Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T12:40:33.053Z Has data issue: false hasContentIssue false

2 - Key Mechanics Concepts

Published online by Cambridge University Press:  13 July 2017

Matthew R. Begley
Affiliation:
University of California, Santa Barbara
John W. Hutchinson
Affiliation:
Harvard University, Massachusetts
Get access

Summary

This book relies heavily on concepts from strength of materials, continuum mechanics and the finite element method. Excellent books on these topics are abundant. The book on solid mechanics by Bower (2010) is a particularly complete reference that meshes well with much of the coverage here. This chapter is merely meant to provide a convenient reference for concepts used frequently in the rest of the book.

The majority of analytical solutions relevant to thin films and multilayers correspond to two-dimensional (planar) idealizations, which in one way or another represent a slice through a specific (x, y) plane in Figure 1.1. Even more narrowly, the mechanics review presented here is focused on results used to analyze blanket thin films, in which the width of the layers in these slices (i.e., the dimension in the x-direction) is much greater than their thickness. In this scenario, the films behave as plates whose deformation is uniform in the z-direction. Often the term ‘beam’ is used with the understanding that the behavior in the z-direction may not correspond to plane stress.

In this chapter, isotropic linear elastic constitutive descriptions are reviewed first, which are used exclusively throughout the book. The reader is referred elsewhere for generalizations to orthotropic and/or nonlinear constitutive relationships, for example, Bower (2010). Then, the mechanics of beams and plates are reviewed; the majority of problems addressed in this book involve small deformations and the corresponding linear strain-displacement relationships. As there are a few important problems in coatings that require nonlinear strain-displacement relationships (e.g., buckling of coatings subject to compressive stresses), a brief introduction to moderate rotation beam/plate theory is provided. The extension of these results to multilayers, that is, the analysis of individual layers bonded together, is left for future chapters. Finally, this chapter concludes with a section on unidirectional heat transfer, which is invoked in later chapters to determine temperature distributions through multilayers, which generate stresses that drive failure.

Review of Linear Isotropic Elasticity

The foundation of much of the subject matter covered in this book rests on linear elasticity theory. Many solutions are two-dimensional (2D) idealizations of three-dimensional (3D) problems, and extensive use of plate and beam theory is made for modeling purposes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Key Mechanics Concepts
  • Matthew R. Begley, University of California, Santa Barbara, John W. Hutchinson, Harvard University, Massachusetts
  • Book: The Mechanics and Reliability of Films, Multilayers and Coatings
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316443606.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Key Mechanics Concepts
  • Matthew R. Begley, University of California, Santa Barbara, John W. Hutchinson, Harvard University, Massachusetts
  • Book: The Mechanics and Reliability of Films, Multilayers and Coatings
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316443606.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Key Mechanics Concepts
  • Matthew R. Begley, University of California, Santa Barbara, John W. Hutchinson, Harvard University, Massachusetts
  • Book: The Mechanics and Reliability of Films, Multilayers and Coatings
  • Online publication: 13 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781316443606.002
Available formats
×