Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T10:39:52.179Z Has data issue: false hasContentIssue false

6 - The Geologic History of Mercury

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

We assess Mercury’s geologic history, focusing on the distribution and origin of terrain types and an overview of Mercury’s evolution from the pre-Tolstojan through the Kuiperian Period. We review evidence for the nature of Mercury’s early crust, including the possibility that a substantial portion formed by the global eruption of lavas generated by partial melting during and after overturn of the crystalline products of magma ocean cooling, whereas a much smaller fraction of the crust may have been derived from crystal flotation in such a magma ocean. The early history of Mercury may thus have been similar to that of the other terrestrial planets, with much of the crust formed through volcanism, in contrast to the flotation-dominated crust of the Moon. Small portions of Mercury’s early crust may still be exposed in a heavily modified and brecciated form; the majority of the surface is dominated by intercrater plains (Pre-Tolstojan and Tolstojan in age) and smooth plains (Tolstojan and Calorian) that formed through a combination of volcanism and impact events. As effusive volcanism waned in the Calorian, explosive volcanism continued at least through the Mansurian Period; the Kuiperian Period was dominated by impact events and the formation of hollows. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 144 - 175
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackiss, S. E., Buczkowski, D. L., Ernst, C. M., McBeck, J. A. and Seelos, K. D. (2015). Knob heights within circum-Caloris geologic units on Mercury: Interpretations of the geologic history of the region. Earth Planet. Sci. Lett., 430, 542550, doi:10.1016/j.epsl.2015.08.003.Google Scholar
Adams, J. B. and McCord, T. B. (1977). Mercury: Evidence for an anorthositic crust from reflectance spectra. Bull. Amer. Astron. Soc., 9, 457.Google Scholar
André, S. L., Watters, T. R. and Robinson, M. S. (2005). The long wavelength topography of Beethoven and Tolstoj basins, Mercury. Geophys. Res. Lett., 32, L21202, doi:10.1029/2005GL023627.CrossRefGoogle Scholar
Arkani-Hamed, J. (1973). On the thermal history of the Moon. Moon, 6, 380383.Google Scholar
Banks, M. E., Xiao, Z., Watters, T. R., Strom, R. G., Braden, S. E., Chapman, C. R., Solomon, S. C., Klimczak, C. and Byrne, P. K. (2015). Duration of activity on lobate-scarp thrust faults on Mercury. J. Geophys. Res. Planets, 120, 17511762, doi:10.1002/2015JE004828.Google Scholar
Banks, M. E., Xiao, Z., Braden, S. E., Marchi, S., Chapman, C. R., Barlow, N. G. and Fassett, C. I. (2016). Revised age constraints for Mercury’s Kuiperian and Mansurian systems. Lunar Planet. Sci., 47, abstract 2943.Google Scholar
Beach, M. J., Head, J. W., Ostrach, L. R., Robinson, M. S., Denevi, B. W. and Solomon, S. C. (2012). The influence of pre-existing topography on the distribution of impact melt on Mercury. Lunar Planet. Sci., 43, abstract 1335.Google Scholar
Becker, K. J., Robinson, M. S., Becker, T. L., Weller, L. A., Edmundson, K. L., Neumann, G. A., Perry, M. E. and Solomon, S. C. (2016). First global digital elevation model of Mercury. Lunar Planet. Sci., 47, abstract 2959.Google Scholar
Blewett, D. T., Lucey, P. G. and Hawke, B. R. (1997). A comparison of mercurian spectral reflectance and spectral quantities with those of the Moon. Icarus, 129, 217231.CrossRefGoogle Scholar
Blewett, D. T., Hawke, B. R., Lucey, P. G. and Robinson, M. S. (2007). A Mariner 10 color study of mercurian craters. J. Geophys. Res., 112, E02005, doi:10.1029/2006JE002713.CrossRefGoogle Scholar
Blewett, D. T., Robinson, M. S., Denevi, B. W., Gillis-Davis, J. J., Head, J. W., Solomon, S. C., Holsclaw, G. M. and McClintock, W. E. (2009). Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends. Earth Planet. Sci. Lett., 285, 272282.Google Scholar
Blewett, D. T., Denevi, B. W., Robinson, M. S., Ernst, C. M., Purucker, M. E. and Solomon, S. C. (2010). The apparent lack of lunar-like swirls on Mercury: Implications for the formation of lunar swirls and for the agent of space weathering. Icarus, 209, 239246, doi:10.1016/j.icarus.2010.03.008.Google Scholar
Blewett, D. T., Chabot, N. L., Denevi, B. W., Ernst, C. M., Head, J. W., Izenberg, N. R., Murchie, S. L., Solomon, S. C., Nittler, L. A., McCoy, T. J., Xiao, Z., Baker, D. M. H., Fassett, C. I., Braden, S. E., Oberst, J., Scholten, F., Preusker, F. and Hurwitz, D. M. (2011). Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity. Science, 333, 18561859.Google Scholar
Blewett, D. T., Vaughan, W. M., Xiao, Z., Chabot, N. L., Denevi, B. W., Ernst, C. M., Helbert, J., D’Amore, M., Maturilli, A., Head, J. W. and Solomon, S. C. (2013). Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. J. Geophys. Res. Planets, 118, 10131032, doi:10.1029/2012JE004174.Google Scholar
Borin, P., Cremonese, G., Marzari, F., Bruno, M. and Marchi, S. (2009). Statistical analysis of micrometeoroids flux on Mercury. Astron. Astrophys., 503, 259264, doi:10.1051/0004-6361/200912080.Google Scholar
Braden, S. E. and Robinson, M. S. (2013). Relative rates of optical maturation of regolith on Mercury and the Moon. J. Geophys. Res. Planets, 118, 19031914, doi:10.1002/jgre.20143.Google Scholar
Brown, S. M. and Elkins-Tanton, L. T. (2009). Compositions of Mercury’s earliest crust from magma ocean models. Earth Planet. Sci. Lett., 286, 446455, doi:10.1016/j.epsl.2009.07.010.Google Scholar
Byrne, P. K., Klimczak, C., Williams, D. A., Hurwitz, D. M., Solomon, S. C., Head, J. W., Preusker, F. and Oberst, J. (2013a). An assemblage of lava flow features on Mercury. J. Geophys. Res. Planets, 118, 13031322, doi:10.1002/jgre.20052.Google Scholar
Byrne, P. K., Klimczak, C., Blair, D. M., Ferrari, S., Solomon, S. C., Freed, A. M., Watters, T. R. and Murchie, S. L. (2013b). Tectonic complexity within volcanically infilled craters and basins on Mercury. Lunar Planet. Sci., 44, abstract 1261.Google Scholar
Byrne, P. K., Klimczak, C., Şengör, A. M. C., Solomon, S. C., Watters, T. R. and Hauck, S. A. II (2014). Mercury’s global contraction much greater than earlier estimates. Nature Geosci., 7, 301307, doi:10.1038/ngeo2097.CrossRefGoogle Scholar
Byrne, P. K., Ostrach, L. R., Fassett, C. I., Chapman, C. R., Denevi, B. W., Evans, A. J., Klimczak, C., Banks, M. E., Head, J. W. and Solomon, S. C. (2016). Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett., 43, 74087416, doi:10.1002/2016GL069412.Google Scholar
Chabot, N. L., Denevi, B. W., Murchie, S. L., Hash, C. D., Ernst, C. M., Blewett, D. T., Nair, H., Laslo, N. R. and Solomon, S. C. (2016). Mapping Mercury: Global imaging strategy and products from the MESSENGER mission. Lunar Planet. Sci., 47, abstract 1256.Google Scholar
Chapman, C. R. (1968). Interpretation of the diameter–frequency relation for lunar craters photographed by Rangers VII, VIII, and IX. Icarus, 8, 122, doi:10.1016/0019-1035(68)90058-4.Google Scholar
Charlier, B., Grove, T. L. and Zuber, M. T. (2013). Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet. Sci. Lett., 363, 5060, doi:10.1016/j.epsl.2012.12.021.Google Scholar
Cintala, M. J. (1992). Impact-induced thermal effects in the lunar and mercurian regoliths. J. Geophys. Res., 97, 947973.Google Scholar
Crater Analysis Techniques Working Group (1978). Standard techniques for presentation and analysis of crater size–frequency data. Icarus, 37, 467474.Google Scholar
Denevi, B. W. and Robinson, M. S. (2008). Mercury’s albedo from Mariner 10: Implications for the presence of ferrous iron. Icarus, 197, 239246, doi:10.1016/j.icarus.2008.04.021.Google Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L., McCoy, T. J., Ernst, C. M., Head, J. W., Watters, T. R. and Chabot, N. L. (2009). The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618.Google Scholar
Denevi, B. W., Ernst, C. M., Meyer, H. M., Robinson, M. S., Murchie, S. L., Whitten, J. L., Head, J. W., Watters, T. R., Solomon, S. C., Ostrach, L. R., Chapman, C. R., Byrne, P. K., Klimczak, C. and Peplowski, P. N. (2013a). The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets, 118, 891907, doi:10.1002/jgre.20075.Google Scholar
Denevi, B. W., Ernst, C. M., Whitten, J. L., Head, J. W., Murchie, S. L., Watters, T. R., Byrne, P. K., Blewett, D. T., Solomon, S. C. and Fassett, C. I. (2013b). The volcanic origin of a region of intercrater plains on Mercury. Lunar Planet. Sci., 44, abstract 1218.Google Scholar
Domingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., Benna, M., Slavin, J. A., Schriver, D., Trávníček, P. M., Orlando, T. M., Sprague, A. L., Blewett, D. T., Gillis-Davis, J. J., Feldman, W. C., Lawrence, D. J., Ho, G. C., Ebel, D. S., Nittler, L. R., Vilas, F., Pieters, C. M., Solomon, S. C., Johnson, C. L., Winslow, R. M., Helbert, J., Peplowski, P. N., Weider, S. Z., Mouawad, N., Izenberg, N. R. and McClintock, W. E. (2014). Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev., 181, 121214, doi:10.1007/s11214-014-0039-5.Google Scholar
Dzurisin, D. (1977). Mercurian bright patches: Evidence for chemical alteration of surface material? Geophys. Res. Lett., 4, 383396.Google Scholar
Eggleton, R. E. and Schaber, G. G. (1972). Cayley Formation interpreted as basin ejecta. In Apollo 16 Preliminary Science Report, Special Publication SP-315. Washington, DC: National Aeronautics and Space Administration, pp. 29-7–29-16.Google Scholar
Elkins-Tanton, L. T., Hager, B. H. and Grove, T. L. (2004). Magmatic effects of the lunar late heavy bombardment. Earth Planet. Sci. Lett., 222, 1727, doi:10.1016/j.epsl.2004.02.017.Google Scholar
Elkins-Tanton, L. T., Hess, P. C. and Parmentier, E. M. (2005). Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res., 100, E12S01, doi:10.1029/2005JE002480.Google Scholar
Ernst, C. M., Murchie, S. L., Barnouin, O. S., Robinson, M. S., Denevi, B. W., Blewett, D. T., Head, J. W., Izenberg, N. R., Solomon, S. C. and Roberts, J. H. (2010). Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 209, 210223, doi:10.1016/j.icarus.2010.05.022.Google Scholar
Ernst, C. M., Denevi, B. W., Barnouin, O. S., Klimczak, C., Chabot, N. L., Head, J. W., Murchie, S. L., Neumann, G. A., Prockter, L. M., Robinson, M. S., Solomon, S. C. and Watters, T. R. (2015). Stratigraphy of the Caloris basin, Mercury: Implications for volcanic history and basin impact melt. Icarus, 250, 413429, doi:10.1016/j.icarus.2014.11.003.Google Scholar
Ernst, C. M., Chabot, N. L. and Barnouin, O. S. (2016). Examining the potential contribution of the Hokusai impact to water ice on Mercury. Lunar Planet. Sci., 47, abstract 1374.Google Scholar
Ernst, C. M., Denevi, B. W. and Ostrach, L. R. (2017). Updated absolute age estimates for the Tolstoj and Caloris basins, Mercury. Lunar Planet. Sci., 48, abstract 2934.Google Scholar
Fassett, C. I., Head, J. W., Blewett, D. T., Chapman, C. R., Dickson, J. L., Murchie, S. L., Solomon, S. C. and Watters, T. R. (2009). Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Earth Planet. Sci. Lett., 285, 297308.Google Scholar
Fassett, C. I., Kadish, S. J., Head, J. W., Solomon, S. C. and Strom, R. G. (2011). The global population of large craters on Mercury and comparisons with the Moon. Geophys. Res. Lett., 38, L10202, doi:10.1029/2011GL047294.Google Scholar
Fassett, C. I., Head, J. W., Baker, D. M. H., Zuber, M. T., Smith, D. E., Neumann, G. A., Solomon, S. C., Klimczak, C., Strom, R. G., Chapman, C. R., Prockter, L. M., Phillips, R. J., Oberst, J. and Preusker, F. (2012). Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data. J. Geophys. Res., 117, E00L08, doi:10.1029/2012JE004154.Google Scholar
Gaddis, L. R., Pieters, C. M. and Hawke, B. R. (1985). Remote-sensing of lunar pyroclastic mantling deposits. Icarus, 61, 461489.Google Scholar
Gaddis, L. R., Staid, M. I., Tyburczy, J. and Hawke, B. R. (2003). Compositional analyses of lunar pyroclastic deposits. Icarus, 161, 262280.CrossRefGoogle Scholar
Gault, D. E., Guest, J. E., Murray, J. B., Dzurisin, D. and Malin, M. C. (1975). Some comparisons of impact craters on Mercury and the Moon. J. Geophys. Res., 80, 24442460.Google Scholar
Gillis-Davis, J. J., Blewett, D. T., Gaskell, R. W., Denevi, B. W., Robinson, M. S., Strom, R. G., Solomon, S. C. and Sprague, A. L. (2009). Pit-floor craters on Mercury: Evidence of near-surface igneous activity. Earth Planet. Sci. Lett., 285, 243250, doi:10.1016/j.epsl.2009.05.023.Google Scholar
Goosmann, E., Buczkowski, D. L., Ernst, C. M., Denevi, B. W. and Kinczyk, M. J. (2016). Geologic map of the Caloris basin, Mercury. Lunar Planet. Sci., 47, abstract 1254.Google Scholar
Goudge, T. A., Head, J. W., Kerber, L., Blewett, D. T., Denevi, B. W., Domingue, D. L., Gillis-Davis, J. J., Gwinner, K., Helbert, J., Holsclaw, G. M., Izenberg, N. R., Klima, R. L., McClintock, W. E., Murchie, S. L., Neumann, G. A., Smith, D. E., Strom, R. G., Xiao, Z., Zuber, M. T. and Solomon, S. C. (2014). Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res. Planets, 119, 635658, doi:10.1002/2013JE004480.Google Scholar
Greenstreet, S., Ngo, H. and Gladman, B. (2012). The orbital distribution of near-Earth objects inside Earth’s orbit. Icarus, 217, 355366, doi:10.1016/j.icarus.2011.11.010.Google Scholar
Grolier, M. J. and Boyce, J. M. (1984). Geologic Map of the Borealis Region of Mercury, Map I-1660, Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
Guest, J. E. and Greeley, R. (1983). Geologic Map of the Shakespeare Quadrangle of Mercury, Map I-1408, Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
Hapke, B., Danielson, G. E., Klaasen, K. and Wilson, L. (1975). Photometric observations of Mercury from Mariner 10. J. Geophys. Res., 80, 24312443.Google Scholar
Hapke, B., Christman, C., Rava, B. and Mosher, J. (1980). A color-ratio map of Mercury. Proc. Lunar Planet. Sci. Conf., 11, 817821.Google Scholar
Hartmann, W. K. (1984). Does crater “saturation equilibrium” occur in the solar system? Icarus, 60, 5674.Google Scholar
Hawke, B. R., Peterson, C. A., Blewett, D. T., Bussey, D. B. J., Lucey, P. G., Taylor, G. J. and Spudis, P. D. (2003). Distribution and modes of occurrence of lunar anorthosites. J. Geophys. Res., 108 (E6), 5050, doi:10.1029/2002JE001890.Google Scholar
Hawkins, S. E. III, Boldt, J. D., Darlington, E. H., Espiritu, R., Gold, R. E., Gotwols, B., Grey, M. P., Hash, C. D., Hayes, J. R., Jaskulek, S. E., Kardian, C. J., Keller, M. R., Malaret, E. R., Murchie, S. L., Murphy, P. K., Peacock, K., Prockter, L. M., Reiter, R. A., Robinson, M. S., Schaefer, E. D., Shelton, R. G., Sterner, R. E. II, Taylor, H. W., Watters, T. R. and Williams, B. D. (2007). The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev., 131, 247338.Google Scholar
Hawkins, S. E. III, Murchie, S. L., Becker, K. J., Selby, C. M., Turner, F. S., Noble, M. W., Chabot, N. L., Choo, T. H., Darlington, E. H., Denevi, B. W., Domingue, D. L., Ernst, C. M., Holsclaw, G. M., Laslo, N. R., McClintock, W. E., Prockter, L. M., Robinson, M. S., Solomon, S. C. and Sterner, R. E. II (2009). In-flight performance of MESSENGER’s Mercury Dual Imaging System. In Instruments and Methods for Astrobiology and Planetary Missions XII, ed. Hoover, R. B., Levin, G. V., Rozanov, A. Y. and Retherford, K. D.. Proc. SPIE, Vol. 7441. Bellingham, WA: SPIE, 12 pp., doi:10.1117/12.826370.Google Scholar
Head, J. W. (1974). Orientale multi-ringed basin interior and implications for the petrogenesis of lunar highland samples. Moon, 11, 327356.Google Scholar
Head, J. W. and Wilson, L. (1979). Alphonsus-type dark halo craters: Morphology, morphometry and eruption conditions. Proc. Lunar Planet. Sci. Conf., 10, 28612897.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Robinson, M. S., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., McClintock, W. E., Blewett, D. T. and Gillis-Davis, J. J. (2008). Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321, 6972.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Solomon, S. C., Chapman, C. R., Strom, R. G., Watters, T. R., Blewett, D. T., Gillis-Davis, J. J., Fassett, C. I., Dickson, J. L., Morgan, G. A. and Kerber, L. (2009a). Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth Planet. Sci. Lett., 285, 227242, doi:10.1016/j.epsl.2009.03.007.Google Scholar
Head, J. W., Murchie, S. L., Prockter, L. M., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., Blewett, D. T., Gillis-Davis, J. J., Fassett, C. I., Dickson, J. L., Hurwitz, D. M. and Ostrach, L. R. (2009b). Evidence for intrusive activity on Mercury from the first MESSENGER flyby. Earth Planet. Sci. Lett., 285, 251262, doi:10.1016/j.epsl.2009.03.008.Google Scholar
Head, J. W., Fassett, C. I., Kadish, S. J., Smith, D. E., Zuber, M. T., Neumann, G. A. and Mazarico, E. (2010). Global distribution of large lunar craters: Implications for resurfacing and impactor populations. Science, 329, 15041507.Google Scholar
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W., Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C. and Nittler, L. R. (2011). Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science, 333, 1853–1856, doi:10.1126/science.1211997.Google Scholar
Howard, K. A., Wilhelms, D. E. and Scott, D. H. (1974). Lunar basin formation and highland stratigraphy. Rev. Geophys. Space Physics, 12, 309327.Google Scholar
Hughes, H. G., App, F. N. and McGetchin, T. R. (1977). Global seismic effects of basin-forming impacts. Phys. Earth Planet. Inter., 15, 251263.Google Scholar
Hurwitz, D. M., Head, J. W., Byrne, P. K., Xiao, Z., Solomon, S. C., Zuber, M. T., Smith, D. E. and Neumann, G. A. (2013). Investigating the origin of candidate lava channels on Mercury with MESSENGER data: Theory and observations. J. Geophys. Res. Planets, 118, 471486, doi:10.1029/2012JE004103.Google Scholar
James, P. B., Zuber, M. T., Phillips, R. J. and Solomon, S. C. (2015). Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography. J. Geophys. Res. Planets, 120, 287310, doi:10.1002/2014JE004713.Google Scholar
Jolliff, B. L., Gillis, J. J., Haskin, L. A. and Korotev, R. L. (2000). Major lunar crustal terranes: Surface expressions and crust–mantle origins. J. Geophys. Res., 105, 41974216.Google Scholar
Kamber, B. S. (2007). The enigma of the terrestrial protocrust: Evidence of its former existence and the importance of its complete disappearance. In The Earth’s Oldest Rocks, ed. van Kranendonk, M., Smithies, R. H. and Bennett, V. C.. Amsterdam: Elsevier, pp. 7589.Google Scholar
Kerber, L., Head, J. W., Solomon, S. C., Murchie, S. L., Blewett, D. T. and Wilson, L. (2009). Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett., 285, 263271, doi:10.1016/j.epsl.2009.04.037.CrossRefGoogle Scholar
Kerber, L., Head, J. W., Blewett, D. T., Solomon, S. C., Wilson, L., Murchie, S. L., Robinson, M. S., Denevi, B. W. and Domingue, D. L. (2011). The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3. Planet. Space Sci., 59, 18951909, doi:10.1016/j.pss.2011.03.020.Google Scholar
Kinczyk, M. J., Prockter, L. M., Chapman, C. R. and Susorney, H. C. (2016). A morphologic evaluation of crater degradation on Mercury: Revisiting crater classification with MESSENGER data. Lunar Planet. Sci., 47, abstract 1573.Google Scholar
King, J. S. and Scott, D. H. (1990). Geologic Map of the Beethoven Quadrangle of Mercury, Map I-2048, Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
Klima, R. L., Blewett, D. T., Denevi, B. W., Ernst, C. M., Frank, E. A., Head, J. W., Izenberg, N. R., Murchie, S. L., Nittler, L. R., Peplowski, P. N. and Solomon, S. C. (2016). Global distribution and spectral properties of low-reflectance material on Mercury. Lunar Planet. Sci., 47, abstract 1195.Google Scholar
Klimczak, C. (2015). Limits on the brittle strength of planetary lithospheres undergoing global contraction. J. Geophys. Res. Planets, 120, 21352151, doi:10.1002/2015JE004851.Google Scholar
Klimczak, C., Watters, T. R., Ernst, C. M., Freed, A. M., Byrne, P. K., Solomon, S. C., Blair, D. M. and Head, J. W. (2012). Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: Strain analysis and implications for plains evolution. J. Geophys. Res., 117, E00L03, doi:10.1029/2012JE004100.Google Scholar
Klimczak, C., Ernst, C. M., Byrne, P. K., Solomon, S. C., Watters, T. R., Murchie, S. L., Preusker, F. and Balcerski, J. A. (2013). Insights into the subsurface structure of the Caloris basin, Mercury, from assessments of mechanical layering and changes in long-wavelength topography. J. Geophys. Res. Planets, 118, 20302044, doi:10.1002/jgre.20157.Google Scholar
Lawrence, S. J., Stopar, J. D., Robinson, M. S., Hawke, B. R., Jolliff, B. L. and Giguere, T. A. (2013). Mare deposits in the Australe region: Extent, topography, and stratigraphy. Lunar Planet. Sci., 44, abstract 2671.Google Scholar
Le Feuvre, M. and Wieczorek, M. A. (2008). Nonuniform cratering of the terrestrial planets. Icarus, 197, 291306.Google Scholar
Le Feuvre, M. and Wieczorek, M. A. (2011). Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus, 214, 120, doi:10.1016/j.icarus.2011.03.010.Google Scholar
, J., Sun, Y., Toksöz, M. N., Zheng, Y. and Zuber, M. T. (2011). Seismic effects of the Caloris basin impact, Mercury. Planet. Space Sci., 59, 19811991, doi:10.1016/j.pss.2011.07.013.Google Scholar
Marchi, S., Mottola, S., Cremonese, G., Massironi, M. and Martellato, E. (2009). A new chronology for the Moon and Mercury. Astron. J., 137, 49364948, doi:10.1088/0004-6256/137/6/4936.CrossRefGoogle Scholar
Marchi, S., Massironi, M., Cremonese, G., Martellato, E., Giacomini, L. and Prockter, L. (2011). The effects of the target material properties and layering on the crater chronology: The case of Raditladi and Rachmaninoff basins on Mercury. Planet. Space Sci., 59, 19681980, doi:10.1016/j.pss.2011.06.007.Google Scholar
Marchi, S., Chapman, C. R., Fassett, C. I., Head, J. W., Bottke, W. F. and Strom, R. G. (2013). Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature, 499, 5961, doi:10.1038/nature12280.Google Scholar
McCauley, J. F., Guest, J. E., Schaber, G. G., Trask, N. J. and Greeley, R. (1981). Stratigraphy of the Caloris basin, Mercury. Icarus, 47, 184202.Google Scholar
McGill, G. E. and King, E. A. (1983). Geologic Map of the Victoria (H-2) Quadrangle of Mercury, Map I-1409, Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
McNamee, J. B., Borderies, N. J. and Sjogren, W. L. (1993). Venus: Global gravity and topography. J. Geophys. Res., 98, 91139128.Google Scholar
Meyer, H. M., Denevi, B. W., Boyd, A. K. and Robinson, M. S. (2016). The distribution and origin of lunar light plains around Orientale basin. Icarus, 273, 135145, doi:10.1016/j.icarus.2016.02.014.Google Scholar
Michel, N. C., Hauck, S. A. II, Solomon, S. C., Phillips, R. J., Roberts, J. H. and Zuber, M. T. (2013). Thermal evolution of Mercury as constrained by MESSENGER observations. J. Geophys. Res. Planets, 118, 10331044, doi:10.1002/jgre.20049.Google Scholar
Milkovich, S. M., Head, J. W. and Wilson, L. (2002). Identification of mercurian volcanism: Resolution effects and implications for MESSENGER. Meteorit. Planet. Sci., 37, 12091222.Google Scholar
Milton, D. J. (1972). Geologic Map of the Descartes Region of the Moon: Apollo 16 Pre-mission Map, Map I-748, Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
Moore, H. J., Hodges, C. A. and Scott, D. H. (1974). Multiring basins: Illustrated by Orientale and associated features. Proc. Lunar Sci. Conf., 5, 71100.Google Scholar
Murchie, S. L., Watters, T. R., Robinson, M. S., Head, J. W., Strom, R. G., Chapman, C. R., Solomon, S. C., McClintock, W. E., Prockter, L. M., Domingue, D. L. and Blewett, D. T. (2008). Geology of the Caloris basin, Mercury: A view from MESSENGER. Science, 321, 7376.Google Scholar
Murchie, S. L., Klima, R. L., Denevi, B. W., Ernst, C. M., Keller, M. R., Domingue, D. L., Blewett, D. T., Chabot, N. L., Hash, C. D., Malaret, E., Izenberg, N. R., Vilas, F., Nittler, L. R., Gillis-Davis, J. J., Head, J. W. and Solomon, S. C. (2015). Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305, doi:10.1016/j.icarus.2015.03.027.Google Scholar
Murray, B. C., Belton, M. J. S., Danielson, G. E., Davies, M. E., Gault, D. E., Hapke, B., O’Leary, B., Strom, R. G., Suomi, V. and Trask, N. (1974). Mercury’s surface: Preliminary description and interpretation from Mariner 10 pictures. Science, 185, 169179, doi:10.1126/science.185.4146.169.Google Scholar
Murray, B. C., Strom, R. G., Trask, N. J. and Gault, D. E. (1975). Surface history of Mercury: Implications for terrestrial planets. J. Geophys. Res., 80, 25082514.Google Scholar
Neish, C. D., Blewett, D. T., Harmon, J. K., Coman, E. I., Cahill, J. T. S. and Ernst, C. M. (2013). A comparison of rayed craters on the Moon and Mercury. J. Geophys. Res. Planets, 118, 22472261, doi:10.1002/jgre.20166.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L., Schlemm, C. E., Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850, doi:10.1126/science.1211567.Google Scholar
Oberbeck, V. R., Hörz, F., Morrison, R. H., Quaide, W. L. and Gault, D. E. (1975). On the origin of the lunar smooth plains. Moon, 12, 1954.Google Scholar
Oberbeck, V. R., Quaide, W. L., Arvidson, R. E. and Aggarwal, H. R. (1977). Comparative studies of lunar, Martian, and Mercurian craters and plains. J. Geophys. Res., 82, 16871698.Google Scholar
Oberst, J., Preusker, F., Phillips, R. J., Watters, T. R., Head, J. W., Zuber, M. T. and Solomon, S. C. (2010). The morphology of Mercury’s Caloris basin as seen in MESSENGER stereo topographic models. Icarus, 209, 230238, doi:10.1016/j.icarus.2010.03.009.Google Scholar
Ostrach, L. R., Robinson, M. S. and Denevi, B. W. (2012). Distribution of impact melt on Mercury and the Moon. Lunar Planet. Sci., 43, abstract 1113.Google Scholar
Ostrach, L. R., Robinson, M. S., Whitten, J. L., Fassett, C. I., Strom, R. G., Head, J. W. and Solomon, S. C. (2015). Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations. Icarus, 250, 602622, doi:10.1016/j.icarus.2014.11.010.Google Scholar
Page, N. J. (1970). Geologic Map of the Cassini Quadrangle of the Moon, Map I-666, Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
Peplowski, P. N., Lawrence, D. J., Rhodes, E. A., Sprague, A. L., McCoy, T. J., Denevi, B. W., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C., Stockstill-Cahill, K. R. and Weider, S. Z. (2012). Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L04, doi:10.1029/2012JE004141.Google Scholar
Peplowski, P. N., Lawrence, D. J., Feldman, W. C., Goldsten, J. O., Bazell, D., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2015). Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus, 253, 346363, doi:10.1016/j.icarus.2015.02.002.Google Scholar
Peplowski, P. N., Klima, R. L., Lawrence, D. J., Ernst, C. M., Denevi, B. W., Frank, E. A., Goldsten, J. O., Murchie, S. L., Nittler, L. R. and Solomon, S. C. (2016). Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geosci., 9, 273276, doi:10.1038/NGEO2669.Google Scholar
Prockter, L. M., Ernst, C. M., Denevi, B. W., Chapman, C. R., Head, J. W., Fassett, C. I., Merline, W. J., Solomon, S. C., Watters, T. R., Strom, R. G., Cremonese, G., Marchi, S. and Massironi, M. (2010). Evidence for young volcanism on Mercury from the third MESSENGER flyby. Science, 329, 668671.Google Scholar
Prockter, L. M., Kinczyk, M. J., Byrne, P. K., Denevi, B. W., Head, J. W., Fassett, C. I., Whitten, J. L., Thomas, R. J., Buczkowski, D. L., Hynek, B. M., Ostrach, L. R., Blewett, D. T., Ernst, C. M. and the MESSENGER Mapping Group (2016). The first global geological map of Mercury. Lunar Planet. Sci., 47, abstract 1245.Google Scholar
Rava, B. and Hapke, B. (1987). An analysis of the Mariner 10 color ratio map of Mercury. Icarus, 71, 397429.Google Scholar
Rivera-Valentin, E. G. and Barr, A. C. (2014). Impact-induced compositional variations on Mercury. Earth Planet. Sci. Lett., 391, 234242, doi:10.1016/j.epsl.2014.02.003.Google Scholar
Roberts, J. H. and Barnouin, O. S. (2012). The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. J. Geophys. Res., 117, E02007, doi:10.1029/2011JE003876.Google Scholar
Robinson, M. S. and Lucey, P. G. (1997). Recalibrated Mariner 10 color mosaics: Implications for mercurian volcanism. Science, 275, 197200.Google Scholar
Robinson, M. S. and Taylor, G. J. (2001). Ferrous oxide in Mercury’s crust and mantle. Meteorit. Planet. Sci., 36, 841847, doi:10.1111/j.1945-5100.2001.tb01921.x.CrossRefGoogle Scholar
Robinson, M. S., Murchie, S. L., Blewett, D. T., Domingue, D. L., Hawkins, S. E. III, Head, J. W., Holsclaw, G. M., McClintock, W. E., McCoy, T. J., McNutt, R. L., Prockter, L. M., Solomon, S. C. and Watters, T. R. (2008). Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669.Google Scholar
Rothery, D. A., Thomas, R. J. and Kerber, L. (2014). Prolonged eruptive history of a compound volcano on Mercury: Volcanic and tectonic implications. Earth Planet. Sci. Lett., 385, 5967, doi:10.1016/j.epsl.2013.10.023.Google Scholar
Schaber, G. G. and McCauley, J. F. (1980). Geologic Map of the Tolstoj Quadrangle of Mercury, Map I-1199, Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
Scholten, F., Oberst, J., Matz, K.-D., Roatsch, T., Wählisch, M., Speyerer, E. J. and Robinson, M. S. (2012). GLD100: The near-global lunar 100 m raster DTM from LROC WAC stereo image data. J. Geophys. Res., 117, E00H17, doi:10.1029/2011JE003926.Google Scholar
Schultz, P. H. and Gault, D. E. (1975). Seismic effects from major basin formations on the Moon and Mercury. Moon, 12, 159177.Google Scholar
Schultz, P. H. and Singer, J. (1980). A comparison of secondary craters on the Moon, Mercury and Mars. Proc. Lunar Planet. Sci. Conf., 11, 22432259.Google Scholar
Scott, D. H., McCauley, J. F. and West, M. N. (1977). Geologic Map of the West Side of the Moon, Map I-1034, Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
Shoemaker, E. M. and Hackman, R. J. (1962). Stratigraphic basis for a lunar time scale. In The Moon, ed. Kopal, Z. and Miklhalov, S. K.. London: Academic Press, pp. 289300.Google Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., Garvin, J. B., Head, J. W., Muhleman, D. O., Pettengill, G. H., Phillips, R. J., Solomon, S. C., Zwally, H. J., Banerdt, W. B., Duxbury, T. C., Golombek, M. P., Lemoine, F. G., Neumann, G. A., Rowlands, D. D., Aharonson, O., Ford, P. G., Ivanov, A. B., Johnson, C. L., McGovern, P. J., Abshire, J. B., Afzal, R. S. and Sun, X. (2001). Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res., 106, 23,68923,722, doi:10.1029/2000JE001364.Google Scholar
Solomon, S. C. (1978). On volcanism and thermal tectonics on one-plate planets. Geophys. Res. Lett., 5, 461464, doi:10.1029/GL005i006p00461.Google Scholar
Spudis, P. D. (1985). A Mercurian chronostratigraphic classification. In Reports of Planetary Geology and Geophysics Program – 1984, Technical Memorandum 87563. Washington, DC: NASA, pp. 595597.Google Scholar
Spudis, P. D. and Guest, J. E. (1988). Stratigraphy and geologic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 118164.Google Scholar
Spudis, P. D. and Prosser, J. G. (1984). Geologic Map of the Michelangelo Quadrangle of Mercury, Map I-1659, Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
Stockstill-Cahill, K. R., McCoy, T. J., Nittler, L. R., Weider, S. Z. and Hauck, S. A. II (2012). Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. J. Geophys. Res., 117, E00L15, doi:10.1029/2012JE004140.Google Scholar
Strom, R. G. (1977). Origin and relative age of lunar and mercurian intercrater plains. Phys. Earth Planet. Inter., 15, 156172.Google Scholar
Strom, R. G., Trask, N. J. and Guest, J. E. (1975). Tectonism and volcanism on Mercury. J. Geophys. Res., 80, 24782507.Google Scholar
Strom, R. G., Malin, M. C. and Leake, M. A. (1990). Geologic Map of the Bach Region of Mercury, Map I-2015, Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
Strom, R. G., Chapman, C. R., Merline, W. J., Solomon, S. C. and Head, J. W. (2008). Mercury cratering record viewed from MESSENGER’s first flyby. Science, 321, 7981.Google Scholar
Strom, R. G., Banks, M. E., Chapman, C. R., Fassett, C. I., Forde, J. A., Head, J. W. III, Merline, W. J., Prockter, L. M. and Solomon, S. C. (2011). Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history. Planet. Space Sci., 59, 19601967, doi:10.1016/j.pss.2011.03.018.Google Scholar
Susorney, H. C., Barnouin, O. S. and Ernst, C. M. (2016). The distribution of surface roughness in and around complex craters on Mercury. Lunar Planet. Sci., 47, abstract 1705.Google Scholar
Taylor, S. R. (1989). Growth of planetary crust. Tectonophysics, 161, 147156.Google Scholar
Taylor, S. R. and McLennan, S. M. (2010). Planetary Crusts: Their Composition, Origin and Evolution. Cambridge: Cambridge University Press.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014a). Hollows on Mercury: Materials and mechanisms involved in their formation. Icarus, 229, 221235, doi:10.1016/j.icarus.2013.11.018.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014b). Long-lived explosive volcanism on Mercury. Geophys. Res. Lett., 41, 60846092, doi:10.1002/2014GL061224.Google Scholar
Thomas, R. J., Rothery, D. A., Conway, S. J. and Anand, M. (2014c). Mechanisms of explosive volcanism on Mercury: Implications from its global distribution and morphology. J. Geophys. Res. Planets, 119, 22392254, doi:10.1002/2014JE004692.Google Scholar
Tosi, N., Grott, M., Plesa, A.-C. and Breuer, D. (2013). Thermochemical evolution of Mercury’s interior. J. Geophys. Res. Planets, 118, 24742487, doi:10.1002/jgre.20168.Google Scholar
Trask, N. J. (1967). Distribution of Lunar craters according to morphology from Ranger VIII and IX photographs. Icarus, 6, 270276, doi:10.1016/0019-1035(67)90023-1.Google Scholar
Trask, N. J. and Dzurisin, D. (1984). Geologic Map of the Discovery Quadrangle of Mercury, Map 1-1658 (H11), Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
Trask, N. J. and Guest, J. E. (1975). Preliminary geologic terrain map of Mercury. J. Geophys. Res., 80, 24612477.Google Scholar
Trask, N. J. and McCauley, J. F. (1972). Differentiation and volcanism in the lunar highlands: Photogeologic evidence and Apollo 16 implications. Earth Planet. Sci. Lett., 14, 201206.Google Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2015). Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets, 120, 195209, doi:10.1002/2014JE004733.Google Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2016). The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas. Geochim. Cosmochim. Acta, 173, 246263, doi:10.1016/j.gca.2015.10.016.Google Scholar
Warell, J. (2004). Properties of the Hermean regolith: IV. Photometric parameters of Mercury and the Moon contrasted with Hapke modelling. Icarus, 167, 271286.Google Scholar
Watters, T. R., Murchie, S. L., Robinson, M. S., Solomon, S. C., Denevi, B. W., André, S. L. and Head, J. W. (2009a). Emplacement and tectonic deformation of smooth plains in the Caloris basin, Mercury. Earth Planet. Sci. Lett., 285, 309319, doi:10.1016/j.epsl.2009.03.040.Google Scholar
Watters, T. R., Head, J. W., Solomon, S. C., Robinson, M. S., Chapman, C. R., Denevi, B. W., Fassett, C. I., Murchie, S. L. and Strom, R. G. (2009b). Evolution of the Rembrandt impact basin on Mercury. Science, 324, 618621, doi:10.1126/science.1172109.Google Scholar
Watters, T. R., Solomon, S. C., Robinson, M. S., Head, J. W., André, S. L., Hauck, S. A. II and Murchie, S. L. (2009c). The tectonics of Mercury: The view after MESSENGER’s first flyby. Earth Planet. Sci. Lett., 285, 283296, doi:10.1016/j.epsl.2009.01.025.Google Scholar
Watters, T. R., Solomon, S. C., Daud, K., Banks, M. E., Selvans, M. M., Robinson, M. S., Murchie, S. L., Chabot, N. L., Denevi, B. W., Ernst, C. M., Chapman, C. R., Fassett, C. I., Klimczak, C., Byrne, P. K. and Blewett, D. T. (2015). Small thrust fault scarps on Mercury revealed in low-altitude MESSENGER images. Lunar Planet. Sci., 46, abstract 2240.Google Scholar
Weider, S. Z., Nittler, L. A., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., Denevi, B. W., Head, J. W. and Solomon, S. C. (2012). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res., 117, E00L05, doi:10.1029/2012JE004153.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A., Ebel, D. S. and Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120, doi:10.1016/j.epsl.2015.01.023.Google Scholar
Weitz, C. M., Head, J. W. and Pieters, C. M. (1998). Lunar regional dark mantle deposits: Geologic, multispectral, and modeling studies. J. Geophys. Res., 103, 2272522759.Google Scholar
Whitford-Stark, J. L. (1979). Charting the southern seas: The evolution of the lunar Mare Australe. Proc. Lunar Planet. Sci. Conf., 10, 29752994.Google Scholar
Whitten, J. L. and Head, J. W. (2015). Rembrandt impact basin: Distinguishing between volcanic and impact-produced plains on Mercury. Icarus, 258, 350365, doi:10.1016/j.icarus.2015.06.022.Google Scholar
Whitten, J. L., Head, J. W., Denevi, B. W. and Solomon, S. C. (2014). Intercrater plains on Mercury: Insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus, 241, 97113, doi:10.1016/j.icarus.2014.06.013.Google Scholar
Wilhelms, D. E. (1976). Mercurian volcanism questioned. Icarus, 28, 551558.Google Scholar
Wilhelms, D. E. (1987). The Geologic History of the Moon. Professional Paper 1348. Denver, CO: U.S. Geological Survey.Google Scholar
Wilhelms, D. E. and McCauley, J. F. (1971). Geologic Map of the Near Side of the Moon, Map I-703, Miscellaneous Investigations Series. Reston, VA: U.S. Geological Survey.Google Scholar
Wood, C. A., Head, J. W. and Cintala, M. J. (1977). Degradation trends of mercurian craters and correlation with the Moon. Proc. Lunar Sci. Conf., 8, 35033520.Google Scholar
Xiao, Z., Strom, R. G., Chapman, C. R., Head, J. W., Klimczak, C., Ostrach, L. R., Helbert, J. and D’Incecco, P. (2014). Comparisons of fresh complex impact craters on Mercury and the Moon: Implications for controlling factors in impact excavation processes. Icarus, 228, 260275, doi:10.1016/j.icarus.2013.10.002.Google Scholar
Xiao, Z., Prieur, N. C. and Werner, S. C. (2016). The self-secondary crater population of the Hokusai crater on Mercury. Geophys. Res. Lett., 43, 74247432, doi:10.1002/2016GL069868.Google Scholar
Zuber, M. T., Smith, D. E., Phillips, R. J., Solomon, S. C., Neumann, G. A., Hauck, S. A., Peale, S. J., Barnouin, O. S., Head, J. W., Johnson, C. L., Lemoine, F. G., Mazarico, E., Sun, X., Torrence, M. H., Freed, A. M., Klimczak, C., Margot, J.-L., Oberst, J., Perry, M. E., McNutt, R. L. Jr., Balcerski, J. A., Michel, N., Talpe, M. J. and Yang, D. (2012). Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science, 336, 217220.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×