Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T10:32:21.665Z Has data issue: false hasContentIssue false

12 - A Gasdynamic–Acoustic Model of a Bird Scare Gun

Published online by Cambridge University Press:  05 June 2012

Ellis Cumberbatch
Affiliation:
Claremont Graduate School, California
Alistair Fitt
Affiliation:
University of Southampton
Get access

Summary

Introduction

A bird scare gun is a relatively simple device which produces impulsive noise by means of a gas explosion. It is used for scaring birds away from areas where their presence is unwanted, like orchards, airfields, or oilfields. It is meant to operate automatically for long periods of time, with little or no human intervention. The construction is simple and robust, with as few as possible moving parts, so that a lifecycle in the order of 100,000–200,000 explosions is attainable.

The mechanism is simple. Acarefully controlled mixture of air and propane or butane gas (stoichiometric mixture, or a little bit richer than that) is periodically (every 5 or 10 minutes) blown into a semi-open pot, which is the combustion chamber. This pot is connected via a small diaphragm or iris (a small hole in the wall of the combustion pot) to an exhaust pipe. After ignition, the gas burns quickly (but without detonation, i.e. with a subsonically moving flame front) so that pressure and temperature increase quickly. This high pressure drives the gas out of the pot via a hot jet, which issues from the diaphragm into the pipe. Acting like a piston, this jet creates a pressure wave in the cold exhaust pipe. Part of the wave reflects at the exit, and part radiates, nearly spherically, away into the open air.

An interesting detail in the design gives, without any further analysis, insight in the gasdynamic behavior. In order to vary the noise that is produced, the length of the exhaust pipe is made variable. The pipe consists of two shorter pipes, one of which slides inside the other, like a telescope.

Type
Chapter
Information
Mathematical Modeling
Case Studies from Industry
, pp. 253 - 269
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×