Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-07T11:17:40.155Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

References

Jan Dereziński
Affiliation:
Uniwersytet Warszawski, Poland
Christian Gérard
Affiliation:
Université Paris-Sud
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araki, H., 1963: A lattice of von Neumann algebras associated with the quantum theory of free Bose field, J. Math. Phys. 4, 1343–1362.Google Scholar
Araki, H., 1964: Type of von Neumann algebra associated with free field, Prog. Theor. Phys. 32, 956–854.Google Scholar
Araki, H., 1970: On quasi-free states of CAR and Bogoliubov automorphisms, Publ. RIMS Kyoto Univ. 6, 385–442.Google Scholar
Araki, H., 1971: On quasi-free states of canonical commutation relations II, Publ. RIMS Kyoto Univ. 7, 121–152.Google Scholar
Araki, H., 1987: Bogoliubov automorphisms and Fock representations of canonical anti-commutation relations, Contemp. Math. 62, 23–141.Google Scholar
Araki, H., Shiraishi, M., 1971: On quasi-free states of canonical commutation relations I, Publ. RIMS Kyoto Univ. 7, 105–120.Google Scholar
Araki, H., Woods, E.J., 1963: Representations of the canonical commutation relations describing a non-relativistic infinite free Bose gas, J. Math. Phys. 4, 637–662.Google Scholar
Araki, H., Wyss, W., 1964: Representations of canonical anti-communication relations, Helv. Phys. Acta 37, 139–159.Google Scholar
Araki, H., Yamagami, S., 1982: On quasi-equivalence of quasi-free states of canonical commutation relations, Publ. RIMS Kyoto Univ. 18, 283–338.Google Scholar
Bär, C., Ginoux, N., Pfäffle, F., 2007: Wave Equations on Lorentzian Manifolds and Quantization, ESI Lectures in Mathematics and Physics, EMS, Zurich.
Baez, J. C., Segal, I. E., Zhou, Z., 1991: Introduction to Algebraic and Constructive Quantum Field Theory, Princeton University Press, Princeton, NJ.
Banaszek, K., Radzewicz, C., Wódkiewicz, K., Krasiński, J. S., 1999: Direct measurement of the Wigner function by photon counting, Phys. Rev. A 60, 674–677.Google Scholar
Bargmann, V., 1961: On a Hilbert space of analytic functions and an associated integral transform I, Comm. Pure Appl. Math. 14, 187–214.Google Scholar
Bauer, H., 1968: Wahrscheinlichkeitstheorie und Grundz¨ge der Masstheorie, Walter de Gruyter & Co, Berlin.
Berezin, F. A., 1966: The Method of Second Quantization, Academic Press, New York and London.
Berezin, F. A., 1983: Introduction to Algebra and Analysis with Anti-Commuting Variables (Russian), Moscow State University Publ., Moscow.
Berezin, F. A., Shubin, M. A., 1991: The Schrödinger Equation, Kluwer Academic Publishers, Dordrecht.
Bernal, A., Sanchez, M., 2007: Globally hyperbolic space-times can be defined as “causal” instead of “strongly causal”, Classical Quantum Gravity 24, 745–749.Google Scholar
Birke, L., Fröhlich, J., 2002: KMS, etc, Rev. Math. Phys. 14, 829–871.Google Scholar
Bloch, F., Nordsieck, A., 1937: Note on the radiation field of the electron, Phys. Rev. 52, 54–59.Google Scholar
Bogoliubov, N. N., 1947a: J. Phys. (USSR) 11, reprinted in Pines, D. ed., The Many-Body Problem, W. A. Benjamin, New York, 1962.
Bogoliubov, N. N., 1947b: About the theory of superfluidity, Bull. Acad. Sci. USSR 11, 77–82.Google Scholar
Bogoliubov, N. N., 1958: A new method in the theory of superconductivity I, Sov. Phys. JETP 34, 41–46.Google Scholar
Bratteli, O., Robinson, D. W., 1987: Operator Algebras and Quantum Statistical Mechanics, Volume 1, 2nd edn., Springer, Berlin.
Bratteli, O., Robinson, D. W., 1996: Operator Algebras and Quantum Statistical Mechanics, Volume 2, 2nd edn., Springer, Berlin.
Brauer, R., Weyl, H., 1935: Spinors in n dimensions. Amer. J. Math. 57, 425–449.Google Scholar
Brunetti, R., Fredenhagen, K., Köhler, M., 1996: The microlocal spectrum condition and Wick polynomials of free fields on curved space-times, Comm. Math. Phys. 180, 633–652.Google Scholar
Brunetti, R., Fredenhagen, K., Verch, R., 2003: The generally covariant locality principle: a new paradigm for local quantum physics, Comm. Math. Phys. 237, 31–68.Google Scholar
Cahill, K. E., Glauber, R. J., 1969: Ordered expansions in boson amplitude operators, Phys. Rev. 177, 1857–1881.Google Scholar
Carlen, E., Lieb, E., 1993: Optimal hyper-contractivity for Fermi fields and related non-commutative integration inequalities, Comm. Math. Phys. 155, 27–46.Google Scholar
Cartan, E., 1938: Lecons sur la Theorie des Spineurs, Actualites Scientifiques et Industrielles No 643 et 701, Hermann, Paris.
Clifford, W. K., 1878: Applications of Grassmann's extensive algebra, Amer. J. Math. 1, 350–358.Google Scholar
Connes, A., 1974: Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier, 24, 121–155.Google Scholar
Cook, J., 1953: The mathematics of second quantization, Trans. Amer. Math. Soc. 74, 222–245.Google Scholar
Cornean, H., Dereziński, J., Zih, P., 2009: On the infimum of the energy-momentum spectrum of a homogeneous Bose gas, J. Math. Phys. 50, 062103.Google Scholar
Davies, E. B., 1980: One-Parameter Semi-Groups, Academic Press, New York.
Dereziński, J., 1998: Asymptotic completeness in quantum field theory: a class of Galilei covariant models, Rev. Math. Phys. 10, 191–233.Google Scholar
Dereziński, J., 2003: Van Hove Hamiltonians: exactly solvable models of the infrared and ultraviolet problem, Ann. Henri Poincaré 4, 713–738.Google Scholar
Dereziński, J., 2006: Introduction to representations of canonical commutation and anti-commutation relations. In Large Coulomb Systems: Lecture Notes on Mathematical Aspects of QED, Dereziński, J. and Siedentop, H., eds, Lecture Notes in Physics 695, Springer, Berlin.
Dereziński, J., Gérard, C., 1999: Asymptotic completeness in quantum field theory: massive Pauli-Fierz Hamiltonians, Rev. Math. Phys. 11, 383–450.Google Scholar
Dereziński, J., Gérard, C., 2000: Spectral and scattering theory of spatially cut-off P(φ)2 Hamiltonians, Comm. Math. Phys. 213, 39–125.Google Scholar
Dereziński, J., Gérard, C., 2004: Scattering theory of infrared divergent Pauli-Fierz Hamiltonians, Ann. Henri Poincaré 5, 523–577.Google Scholar
Dereziński, J., Jakšić, V., 2001: Spectral theory of Pauli-Fierz operators, J. Funct. Anal. 180, 241–327.Google Scholar
Dereziński, J., Jakšić, V., 2003: Return to equilibrium for Pauli-Fierz systems, Ann. Henri Poincare 4, 739–793.Google Scholar
Dereziński, J., Jakšić, V., Pillet, C.-A., 2003: Perturbation theory of W*-dynamics, Liouvilleans and KMS-states, Rev. Math. Phys. 15, 447–489.Google Scholar
Dimock, J., 1980: Algebras of local observables on a manifold, Comm. Math. Phys. 77, 219–228.Google Scholar
Dimock, J., 1982: Dirac quantum fields on a manifold, Trans. Amer. Math. Soc. 269, 133–147.Google Scholar
Dirac, P. A. M., 1927: The quantum theory of the emission and absorption of radiation, Proc. R. Soc. London A 114, 243–265.Google Scholar
Dirac, P. A. M., 1928: The quantum theory of the electron, Proc. R. Soc. London A 117, 610–624.Google Scholar
Dirac, P. A. M., 1930: A theory of electrons and protons, Proc. R. Soc. London A 126, 360–365.Google Scholar
Dixmier, J., 1948: Position relative de deux variétés linéaires fermées dans un espace de Hilbert, Rev. Sci. 86, 387–399.Google Scholar
Eckmann, J. P., Osterwalder, K., 1973: An application of Tomita's theory of modular algebras to duality for free Bose algebras, J. Funct. Anal. 13, 1–12.Google Scholar
Edwards, S., Peierls, P. E., 1954: Field equations in functional form, Proc. R. Soc. A 224, 24–33.Google Scholar
Emch, G., 1972: Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York.
Feldman, J., 1958: Equivalence and perpendicularity of Gaussian processes, Pacific J. Math. 8, 699–708.Google Scholar
Fetter, A. L., Walecka, J. D., 1971: Quantum Theory of Many-Particle Systems, McGraw-Hill, New York.
Fock, V., 1932: Konfigurationsraum und zweite Quantelung, Z. Phys. 75, 622–647.Google Scholar
Fock, V., 1933: Zur Theorie der Positronen, Doklady Akad. Nauk, 6 267–271.Google Scholar
Folland, G., 1989: Harmonic Analysis in Phase Space, Princeton University Press, Princeton, NJ.
Friedrichs, K. O., 1953: Mathematical Aspects of Quantum Theory of Fields, Interscience Publishers, New York.
Friedrichs, K. O., 1963: Perturbation of Spectra of Operators in Hilbert Spaces, AMS, Providence, RI.
Fröhlich, J., 1980: Unbounded, symmetric semi-groups on a separable Hilbert space are essentially self-adjoint. Adv. Appl. Math. 1, 237–256.Google Scholar
Fröhlich, J., Simon, B., 1977: Pure states for general P(ϕ)2 theories: construction, regularity and variational equality, Ann. Math. 105, 493–526.Google Scholar
Fulling, S. A., 1989: Aspects of Quantum Field Theory in Curved Space-Time, Cambridge University Press, Cambridge.
Furry, W. H., Oppenheimer, J. R., 1934: On the theory of electrons and positrons, Phys. Rev. 45, 245–262.Google Scholar
Gårding, L., Wightman, A. S., 1954: Representations of the commutation and anti-commutation relations, Proc. Nat. Acad. Sci. 40, 617–626.Google Scholar
Gelfand, I. M., Vilenkin, N. Y., 1964: Applications of Harmonic Analysis, Generalized Functions Vol. 4, Academic Press, New York.
Gérard, C., Jaekel, C., 2005: Thermal quantum fields with spatially cut-off interactions in 1 + 1 space-time dimensions, J. Funct. Anal, 220, 157–213.Google Scholar
Gérard, C., Panati, A., 2008: Spectral and scattering theory for space-cutoff P(φ)2 models with variable metric, Ann. Henri Poincaré 9, 1575–1629.Google Scholar
Gibbons, G. W., 1975: Vacuum polarization and the spontaneous loss of charge by black holes, Comm. Math. Phys. 44, 245–264.Google Scholar
Ginibre, J., Velo, G., 1985: The global Cauchy problem for the non-linear Klein-Gordon equation, Math. Z. 189, 487–505.Google Scholar
Glauber, R. J., 1963: Coherent and incoherent states, Phys. Rev. 131, 2766–2788.Google Scholar
Glimm, J., Jaffe, A., 1968: A λϕ4 quantum field theory without cutoffs, I, Phys. Rev. 176, 1945–1951.Google Scholar
Glimm, J., Jaffe, A., 1970a: The λϕ4 quantum field theory without cutoffs, II: the field operators and the approximate vacuum, Ann. Math. 91, 204–267.Google Scholar
Glimm, J., Jaffe, A., 1970b: The λϕ4 quantum field theory without cutoffs, III: the physical vacuum, Acta Math. 125, 204–267.Google Scholar
Glimm, J., Jaffe, A., 1985: Collected Papers, Volume 1: Quantum Field Theory and Statistical Mechanics, Birkhäuser, Basel.
Glimm, J., Jaffe, A., 1987: Quantum Physics: A Functional Integral Point of View, 2nd edn, Springer, New York.
Glimm, J., Jaffe, A., Spencer, T., 1974: The Wightman axioms and particle structure in the P(ϕ)2 quantum field model, Ann. Math. 100, 585–632.Google Scholar
Gross, L., 1972: Existence and uniqueness of physical ground states, J. Funct. Anal. 10, 52–109.Google Scholar
Grossman, M., 1976: Parity operator and quantization of δ-functions, Comm. Math. Phys. 48, 191–194.Google Scholar
Guerra, F., Rosen, L., Simon, B., 1973a: Nelson's symmetry and the infinite volume behavior of the vacuum in P(ϕ)2, Comm. Math. Phys. 27, 10–22.Google Scholar
Guerra, F., Rosen, L., Simon, B., 1973b: The vacuum energy for P(ϕ)2: infinite volume limit and coupling constant dependence, Comm. Math. Phys. 29, 233–247.Google Scholar
Guerra, F., Rosen, L., Simon, B., 1973b: The vacuum energy for P(ϕ)2: infinite volume limit and coupling constant dependence, Comm. Math. Phys. 29, 233–247.Google Scholar
Guerra, F., Rosen, L., Simon, B., 1975: The P(ϕ)2 Euclidean quantum field theory as classical statistical mechanics, Ann. Math. 101, 111–259.Google Scholar
Guillemin, V., Sternberg, S., 1977: Geometric Asymptotics, Mathematical Surveys 14, AMS, Providence, RI.
Haag, R., 1992: Local Quantum Physics, Texts and Monographs in Physics, Springer, Berlin.
Haag, R., Kastler, D., 1964: An algebraic approach to quantum field theory, J. Math. Phys. 5, 848–862.Google Scholar
Haagerup, U., 1975: The standard form of a von Neumann algebra, Math. Scand. 37, 271–283.Google Scholar
Hajek, J., 1958: On a property of the normal distribution of any stochastic process, Czechoslovak Math. J. 8, 610–618.Google Scholar
Halmos, P. R., 1950: Measure Theory, Van Nostrand Reinhold, New York.
Halmos, P. R., 1969: Two subspaces, Trans. Amer. Math. Soc. 144, 381–389.Google Scholar
Hardt, V., Konstantinov, A., Mennicken, R., 2000: On the spectrum of the product of closed operators, Math. Nachr. 215, 91–102.Google Scholar
Hepp, K., 1969: Theorie de la Renormalisation, Lecture Notes in Physics, Springer, Berlin.
Høgh-Krohn, R., 1971: On the spectrum of the space cutoff :P(φ): Hamiltonian in two space-time dimensions, Comm. Math. Phys. 21, 256–260.Google Scholar
Hörmander, L., 1985: The Analysis of Linear Partial Differential Operators, III: Pseudo-Differential Operators, Springer, Berlin.
Iagolnitzer, D., 1975: Microlocal essential support of a distribution and local decompositions: an introduction. In Hyperfunctions and Theoretical Physics, Lecture Notes in Mathematics 449, Springer, Berlin, pp. 121–132.Google Scholar
Jakšić, V., Pillet, C. A., 1996: On a model for quantum friction, II: Fermi's golden rule and dynamics at positive temperature, Comm. Math. Phys. 176, 619–644.Google Scholar
Jakšić, V., Pillet, C. A., 2002: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787–829.Google Scholar
Jauch, J. M., Röhrlich, F., 1976: The Theory of Photons and Electrons, 2nd edn, Springer, Berlin.
Jordan, P., Wigner, E., 1928: Über das Paulische Äquivalenzverbot, Z. Phys. 47, 631–651.Google Scholar
Kallenberg, O., 1997: Foundations of Modern Probability, Springer Series in Statistics, Probability and Its Applications, Springer, New York.
Kato, T., 1976: Perturbation Theory for Linear Operators, 2nd edn, Springer, Berlin.
Kay, B. S., 1978: Linear spin-zero quantum fields in external gravitational and scalar fields, Comm. Math. Phys. 62, 55–70.Google Scholar
Kay, B. S., Wald, R. M., 1991: Theorems on the uniqueness and thermal properties of stationary, non-singular, quasi-free states on space-times with a bifurcate Killing horizon, Phys. Rep. 207, 49–136.Google Scholar
Kibble, T. W. B., 1968: Coherent soft-photon states and infrared divergences, I: classical currents, J. Math. Phys. 9, 315–324.Google Scholar
Klein, A., 1978: The semi-group characterization of Osterwalder-Schrader path spaces and the construction of Euclidean fields, J. Funct. Anal. 27, 277–291.Google Scholar
Klein, A., Landau, L., 1975: Singular perturbations of positivity preserving semi-groups, J. Funct. Anal. 20, 44–82.Google Scholar
Klein, A., Landau, L., 1981: Construction of a unique self-adjoint generator for a symmetric local semi-group, J. Funct. Anal. 44, 121–137.Google Scholar
Klein, A., Landau, L., 1981b: Stochastic processes associated with KMS states, J. Funct. Anal. 42, 368–428.Google Scholar
Kohn, J. J., Nirenberg, L., 1965: On the algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18, 269–305.Google Scholar
Kunze, R. A., 1958: LpFourier transforms on locally compact uni-modular groups. Trans. Amer. Math. Soc. 89, 519–540.Google Scholar
Lawson, H. B., Michelson, M.-L., 1989: Spin Geometry, Princeton University Press, Princeton, NJ.
Leibfried, D., Meekhof, D. M., King, B. E., et al., 1996: Experimental determination of the motional quantum state of a trapped atom, Phys. Rev. Lett. 77, 4281–4285. Leray, J., 1978: Analyse Lagrangienne et Mécanique Quantique: Une Structure Mathématique Apparentée aux Développements Asymptotiques et à l'Indice de Maslov, Série de Mathématiques Pures et Appliquées, IRMA, Strasbourg.
Lundberg, L. E., 1976: Quasi-free “second-quantization”, Comm. Math. Phys. 50, 103–112.Google Scholar
Manuceau, J., 1968: C*-algèbres de relations de commutation, Ann. Henri Poincaré Sect. A 8, 139–161.Google Scholar
Maslov, V. P., 1972: Théorie de Perturbations et Méthodes Asymptotiques, Dunod, Paris.
Mattuck, R., 1967: A Guide to Feynman Diagrams in the Many-Body Problem, McGraw-Hill, New York.
Moyal, J. E., 1949: Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45, 99–124.Google Scholar
Nelson, E., 1965: A quartic interaction in two dimensions. In Mathematical Theory of Elementary Particles, Martin, W. T. and Segal, I. E., eds, MIT Press, Cambridge, MA.
Nelson, E., 1973: The free Markoff field, J. Funct. Anal. 12, 211–227.Google Scholar
Neretin, Y. A., 1996: Category of Symmetries and Infinite-Dimensional Groups, Clarendon Press, Oxford.
Osterwalder, K., Schrader, R., 1973: Axioms for euclidean Green's functions I, Comm. Math. Phys. 31, 83–112.Google Scholar
Osterwalder, K., Schrader, R., 1975: Axioms for euclidean Green's functions II, Comm. Math. Phys. 42, 281–305.Google Scholar
Pauli, W., 1927: Zur Quantenmechanik des magnetischen Elektrons, Z. Phys. 43, 601–623.Google Scholar
Pauli, W., Weisskopf, V., 1934: Über die Quantisierung der skalaren relativistischen Wellengleichung, Helv. Phys. Acta 7, 709–731.Google Scholar
Perelomov, A. M., 1972: Coherent states for arbitrary Lie groups, Comm. Math. Phys. 26, 222–236.Google Scholar
Plymen, R. J., Robinson, P. L., 1994: Spinors in Hilbert Space, Cambridge Tracts in Mathematics 114, Cambridge University Press, Cambridge.
Powers, R., Stoermer, E., 1970: Free states of the canonical anti-commutation relations, Comm. Math. Phys. 16, 1–33.Google Scholar
Racah, G., 1927: Symmetry between particles and anti-particles, Nuovo Cimento 14, 322–328.Google Scholar
Reed, M., Simon, B., 1975: Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness, Academic Press, London.
Reed, M., Simon, B., 1978a: Methods of Modern Mathematical Physics, III: Scattering Theory, Academic Press, London.
Reed, M., Simon, B., 1978b: Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, London.
Reed, M., Simon, B., 1980: Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, London.
Rieffel, M. A., van Daele, A., 1977: A bounded operator approach to Tomita-Takesaki theory, Pacific J. Math. 69, 187–221.Google Scholar
Robert, D., 1987: Autour de l'Approximation Semiclassique, Progress in Mathematics 68, Birkhäuser, Basel.Google Scholar
Robinson, D., 1965: The ground state of the Bose gas, Comm. Math. Phys. 1, 159–174.Google Scholar
Roepstorff, G., 1970: Coherent photon states and spectral condition, Comm. Math. Phys. 19, 301–314.Google Scholar
Rosen, L., 1970: A λϕ2n field theory without cutoffs, Comm. Math. Phys. 16, 157–183.Google Scholar
Rosen, L., 1971: The (ϕ2n)2 quantum field theory: higher order estimates, Comm. Pure Appl. Math. 24, 417–457.Google Scholar
Ruijsenaars, S. N. M., 1976: On Bogoliubov transformations for systems of relativistic charged particles, J. Math. Phys. 18, 517–526.Google Scholar
Ruijsenaars, S. N. M., 1978: On Bogoliubov transformations, II: the general case. Ann. Phys. 116, 105–132.Google Scholar
Sakai, S., 1971: G*-Algebras and W*-Algebras, Ergebnisse der Mathematik und ihrer Gren-zgebiete 60, Springer, Berlin.Google Scholar
Sakai, T., 1996: Riemannian Geometry, Translations of Mathematical Monographs 149, AMS, Providence, RI.
Schrödinger, E., 1926: Der stetige Übergang von der Mikro- zur Makromechanik, Naturwis-senschaften 14, 664–666.Google Scholar
Schwartz, L., 1966: Théorie des Distributions, Hermann, Paris.
Schweber, S. S., 1962: Introduction to Non-Relativistic Quantum Field Theory, Harper & Row, New York.
Segal, I. E., 1953a: A non-commutative extension of abstract integration, Ann. Math. 57, 401–457.Google Scholar
Segal, I. E., 1953b: Correction to “A non-commutative extension of abstract integration”, Ann. Math. 58, 595–596.Google Scholar
Segal, I. E., 1956: Tensor algebras over Hilbert spaces, II, Ann. Math. 63, 160–175.Google Scholar
Segal, I. E., 1959: Foundations of the theory of dynamical systems of infinitely many degrees of freedom (I), Mat. Fys. Medd. Danske Vid. Soc. 31, 1–39.Google Scholar
Segal, I. E., 1963: Mathematical Problems of Relativistic Physics, Proceedings of summer seminar on applied mathematics, Boulder, CO, 1960, AMS, Providence, RI.
Segal, I. E., 1964: Quantum fields and analysis in the solution manifolds of differential equations. In Analysis in Function Space, Proceedings of a conference on the theory and applications of analysis in function space, Dedham, MA, 1963, M.I.T. Press, Cambridge, MA.
Segal, I. E., 1970: Construction of non-linear local quantum processes, I, Ann. Math. 92, 462–481.Google Scholar
Segal, I. E., 1978: The complex-wave representation of the free boson field, Suppl. Studies, Adv. Math. 3, 321–344.Google Scholar
Shale, D., 1962: Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103, 149–167.Google Scholar
Shale, D., Stinespring, W. F., 1964: States on the Clifford algebra, Ann. Math. 80, 365–381.Google Scholar
Simon, B., 1974: The P(ϕ)2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, NJ.
Simon, B., 1979: Trace Ideals and Their Applications, London Math. Soc. Lect. Notes Series 35, Cambridge University Press, Cambridge.
Simon, B., Høgh-Krohn, R., 1972: Hyper-contractive semi-groups and two dimensional self-coupled Bose fields, J. Funct. Anal. 9, 121–180.Google Scholar
Skorokhod, A. V., 1974: Integration in Hilbert Space, Springer, Berlin.
Slawny, J., 1971: On factor representations and the C*-algebra of canonical commutation relations, Comm. Math. Phys. 24, 151–170.Google Scholar
Srednicki, M., 2007: Quantum Field Theory, Cambridge University Press, Cambridge.
Stratila, S., 1981: Modular Theory in Operator Algebras, Abacus Press, Tunbridge Wells.
Streater, R. F., Wightman, A. S., 1964: PCT, Spin and Statistics and All That, W. A. Benjamin, New York.
Symanzik, K., 1965: Application of functional integrals to Euclidean quantum field theory. In Mathematical Theory of Elementary Particles, Martin, W. T. and Segal, I. E., eds, MIT Press, Cambridge, MA.
Takesaki, M., 1979: Theory of Operator Algebras I, Springer, Berlin.
Takesaki, M., 2003: Theory of Operator Algebras II, Springer, Berlin.
Tao, T., 2006: Local and Global Analysis of Non-Linear Dispersive and Wave Equations, CMBS Reg. Conf. Series in Mathematics 106, AMS, Providence, RI.
Tomonaga, S., 1946: On the effect of the field reactions on the interaction of mesotrons and nuclear particles, I, Prog. Theor. Phys. 1, 83–91.Google Scholar
Trautman, A., 2006: Clifford algebras and their representations. In Encyclopedia of Mathematical Physics 1, Elsevier, Amsterdam, pp. 518–530.
van Daele, A., 1971: Quasi-equivalence of quasi-free states on the Weyl algebra, Comm. Math. Phys. 21, 171–191.Google Scholar
van Hove, L., 1952: Les difficultés de divergences pour un modèle particulier de champ quantifié, Physica 18, 145–152.Google Scholar
Varilly, J. C., Gracia-Bondia, J. M., 1992: The metaplectic representation and boson fields, Mod. Phys. Lett. A7, 659–673.Google Scholar
Varilly, J. C., Gracia-Bondia, J. M., 1994: QED in external fields from the spin representation, J. Math. Phys. 35, 3340–3367.Google Scholar
von Neumann, J., 1931: Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104, 570–578.Google Scholar
Wald, R. M., 1994: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, University of Chicago Press, Chicago, IL.
Weil, A., 1964: Sur certains groupes d'operateurs unitaires, Acta Math. 111, 143–211.Google Scholar
Weinberg, S., 1995: The Quantum Theory of Fields, Vol. I: Foundations, Cambridge University Press, Cambridge.
Weinless, M., 1969: Existence and uniqueness of the vacuum for linear quantized fields, J. Funct. Anal. 4, 350–379.Google Scholar
Weyl, H., 1931: The Theory of Groups and Quantum Mechanics, Methuen, London.
Wick, G. C., 1950: The evaluation of the collision matrix, Phys. Rev. 80, 268–272.Google Scholar
Widder, D., 1934: Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Bull. AMS 40, 321-326Google Scholar
Wigner, E., 1932a: Über die Operation der Zeitumkehr in der Quantenmechanik, Gött. Nachr. 31, 546–559.Google Scholar
Wigner, E., 1932b: On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749–759.Google Scholar
Wilde, I. F, 1974: The free fermion field as a Markov field. J. Funct. Anal. 15, 12–21.Google Scholar
Williamson, J., 1936: On an algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math. 58, 141–163.Google Scholar
Yafaev, D., 1992: Mathematical Scattering Theory: General Theory, Translations of Mathematical Monographs 105, AMS, Providence, RI.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jan Dereziński, Uniwersytet Warszawski, Poland, Christian Gérard
  • Book: Mathematics of Quantization and Quantum Fields
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511894541.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jan Dereziński, Uniwersytet Warszawski, Poland, Christian Gérard
  • Book: Mathematics of Quantization and Quantum Fields
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511894541.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jan Dereziński, Uniwersytet Warszawski, Poland, Christian Gérard
  • Book: Mathematics of Quantization and Quantum Fields
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511894541.024
Available formats
×