Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-10T20:52:58.226Z Has data issue: false hasContentIssue false

The Evolution of Quasar Host Galaxies

Published online by Cambridge University Press:  05 May 2010

Isaac Shlosman
Affiliation:
University of Kentucky
Get access

Summary

ABSTRACT

Analysis of quasar broad emission lines suggests that the emitting gas is substantially enriched, often well above solar at high redshifts. The abundances are like those expected in the cores of massive galaxies early in their evolution, suggesting that observable quasars occur near the end of the epoch when rapid star formation, dominated by high mass stars, has created an enriched interstellar medium. An increase in the derived metallicities with both redshift and luminosity suggests that there is a mass-metallicity relation among quasars analogous (or identical) to the mass-metallicity relation in elliptical galaxies. This relation is consistent with the most massive quasars and/or host galaxies forming only at high redshifts.

INTRODUCTION

Observations of strong metallic emission lines in quasars out to redshift ∼4.9 imply some enrichment at times when the Universe was less than 10% of its present age. If quasars reside in the cores of massive galaxies, their gaseous environments could easily have larger than solar abundances, even at the highest redshifts. Observations and models of giant elliptical galaxies show that metallicities of at least several Z are attained in less than 1 Gyr (cf. Arimoto and Yoshii 1987). In the bulge of our own galaxy the stellar metallicities also reach at least a few Z (Rich 1988) and the enrichment is again believed to occur in ≲ Gyr (Köppen and Arimoto 1990). Since the gas in any evolving star cluster is as chemically enriched as the most recently formed stars, and thus more enriched than the bulk of the stellar population, metallicities above solar may be typical of the gas in massive galactic nuclei.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×