Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T03:47:18.036Z Has data issue: false hasContentIssue false

20 - Future Missions: Mercury after MESSENGER

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

Missions to Mercury are challenging because of the planet’s proximity to the Sun, as close as one-third the mean Earth–Sun distance. This location imparts a stressing thermal environment because of intense solar illumination, as well as major propulsion requirements because of the energy gained by a spacecraft descending from Earth into the Sun’s gravity well. Although Mercury has been a primary exploration target since the 1960s, it was not until the discovery of gravity-assist trajectories to Mercury that robotic exploration became feasible. The Mariner 10 flybys in the 1970s revealed many of Mercury's characteristics and whetted the appetite of the science community for an orbiter mission. Enabled by multiple planetary gravity assists and innovations in spacecraft and instrumentation, MESSENGER successfully orbited Mercury from 2011 into 2015 and revolutionized our understanding of the planet. New questions raised by the MESSENGER results motivate the much larger, dual-spacecraft BepiColombo mission, scheduled to arrive at Mercury in late 2025. Even after BepiColombo, many key questions central to understanding Mercury’s formation will likely require a Mercury lander mission, potentially enabled by sufficiently large launch vehicles. The return of samples from Mercury to Earth may long remain an aspiration for future generations of scientists and engineers. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 544 - 569
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H. and Slavin, J. A. (2007). The Magnetometer instrument on MESSENGER. Space Sci. Rev., 131, 417450.CrossRefGoogle Scholar
Anderson, D. J., Colombo, G., Esposito, P. B., Lau, E. L. and Trager, G. B. (1987). The mass, gravity field, and ephemeris of Mercury, Icarus, 71, 337349, doi:10.1016/0019-1035(87)90033-9.CrossRefGoogle Scholar
Andrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., Lefevere, T. W., Livi, S. S., Lundgren, R. A. and Raines, J. M. (2007). The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft. Space Sci. Rev., 131, 523556.CrossRefGoogle Scholar
Balogh, A., Ksanfomality, L. and von Steiger, R. (2007a). Introduction. Space Sci. Rev., 132, 183187, doi:10.1007/s11214-007-9293-0.Google Scholar
Balogh, A., Grard, R., Solomon, S. C., Schulz, R., Langevin, Y., Kasaba, Y. and Fujimoto, M. (2007b). Missions to Mercury. Space Sci. Rev., 132, 611645, doi:10.1007/s11214-007-9212-4.Google Scholar
Baumjohann, W., Matsuoka, A., Magnes, W., Glassmeier, K.-H., Nakamura, R., Biernat, H., Delva, M., Schwingenschuh, K., Zhang, T., Auster, H.-U., Fornacon, K.-H., Richter, I., Balogh, A., Cargill, P., Carr, C., Dougherty, M., Horbury, T. S., Lucek, E. A., Tohyama, F., Takahashi, T., Tanaka, M., Nagai, T., Tsunakawa, H., Matsushima, M., Kawano, H., Yoshikawa, A., Shibuya, H., Nakagawa, T., Hoshino, M., Tanaka, Y., Kataoka, R., Anderson, B. J., Russell, C. T., Motschmann, U. and Shinohara, M. (2010). Magnetic field investigation of Mercury’s magnetosphere and the inner heliosphere by MMO/MGF. Planet. Space Sci., 58, 279286, doi:10.1016/j.pss.2008.05.019.CrossRefGoogle Scholar
Bedini, P. D., Solomon, S. C., Finnegan, E. J., Calloway, A. B., Ensor, S. L., McNutt, R. L. Jr., Anderson, B. J. and Prockter, L. M. (2012). MESSENGER at Mercury: A mid-term report. Acta Astronautica, 81, 369379, doi:10.1016/j.actaastro.2012.07.011.Google Scholar
Beerer, J. (1970). Historical account of return trajectory. Interoffice Memorandum, Beerer to Gordon, 16 July 1970. Pasadena, CA: Jet Propulsion Laboratory.Google Scholar
Belcher, J. W., Slavin, J. A., Armstrong, T. P., Farquhar, R. W., Akasofu, S. I., Baker, D. N., Cattell, C. A., Cheng, A. F., Chupp, E. L., Clark, P. E., Davies, M. E., Hones, E. W., Kurth, W. S., Maezawa, J. K., Mariani, F., Marsch, E., Parks, G. K., Shelley, E. G., Siscoe, G. L., Smith, E. J., Strom, R., Trombka, J. I., Williams, D. J. and Yen, C. (1991). Mercury Orbiter: Report of the Science Working Team. NASA Technical Memorandum 4255. Greenbelt, MD: NASA Goddard Space Flight Center, 134 pp.Google Scholar
Boice, D. C., Soderblom, L. A., Britt, D. T., Brown, R. H., Sandel, B. R., Yelle, R. V., Buratti, B. J., Hicks, M. D., Nelson, R. M., Rayman, M. D., Oberst, J. and Thomas, N. (2000). The Deep Space 1 encounter with comet 19p/Borrelly. Earth Moon Planets, 89, 301324.CrossRefGoogle Scholar
Brown, S. P., Mead, A. J., Forgan, D. H., Raven, J. A. and Cockell, C. S. (2014). Photosynthetic potential of planets in 3:2 spin–orbit resonances. Int. J. Astrobiology, 13, 279289, doi:10.1017/S1473550414000068.Google Scholar
Capaccioni, F., Sanctis, M. C. D., Filacchione, G., Piccioni, G., Ammannito, E., Tommasi, L., Veltroni, I. F., Cosi, M., Debei, S., Calamai, L. and Flamini, E. (2010). VIS-NIR imaging spectroscopy of Mercury’s surface: SIMBIO-SYS/VIHI experiment onboard the BepiColombo mission. IEEE Trans. Geosci. Remote Sensing, 48, 39323940, doi:10.1109/TGRS.2010.2051676.Google Scholar
Cassidy, T. A., McClintock, W. E., Killen, R. M., Sarantos, M., Merkel, A. W., Vervack, R. J Jr. and Burger, M. H. (2016). A cold-pole enhancement in Mercury’s sodium exosphere. Geophys. Res. Lett., 43, 11,121–11,128, doi:10.1002/2016GL071071.Google Scholar
Cavanaugh, J. F., Smith, J. C., Sun, X., Bartels, A. E., Ramos-Izquierdo, L., Krebs, D. J., McGarry, J. F., Trunzo, R., Novo-Gradac, A. M., Britt, J. L., Karsh, J., Katz, R. B., Lukemire, A. T., Szymkiewicz, R., Berry, D. L., Swinski, J. P., Neumann, G. A., Zuber, M. T. and Smith, D. E. (2007). The Mercury Laser Altimeter instrument for the MESSENGER mission. Space Sci. Rev., 131, 451479.Google Scholar
Chassefière, E., Maria, J. L., Goutail, J. P., Quémerais, E., Leblanc, F., Okano, S., Yoshikawa, I., Korablev, O., Gnedykh, V., Naletto, G., Nicolosi, P., Pelizzo, M. G., Correia, J. J., Gallet, S., Hourtoule, C., Mine, P. O., Montaron, C., Rouanet, N., Rigal, J. B., Muramaki, G., Yoshioka, K., Kozlov, O., Kottsov, V., Moisseev, P., Semena, N., Bertaux, J. L., Capria, M. T., Clarke, J., Cremonese, G., Delcourt, D., Doressoundiram, A., Erard, S., Gladstone, R., Grande, M., Hunten, D., Ip, W., Izmodenov, V., Jambon, A., Johnson, R., Kallio, E., Killen, R., Lallement, R., Luhmann, J., Mendillo, M., Milillo, A., Palme, H., Potter, A., Sasaki, S., Slater, D., Sprague, A., Stern, A. and Yan, N. (2010). PHEBUS: A double ultraviolet spectrometer to observe Mercury’s exosphere. Planet. Space Sci., 58, 201223, doi:10.1016/j.pss.2008.05.018.Google Scholar
Choo, T. H., Murchie, S. L., Bedini, P. D., Steele, R. J., Skura, J. P., Nguyen, L., Nair, H., Lucks, M., Berman, A. F., McGovern, J. A. and Turner, F. S. (2014). SciBox, an end-to-end automated science planning and commanding system. Acta Astronautica, 93, 490496.Google Scholar
Colombo, G. (1965). Rotational period of the planet Mercury. Nature, 208, 575, doi:10.1038/208575a0.Google Scholar
Colombo, G. and Shapiro, I. I. (1966). The rotation of the planet Mercury. Astrophys. J., 145, 295307, doi:10.1086/148762.Google Scholar
Committee on the Planetary Science Decadal Survey (2011). Vision and Voyages for Planetary Science in the Decade 2013–2022. Washington, DC: National Academies Press, 382 pp.Google Scholar
COMPLEX (Committee on Planetary and Lunar Exploration) (1978). Strategy for Exploration of the Inner Planets: 1977–1987. Washington, DC: National Academies Press, 53 pp.Google Scholar
COMPLEX (Committee on Planetary and Lunar Exploration) (1996). On NASA Mars Sample-Return Mission Options, Letter Report. Washington, DC: National Academies Press, 19 pp.Google Scholar
Correia, A. C. M. and Laskar, J. (2004). Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature, 429, 848850.Google Scholar
Cortright, E. M. (1968). The Voyager Program. American Astronautical Society Science and Technology Series, 16, 6592.Google Scholar
Cremonese, G., Fantinel, D., Giro, E., Capria, M. T., Deppo, V. D., Naletto, G., Forlani, G., Massironi, M., Giacomini, L., Sgavetti, M., Simioni, E., Bettanini, C., Debei, S., Zaccariotto, M., Borin, P., Marinangeli, L. and Flamini, E. (2009). The stereo camera on the BepiColombo ESA/JAXA mission: A novel approach. In Advances in Geosciences, ed. Bhardwaj, A.. Singapore: World Scientific Publishing, pp. 305322.Google Scholar
Da Deppo, V., Naletto, G., Cremonese, G. and Calamai, L. (2010). Optical design of the single-detector planetary stereo camera for the BepiColombo European Space Agency mission to Mercury. Appl. Optics, 49, 29102919, doi:10.1364/AO.49.002910.Google Scholar
Delcourt, D., Saito, Y., Illiano, J. M., Krupp, N., Berthelier, J. J., Fontaine, D., Fraenz, M., Leblanc, F., Fischer, H., Yokota, S., Michalik, H., Godefroy, M., Saint-Jacques, E., Techer, J. D., Fiethe, B., Covinhes, J., Gastou, J. and Attia, D. (2009). The mass spectrum analyzer (MSA) onboard BEPI COLOMBO MMO: Scientific objectives and prototype results. Adv. Space Res., 43, 869874, doi:10.1016/j.asr.2008.12.002.CrossRefGoogle Scholar
Domingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., Benna, M., Slavin, J. A., Schriver, D., Trávníček, P. M., Orlando, T. M., Sprague, A. L., Blewett, D. T., Gillis-Davis, J. J., Feldman, W. C., Lawrence, D. J., Ho, G. C., Ebel, D. S., Nittler, L. R., Vilas, F., Pieters, C. M., Solomon, S. C., Johnson, C. L., Winslow, R. M., Helbert, J., Peplowski, P. N., Weider, S. Z., Mouawad, N., Izenberg, N. R. and McClintock, W. E. (2014). Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev., 181, 121214.Google Scholar
Ezell, E. C. and Ezell, L. N. (1984). Voyager: Perils of advanced planning, 1960–1967. In On Mars: Exploration of the Red Planet 1958–1978, Chapter 4, Special Publication SP-4212. Washington, DC: National Aeronautics and Space Administration, pp. 83119.Google Scholar
Flamini, E., Capaccioni, F., Colangeli, L., Cremonese, G., Doressoundiram, A., Josset, J. L., Langevin, Y., Debei, S., Capria, M. T., De Sanctis, M. C., Marinangeli, L., Massironi, M., Mazzotta Epifani, E., Naletto, G., Palumbo, P., Eng, P., Roig, J. F., Caporali, A., Da Deppo, V., Erard, S., Federico, C., Forni, O., Sgavetti, M., Filacchione, G., Giacomini, L., Marra, G., Martellato, E., Zusi, M., Cosi, M., Bettanini, C., Calamai, L., Zaccariotto, M., Tommasi, L., Dami, M., Ficai Veltroni, J., Poulet, F. and Hello, Y. (2010). SIMBIO-SYS: The spectrometer and imagers integrated observatory system for the BepiColombo planetary orbiter. Planet. Space Sci., 58, 125143, doi:10.1016/j.pss.2009.06.017.Google Scholar
Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A., Kasper, J. C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M. K., McComas, D. J., Raouafi, N. E. and Szabo, A. (2016). The Solar Probe Plus mission: Humanity’s first visit to our star. Space Sci. Rev., 204, 748.Google Scholar
Fraser, G. W., Carpenter, J. D., Rothery, D. A., Pearson, J. F., Martindale, A., Huovelin, J., Treis, J., Anand, M., Anttila, M., Ashcroft, M., Benkoff, J., Bland, P., Bowyer, A., Bradley, A., Bridges, J., Brown, C., Bulloch, C., Bunce, E. J., Christensen, U., Evans, M., Fairbend, R., Feasey, M., Giannini, F., Hermann, S., Hesse, M., Hilchenbach, M., Jorden, T., Joy, K., Kaipiainen, M., Kitchingman, I., Lechner, P., Lutz, G., Malkki, A., Muinonen, K., Näränen, J., Portin, P., Prydderch, M., Juan, J. S., Sclater, E., Schyns, E., Stevenson, T. J., Strüder, L., Syrjasuo, M., Talboys, D., Thomas, P., Whitford, C. and Whitehead, S. (2010). The mercury imaging X-ray spectrometer (MIXS) on bepicolombo. Planet. Space Sci., 58, 7995, doi:10.1016/j.pss.2009.05.004.Google Scholar
Friedlander, A. L. and Feingold, H. (1977). Mercury Orbiter Transport Study. Report SAI 1-120-580-176, NASA-CR-158658. Schaumburg, IL: Science Applications, Incorporated, 128 pp.Google Scholar
Glassmeier, K.-H., Auster, H.-U., Heyner, D., Okrafka, K., Carr, C., Berghofer, G., Anderson, B. J., Balogh, A., Baumjohann, W., Cargill, P., Christensen, U., Delva, M., Dougherty, M., Fornaçon, K.-H., Horbury, T. S., Lucek, E. A., Magnes, W., Mandea, M., Matsuoka, A., Matsushima, M., Motschmann, U., Nakamura, R., Narita, Y., O’Brien, H., Richter, I., Schwingenschuh, K., Shibuya, H., Slavin, J. A., Sotin, C., Stoll, B., Tsunakawa, H., Vennerstrom, S., Vogt, J. and Zhang, T. (2010). The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter. Planet. Space Sci., 58, 287299, doi:10.1016/j.pss.2008.06.018.Google Scholar
Gold, R. E., Solomon, S. C., McNutt, R. L. Jr., Santo, A. G., Abshire, J. B., Acuña, M. H., Afzal, R. S., Anderson, B. J., Andrews, G. B., Bedini, P. D., Cain, J., Cheng, A. F., Evans, L. G., Feldman, W. C., Follas, R. B., Gloeckler, G., Goldsten, J. O., Hawkins, S. E. III, Izenberg, N. R., Jaskulek, S. E., Ketchum, E. A., Lankton, M. R., Lohr, D. A., Mauk, B. H., McClintock, W. E., Murchie, S. L., Schlemm, C. E. II, Smith, D. E., Starr, R. D. and Zurbuchen, T. H. (2001). The MESSENGER mission to Mercury: Scientific payload. Planet. Space Sci., 49, 14671479.CrossRefGoogle Scholar
Goldreich, P. and Peale, S. J. (1966). Spin-orbit coupling in the solar system, Astron. J., 71, 425438.Google Scholar
Goldsten, J. O., Rhodes, E. A., Boynton, W. V., Feldman, W. C., Lawrence, D. J., Trombka, J. I., Smith, D. M., Evans, L. G., White, J., Madden, N. W., Berg, P. C., Murphy, G. A., Gurnee, R. S., Strohbehn, K., Williams, B. D., Schaefer, E. D., Monaco, C. A., Cork, C. P., Del Eckels, J., Miller, W. O., Burks, M. T., Hagler, L. B., Deteresa, S. J. and Witte, M. C (2007). The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Sci. Rev., 131, 339391.CrossRefGoogle Scholar
Grotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., Blake, D. F., Conrad, P., Edgett, K. S., Ferdowski, B., Gellert, R., Gilbert, J. B., Golombek, M., Gómez-Elvira, J., Hassler, D. M., Jandura, L., Litvak, M., Mahaffy, P., Maki, J., Meyer, M., Malin, M. C., Mitrofanov, I., Simmonds, J. J., Vaniman, D., Welch, R. V. and Wiens, R. C. (2012). Mars Science Laboratory mission and science investigation. Space Sci. Rev., 170, 556, doi:10.1007/s11214-012-9892-2.Google Scholar
Gulkis, S., Stetson, D. S. and Stofan, E. R. (1998). Mission to the Solar System: Exploration and Discovery – A Mission and Technology Roadmap. Publication 97–12. Pasadena, CA: Jet Propulsion Laboratory, 65 pp.Google Scholar
Gunderson, K. and Thomas, N. (2010). BELA receiver performance modeling over the BepiColombo mission lifetime. Planet. Space Sci., 58, 309318, doi:10.1016/j.pss.2009.08.006.Google Scholar
Hammel, T. E., Bennett, R., Sievers, R. K., Keyser, S., Otting, W. and Gard, L. (2013). Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) performance data and application to life modeling. 11th International Energy Conversion Engineering Conference, American Institute of Aeronautics and Astronautics, 8 pp., doi:10.2514/6.2013-3925.Google Scholar
Hand, K. P., Murray, A. E., Garvin, J. B., Brinckerhoff, W. B., Christner, B. C., Edgett, K. S., Ehlmann, B. L., German, C. R., Hayes, A. G., Hoehler, T. M., Horst, S. M., Lunine, J. I., Nealson, K. H., Paranicas, C., Schmidt, B. E., Smith, D. E., Rhoden, A. R., Russell, M. J., Templeton, A. S., Willis, P. A., Yingst, R. A., Phillips, C. B., Cable, M. L., Craft, K. L., Hofmann, A. E., Nordheim, T. A., Pappalardo, R. P. and the Project Engineering Team (2017). Report of the Europa Lander Science Definition Team. Pasadena, CA: Jet Propulsion Laboratory, 264 pp.Google Scholar
Hauck, S. A. II, Eng, D. A., Treiman, A., Tahu, G., Lindstrom, K., Blewett, D., Seifert, H., Stambaugh, K., Chavers, G., Oleson, S., Mcguire, M., Guo, Y., Dankanich, J., Dong, C., Burke, L., Wolfarth, L., Hahn, M., Drexler, J., Holdridge, M., Cockrell, J., Miller, T., Trinh, H., Fittje, J., Verhey, T., Gyekenyesi, J., Ercol, J., Abel, E., Colozza, T., Sequeira, B., Warner, J., Fraeman, M., Williams, G., Schmitz, P., Lowery, E., Landis, G., Hojniki, J., Adams, D., Martini, M., Williams, S. and Drexler, J. (2010). Mercury Lander Mission Concept Study. Laurel, MD: The Johns Hopkins University Applied Physics Laboratory, 132 pp.Google Scholar
Hawkins, S. E. III, Boldt, J. D., Darlington, E. H., Espiritu, R., Gold, R. E., Gotwols, B., Grey, M. P., Hash, C. D., Hayes, J. R., Jaskulek, S. E., Kardian, C. J., Keller, M. R., Malaret, E. R., Murchie, S. L., Murphy, P. K., Peacock, K., Prockter, L. M., Reiter, R. A., Robinson, M. S., Schaefer, E. D., Shelton, R. G., Sterner, R. E., Taylor, H. W., Watters, T. R. and Williams, B. D. (2007). The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Sci. Rev., 131, 247338.Google Scholar
Hiesinger, H., Helbert, J. and MERTIS Co-I Team (2010). The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission. Planet. Space Sci., 58, 144165, doi:10.1016/j.pss.2008.09.019.Google Scholar
Hughes, G. and McInnes, C. (2002). Mercury sample return missions using solar sail propulsion. 34th Scientific Assembly of the Committee on Space Research and 53rd International Astronautical Congress of the International Astronautical Federation, World Space Congress 2002, paper IAC-02-W.2.08. Houston, TX, 11 pp.Google Scholar
Huovelin, J., Vainio, R., Andersson, H., Valtonen, E., Alha, L., Mälkki, A. Grande, M., Fraser, G. W., Kato, M., Koskinen, H., Muinonen, K., Näränen, J., Schmidt, W., Syrjäsuo, M., Anttila, M., Vihavainen, T., Kiuru, E., Roos, M., Peltonen, J., Lehti, J., Talvioja, M., Portin, P. and Prydderch, M. (2010). Solar Intensity X-ray and particle Spectrometer (SIXS). Planet. Space Sci., 58, 96107, doi:10.1016/j.pss.2008.11.007.Google Scholar
Iafolla, V., Fiorenza, E., Lefevre, C., Morbidini, A., Nozzoli, S., Peron, R., Persichini, M., Reale, A. and Santoli, F. (2010). Italian Spring Accelerometer (ISA): A fundamental support to BepiColombo radio science experiments. Planet. Space Sci., 58, 300308, doi:10.1016/j.pss.2009.04.005.Google Scholar
Jehn, R., Campagnola, S., Garcia, D. and Kemble, S. (2004), Low-thrust approach and gravitational capture at Mercury. 18th International Symposium on Space Flight Dynamics. Munich, Germany, 6 pp.Google Scholar
Kasaba, Y., Bougeret, J.-L., Blomberg, L. G., Kojima, H. Yagitani, S., Moncuquet, M., Trotignon, J.-G., Chanteur, G., Kumamoto, A., Kasahara, Y., Lichtenberger, J., Omura, Y., Ishisaka, K. and Matsumoto, H. (2010). The Plasma Wave Investigation (PWI) onboard the BepiColombo/MMO: First measurement of electric fields, electromagnetic waves, and radio waves around Mercury. Planet. Space Sci., 58, 238278, doi:10.1016/j.pss.2008.07.017.Google Scholar
Kirk, M. N., Flanigan, S. H., O’Shaughnessy, D. J., Bushman, S. S. and Rosendall, P. E. (2015). MESSENGER maneuver performance during the low-altitude hover camaign. Astrodynamics Specialist Conference, American Astronautical Society, paper AAS 15–652. Vail, CO, 19 pp.Google Scholar
Langevin, Y. (2000). Chemical and solar electric propulsion options for a cornerstone mission to Mercury. Acta Astronautica, 47, 443452, doi:10.1016/S0094-5765(00)00084-9.Google Scholar
Leary, J. C., Conde, R. F., Dakermanji, G., Engelbrecht, C. S., Ercol, C. J., Fielhauer, K. B., Grant, D. G., Hartka, T. J., Hill, T. A., Jaskulek, S. E., Mirantes, M. A., Mosher, L. E., Paul, M. V., Persons, D. F., Rodberg, E. H., Srinivasan, D. K., Vaughan, R. M. and Wiley, S. R. (2007). The MESSENGER spacecraft. Space Sci. Rev., 131, 187217.Google Scholar
Lewis, R. A., Pérez Luna, J., Coombs, N. and Guarducci, F. (2015). Qualification of the T6 thruster for BepiColombo. Joint Conference of the 30th International Symposium on Space Technology and Science, 34th International Electric Propulsion Conference, and 6th Nano-satellite Symposium. Hyogo-Kobe, Japan, 10 pp.Google Scholar
McAdams, J. V., Farquhar, R. W., Taylor, A. H. and Williams, B. G. (2007). MESSENGER mission design and navigation. Space Sci. Rev., 131, 219246.Google Scholar
McAdams, J. V., Bryan, C. G., Bushman, S. S., Calloway, A. B., Carranza, E., Flanigan, S. H., Kirk, M. N., Korth, H., Moessner, D. P., O’Shaughnessy, D. J. and Williams, K. E. (2015). Engineering MESSENGER’s grand finale at Mercury – The low-altitude hover campaign. Astrodynamics Specialist Conference, American Astronautical Society, paper AAS 15–634. Vail, CO, 20 pp.Google Scholar
McClintock, W. E. and Lankton, M. R. (2007). The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER mission. Space Sci. Rev., 131, 481521.Google Scholar
McNutt, R. L. Jr. and Vernon, S. R. (2016). Enabling solar system science with the Space Launch System (SLS). 67th International Astronautical Congress, International Astronautical Federation. Guadalajara, Mexico, 7 pp.Google Scholar
McNutt, R. L. Jr., Solomon, S. C., Grard, R., Novara, M. and Mukai, T. (2004). An international program for Mercury exploration: Synergy of MESSENGER and BepiColombo. Adv. Space Res., 33, 21262132, doi:10.1016/s0273-1177(03)00439-3.CrossRefGoogle Scholar
McNutt, R. L. Jr., Solomon, S. C., Gold, R. E., Leary, J. C. and the MESSENGER Team (2006). The MESSENGER mission to Mercury: Development history and early mission status, Adv. Space Res., 38, 564571, doi:10.1016/j.asr.2005.05.044.Google Scholar
McNutt, R. L. Jr., Solomon, S. C., Grant, D. G., Finnegan, E. J. and Bedini, P. D. (2008). The MESSENGER mission to Mercury: Status after the Venus flybys. Acta Astronautica, 63, 6873.Google Scholar
McNutt, R. L. Jr., Solomon, S. C., Bedini, P. D., Finnegan, E. J. and Grant, D. G. (2010). The MESSENGER mission: Results from the first two Mercury flybys. Acta Astronautica, 67, 681687, doi:10.1016/j.actaastro.2010.05.020.Google Scholar
McNutt, R. L. Jr., Solomon, S. C., Nittler, L. R., Bedini, P. D., Finnegan, E. J., Winters, H. L. and Grant, D. G. (2012). The MESSENGER mission continues: Transition to the extended mission. International Astronautical Congress. Naples, Italy, 15 pp.Google Scholar
McNutt, R. L. Jr., Solomon, S. C., Bedini, P. D., Anderson, B. J., Blewett, D. T., Evans, L. G., Gold, R. E., Krimigis, S. M., Murchie, S. L., Nittler, L. R., Phillips, R. J., Prockter, L. M., Slavin, J. A., Zuber, M. T., Finnegan, E. J. and Grant, D. G. (2014). MESSENGER at Mercury: Early orbital operations. Acta Astronautica, 93, 509515, doi:10.1016/j.actaastro.2012.08.012.Google Scholar
Mitrofanov, I. G., Kozyrev, A. S., Konovalov, A., Litvak, M. L., Malakhov, A. A., Mokrousov, M. I., Sanin, A. B., Tret’ykov, V. I., Vostrukhin, A. V., Bobrovnitskij, Y. I., Tomilina, T. M., Gurvits, L. and Owens, A. (2010). The Mercury Gamma and Neutron Spectrometer (MGNS) on board the Planetary Orbiter of the BepiColombo mission. Planet. Space Sci., 58, 116124, doi:10.1016/j.pss.2009.01.005.Google Scholar
Miyake, W., Saito, Y., Harada, M., Saito, M., Hasegawa, H., Ieda, A., Machida, S., Nagai, T., Nagatsuma, T., Seki, K., Shinohara, I. and Terasawa, T. (2009). Mercury Ion Analyzer (MIA) onboard Mercury Magnetospheric Orbiter: MMO. Adv. Space Res., 43, 1986–1992, doi:10.1016/j.asr.2009.03.011.Google Scholar
Nealson, K. H., Carr, M. H., Clark, B. C., Doolittle, R. F., Jakosky, B. M., Korwek, E. L., Pace, N. R., Poindexter, J. S., Race, M. S., Reysenbach, A.-L., Schopf, J. W. and Stevens, T. O. (1997). Mars Sample Return: Issues and Recommendations. Washington, DC: National Academies Press, 57 pp.Google Scholar
Nelson, R. M., Horn, L. J., Weiss, J. R. and Smythe, W. D. (1995). Hermes Global Orbiter: A Discovery mission in gestation. Acta Astronautica, 35, Suppl. 1, 387395, doi:10.1016/0094-5765(94)00204-5.Google Scholar
Nogami, K., Fujii, M., Ohashi, H., Miyachi, T., Sasaki, S., Hasegawa, S., Yano, H., Shibata, H., Iwai, T., Minami, S., Takechi, S., Grün, E. and Srama, R. (2010). Development of the Mercury dust monitor (MDM) onboard the BepiColombo mission. Planet. Space Sci., 58, 108115, doi:10.1016/j.pss.2008.08.016.Google Scholar
Novara, M. (2002). The BepiColombo ESA cornerstone mission to Mercury. Acta Astronautica, 51, 387395, doi:10.1016/S0094-5765(02)00065-6.CrossRefGoogle Scholar
Orsini, S., Livi, S., Torkar, K., Barabash, S., Milillo, A., Wurz, P., Di Lellis, A. M. and Kallio, E. (2010). SERENA: A suite of four instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColombo-MPO for particle detection in the Hermean environment. Planet. Space Sci., 58, 166181, doi:10.1016/j.pss.2008.09.012.CrossRefGoogle Scholar
O’Shaughnessy, D. J., McAdams, J. V., Bedini, P. D., Calloway, A. B., Williams, K. E. and Page, B. R. (2014). MESSENGER’s use of solar sailing for cost and risk reduction. Acta Astronautica, 93, 483489.Google Scholar
Paige, D. A., Siegler, M. A., Harmon, J. K., Neumann, G. A., Mazarico, E. M., Smith, D. E., Zuber, M. T., Harju, E., Delitsky, M. L. and Solomon, S. C. (2013). Thermal stability of volatiles in the north polar region of Mercury. Science, 339, 300303.Google Scholar
Philpott, L. C., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., Purucker, M. E. and Solomon, S. C. (2014), Constraints on the secular variation of Mercury’s magnetic field from the combined analysis of MESSENGER and Mariner 10 data. Geophys. Res. Lett., 41, 66276634, doi:10.1002/2014GL061401.Google Scholar
Potter, A. E., Killen, R. M. and Morgan, T. H. (1999). Rapid changes in the sodium exosphere of Mercury. Planet. Space Sci., 47, 14411448, doi:10.1016/S0032-0633(99)00070–7.Google Scholar
Rayman, M. D. and Lehman, D. H. (1997). Deep Space One: NASA’s first deep-space technology validation mission. Acta Astronautica, 41, 289299.CrossRefGoogle Scholar
Rayman, M. D. and Varghese, P. (2001). The Deep Space 1 extended mission. Acta Astronautica, 48, 693705.Google Scholar
Ross, D., Russell, J. and Sutter, B. (2012). Mars Ascent Vehicle (MAV): Designing for high heritage and low risk. 2012 IEEE Aerospace Conference. Big Sky, MT, 6 pp., doi:10.1109/AERO.2012.6187296.Google Scholar
Russell, C. T., Coradini, A., Christensen, U., De Sanctis, M. C., Feldman, W. C., Jaumann, R., Keller, H. U., Konopliv, A. S., McCord, T. B., McFadden, L. A., McSween, H. Y., Mottola, S., Neukum, G., Pieters, C. M., Prettyman, T. H., Raymond, C. A., Smith, D. E., Sykes, M. V., Williams, B. G., Wise, J. and Zuber, M. T. (2004). Dawn: A journey in space and time. Planet. Space Sci., 52, 465489, doi:10.1016/j.pss.2003.06.013.Google Scholar
Saito, Y., Sauvaud, J. A., Hirahara, M., Barabash, S., Delcourt, D., Takashima, T. and Asamura, K. (2010). Scientific objectives and instrumentation of Mercury Plasma Particle Experiment (MPPE) onboard MMO. Planet. Space Sci., 58, 182200, doi:10.1016/j.pss.2008.06.003.Google Scholar
Santo, A. G., Gold, R. E., McNutt, R. L. Jr., Solomon, S. C., Ercol, C. J., Farquhar, R. W., Hartka, T. J., Jenkins, J. E., McAdams, J. V., Mosher, L. E., Persons, D. F., Artis, D. A., Bokulic, R. S., Conde, R. F., Dakermanji, G., Goss, M. E. Jr., Haley, D. R., Heeres, K. J., Maurer, R. H., Moore, R. C., Rodberg, E. H., Stern, T. G., Wiley, S. R., Williams, B. G., Yen, C. L. and Peterson, M. R. (2001). The MESSENGER mission to Mercury: Spacecraft and mission design. Planet. Space Sci., 49, 14811500.Google Scholar
Sauvaud, J. A., Fedorov, A., Aoustin, C., Seran, H. C., Le Comte, E., Petiot, M., Rouzaud, J., Saito, Y., Dandouras, J., Jacquey, C., Louarn, P., Mazelle, C. and Médale, J. L. (2010). The Mercury Electron Analyzers for the Bepi Colombo mission. Adv. Space Res., 46, 11391148, doi:10.1016/j.asr.2010.05.022.Google Scholar
Schlemm, C. E. II, Starr, R. D., Ho, G. C., Bechtold, K. E., Hamilton, S. A., Boldt, J. D., Boynton, W. V., Bradley, W., Fraeman, M. E., Gold, R. E., Goldsten, J. O., Hayes, J. R., Jaskulek, S. E., Rossano, E., Rumpf, R. A., Schaefer, E. D., Strohbehn, K., Shelton, R. G., Thompson, R. E., Trombka, J. I. and Williams, B. D. (2007). The X-Ray Spectrometer on the MESSENGER spacecraft. Space Sci. Rev., 131, 393415.Google Scholar
Solomon, S. C., McNutt, R. L. Jr., Gold, R. E., Acuña, M. H., Baker, D. N., Boynton, W. V., Chapman, C. R., Cheng, A. F., Gloeckler, G., Head, J. W., Krimigis, S. M., McClintock, W. E., Murchie, S. L., Peale, S. J., Phillips, R. J., Robinson, M. S., Slavin, J. A., Smith, D. E., Strom, R. G., Trombka, J. I. and Zuber, M. T. (2001). The MESSENGER mission to Mercury: Scientific objectives and implementation. Planet. Space Sci., 49, 14451465.Google Scholar
Solomon, S. C., McNutt, R. L. Jr., Gold, R. E. and Domingue, D. L. (2007). MESSENGER mission overview. Space Sci. Rev., 131, 339, doi:10.1007/s11214-007-9247-6.Google Scholar
Space Science Board (1962). A Review of Space Research: The Report of the Summer Study Conducted under the Auspices of the National Academy of Sciences at the State University of Iowa, Iowa City, Iowa, June 17-August 10, 1962. Washington, DC: National Academies Press, 604 pp.Google Scholar
Space Science Board (1966). Space Research: Directions for the Future. Washington, DC: National Academies Press, 653 pp.Google Scholar
Space Science Board (1968). Planetary Exploration: 1968–1975. Washington, DC: National Academies Press, 30 pp.Google Scholar
Sprague, A. L., Kozlowski, R. W. H., Hunten, D. M., Schneider, N. M., Domingue, D. L., Wells, W. K., Schmitt, W. and Fink, U. (1997). Distribution and abundance of sodium in Mercury’s atmosphere, 1985–1988. Icarus, 129, 506527, doi:10.1006/icar.1997.5784.Google Scholar
Srinivasan, D. K., Perry, M. E., Fielhauer, K. B., Smith, D. E. and Zuber, M. T. (2007). The radio frequency subsystem and radio science on the MESSENGER mission. Space Sci. Rev., 131, 557571.Google Scholar
Starr, R. D., Schriver, D., Nittler, L. R., Weider, S. Z., Byrne, P. K., Ho, G. C., Rhodes, E. A., Schlemm, C. E. II, Solomon, S. C. and Trávníček, P. M. (2012). MESSENGER detection of electron-induced X-ray fluorescence from Mercury’s surface. J. Geophys. Res., 117, E00L02, doi:10.1029/2012je004118.Google Scholar
Steering Committee for NASA Technology Roadmaps (2012). NASA Space Technology Roadmaps and Priorities – Restoring NASA’s Technological Edge and Paving the Way for a New Era in Space. Washington, DC: National Academies Press, 122 pp., doi:10.17226/13354.Google Scholar
Stern, S. A. and Vilas, F. (1988). Future observations of and missions to Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 2436.Google Scholar
Toksöz, M. N., Malin, M. C., Albee, A. L., Brandt, J. C., Briggs, G. A., Chapman, C. R., Coroniti, F. V., Duke, M. B., Fanale, F. P., Flinn, E. A., Haskin, L. A., Hayes, J. M., Johnson, T. V., Kaula, W. M., Masursky, H., McCord, T. B., Prinn, R., Schopf, J. W., Sonett, C. P., Stewart, A. I., Trombka, J. I., Wood, J. A. and Young, R. E. (1977). Report of the Terrestrial Bodies Science Working Group. Report NASA-CR-155189, Publication 77–51. Pasadena, CA: Jet Propulsion Laboratory, 33 pp.Google Scholar
Ward, W. R., Colombo, G. and Franklin, F. A. (1976). Secular resonance, solar spin down, and the orbit of Mercury. Icarus, 28, 441452, doi:10.1016/0019-1035(76)90117-2.Google Scholar
Yen, C.-W. (1985). Ballistic Mercury orbiter mission via Venus and Mercury gravity assists. Astrodynamics Specialist Conference, paper AAS-85-346. Vail, CO, 15 pp.Google Scholar
Yen, C.-W. (1989). Ballistic Mercury orbiter mission via Venus and Mercury gravity assists. J. Astron. Sci., 37, 417432.Google Scholar
Yoshikawa, I., Korablev, O., Kameda, S., Rees, D., Nozawa, H., Okano, S., Gnedykh, V., Kottsov, V., Yoshioka, K., Murakami, G., Ezawa, F. and Cremonese, G. (2010). The Mercury sodium atmospheric spectral imager for the MMO spacecraft of Bepi-Colombo. Planet. Space Sci., 58, 224237, doi:10.1016/j.pss.2008.07.008.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×