. and Neumann, G. A. (2017). Measuring the thickness of Mercury’s polar water ice deposits using the Mercury Laser Altimeter. Lunar Planet. Sci., 48, abstract 2059.Google Scholar
Talpe, M. J., Zuber, M. T., Yang, D., Neumann, G. A., Solomon, S. C., Mazarico, E. and Vilas, F. (2012). Characterization of the morphometry of impact craters hosting polar deposits in Mercury’s north polar region. J. Geophys. Res., 117, E00L13, doi:10.1029/2012je004155.Google Scholar
Teodoro, L. F. A., Eke, V. R. and Elphic, R. C. (2010). Spatial distribution of lunar polar hydrogen deposits after KAGUYA (SELENE). Geophys. Res. Lett., 37, L12201, doi:10.1029/2010GL042889.Google Scholar
Thomas, G. E. (1974). Mercury: Does its atmosphere contain water?Science, 183, 11971198.Google Scholar
Thomson, B. J., Bussey, D. B. J., Neish, C. D., Cahill, J. T. S., Heggy, E., Kirk, R. L., Patterson, G. W., Raney, R. K., Spudis, P. D., Thompson, T. W. and Ustinov, E. A. (2012). An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar. Geophys. Res. Lett., 39, L14201, doi:10.1029/2012GL052119.Google Scholar
Urey, H. C. (1952). The Planets: Their Origin and Development. New Haven, CT: Yale University Press, 245 pp.Google Scholar
Vasavada, A. R., Paige, D. A. and Wood, S. E. (1999). Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141, 179193.CrossRefGoogle Scholar
Vilas, F., Cobain, P. S., Barlow, N. G. and Lederer, S. M. (2005). How much material do the radar-bright craters at the Mercurian poles contain? Planet. Space Sci., 53, 14961500.Google Scholar
Watson, K. B., Murray, C. and Brown, H. (1961). The behavior of volatiles on the lunar surface. J. Geophys. Res., 66, 30333045.Google Scholar
Xiao, Z., Prieur, N. C. and Werner, S. C. (2016). The self-secondary crater population of the Hokusai crater on Mercury. Geophys. Res. Lett., 43, 74247432, doi:10.1002/2016GL069868.Google Scholar
Yoldi, Z., Pommerol, A., Jost, B., Poch, O., Gouman, J. and Thomas, N. (2015). VIS-NIR reflectance of water ice/regolith analogue mixtures and implications for the detectability of ice mixed within planetary regoliths. Geophys. Res. Lett., 42, 62056212, doi:10.1002/2015GL064780.Google Scholar
Zhang, J. A. and Paige, D. A. (2009). Cold-trapped organic compounds at the poles of the Moon and Mercury: Implications for origins. Geophys. Res. Lett., 36, L16203, doi:10.1029/2009GL038614.Google Scholar
Zhang, J. A. and Paige, D. A. (2010). Correction to “Cold-trapped organic compounds at the poles of the Moon and Mercury: Implications for origins.”Geophys. Res. Lett., 37, L03203, doi:10.1029/2009GL041806.Google Scholar
Zolotov, M. Yu. (2011). On the chemistry of mantle and magmatic volatiles on Mercury. Icarus, 212, 2441.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×